
Lecture 4: BFS, Graph
Representations, DFS

Sam McCauley

February 14, 2024

Welcome Back!

• Trying to get Assignment 0 back to you tomorrow or early Wednesday

• If office hours are over zoom tomorrow I will send an email (unlikely but

possible).

• Any questions before we start?

Breadth-First Search

BFS Definition: Intuition

We define BFS using a sequence of layers

• Initialize L0 = {s}, i = 0; mark s as visited

• if there exists a node in Li with an unvisited neighbor:

• Set Li+1 to be all unvisited neighbors of nodes in Li ; mark all nodes in Li+1 as
visited; set i = i + 1

BFS Properties

Useful shorthand for today: if x ∈ Li , we also write i = L[x].

Lemma

If (x, y) ∈ E, then for any BFS tree on G, |L[x]− L[y]| ≤ 1.

Theorem
In a connected graph G, BFS starting at any vertex s will visit every vertex.

Theorem

BFS runs in O(n + m) time on a graph with n vertices and m edges.

The BFS Tree

• The levels explored by the BFS are the levels of a tree (i.e. the nodes at a

particular height)

• If v′ is a neighbor of v that we add to some level, then v is the parent of v′.

• We can calculate the BFS tree while doing the BFS in O(n + m) time

Application: Maze Solving

• BFS can find if a maze is solvable!

• Turn the maze into a graph: node for each square; edge if can get from one

square to another

• How can we prove that BFS always solves the maze if possible?

• Animation: https://youtu.be/zMy5MwQWwss?si=VRNW3sgRgMeK7aVd&t=129

https://youtu.be/zMy5MwQWwss?si=VRNW3sgRgMeK7aVd&t=129

Application: Maze Solving

• How do we get the path from start to end of the maze?

• One answer: use the BFS tree!

• Path from s to e in the tree is a path from s to e in the maze

BFS to find Shortest Path

• BFS gives the shortest path between the initial vertex s and any other vertex v
in the graph

• We call the length of the shortest path between two vertices u and v the distance
betwen u and v

BFS to find Shortest Path

• BFS gives the shortest path between the initial vertex s and any other vertex v
in the graph

• We call the length of the shortest path between two vertices u and v the distance
betwen u and v

• How can we formalize?

Theorem
For any vertex v, if v is at height d of the BFS tree rooted at s, then the shortest

path from s to v has length d.

BFS to find Shortest Path

Theorem
For any vertex v, v is at depth d of the BFS tree rooted at s if and

only if the shortest path from s to v has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Now, assume that for some d, for all 0 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

BFS to find Shortest Path
Proof: Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists

of all vertices whose shortest path from s has length k. (Goal: show

that Ld+1 consists of all vertices w/ shortest path length d + 1.)

First, we show that if a vertex v is in Ld+1, its shortest path from s has length d + 1.

We break this into two parts: first we show that there exists a path of length d + 1;

then we show that no path has length < d + 1.

Since v ∈ Ld+1, v has a neighbor v′ ∈ Ld. By the I.H., the shortest path from s to v′

has length d. Therefore, there is a path from s to v of length d + 1, so the shortest

path from s to v has length at most d + 1.

Now, we show that no path from s to v has length < d + 1. Consider a path of

length k, p = s, v1, . . . , vk−1, v for k < d + 1. By the I.H., vk−1 is in level Lk−1; but since

there is an edge from vk−1 to v, v must be in Lk or earlier, contradicting our

assumption that v ∈ Ld+1.

BFS to find Shortest Path

Proof: Recall: Proof by strong induction on d.

Now, assume that for some d, for all 1 ≤ k ≤ d, Lk consists of all vertices whose

shortest path from s has length k. (Goal: show that Ld+1 consists of all vertices w/

shortest path length d + 1.)

Now, we show that if the shortest path from s to v has length d + 1, then v ∈ Ld+1.

By I.H., v /∈ Lj for j < d + 1.

Let p = s, v1, . . . , vd, v be a path of length d + 1 from s to v. By the I.H., vd ∈ Ld.

When we explore the neighbors of vd, we cannot have already explored v since

v /∈ Lj for j < d + 1; thus v ∈ Ld+1

BFS to find Shortest Path (wrapup)

Theorem
For any vertex v, v is at depth d of the BFS tree rooted at s if and only if the

shortest path from s to v has length d.

Proof: By strong induction on d. Base case: for d = 0, the only vertex with a

shortest path of length 0 from s is s; we have that L0 = {s} by definition of BFS.

Summary: We have shown that assuming the I.H. for all 1 ≤ k ≤ d, if v ∈ Ld+1, then

the shortest path from s to v has length d + 1; furthermore, if the shortest path from

s to v has length d + 1, then v ∈ Ld+1. Therefore the inductive step is complete.

BFS Properties Summary

• Starts at some node s

• Partitions vertices into levels L0, L1, . . .

• Gives a BFS tree T ; a vertex at height h in the tree is in Lh

• If (x, y) ∈ E, the level of x and y differ by ≤ 1

• A vertex is at height h in T if and only if its shortest path from s has distance h

Implementing BFS

Implementing BFS

• Can we be more specific about how BFS works?

• Maybe give pseudocode?

• Do we need to store the levels explicitly? How should we store them?

• Key insight: we can explore the nodes in level Li+1 in the same order they were

added to Li+1. (And note that they were added before any node in Li+2

• So: explore nodes in the same order they were visited!

BFS Pseudocode

1 BFS(G, s):
2 Put s in a queue Q
3 while Q is not empty:
4 v = Q.dequeue() # take the first vertex from Q
5 if v is not marked as visited:
6 mark v as visited
7 for each edge (v,w):
8 Q.enqueue(w) # add w to Q

Note: this algorithm only works if at start all vertices in G are not marked as visited!

• Question: How can we calculate the BFS tree T?

• Can we guarantee that this is equivalent to the level-by-level version of BFS?

Proof that BFS Algorithms are Equivalent

Theorem
In BFS(G, s), all nodes in level Li are explored (removed from the queue) before

any node in level Li+1

We’ll use the following invariant: if at any time the first instance of the univisted

nodes in the queue are in order v1, v2, . . . , vk, then

L[v1] ≤ L[v2] ≤ · · · ≤ L[vk] ≤ L[v1] + 1.

If this invariant holds, then the theorem is true.

Proof that BFS Algorithms are Equivalent
Inductive Hypothesis: if after x iterations of the while loop, the order

of the first instance of univisted nodes in the queue v1, v2, . . . , vk,

then L[v1] ≤ L[v2] ≤ · · · ≤ L[vk] ≤ L[v1] + 1.

Base Case: For x = 0, the queue only contains s.

Inductive Step: Assume I.H. after some x ≥ 0 iterations of the while loop. During

(x + 1)st iteration, v1 is removed from the queue and its neighbors are added to the

queue; let u1, . . . , ur be the unvisited neighbors that are not already in the queue.

We have that L[u1] = L[u2] = · · · = L[ur] = L[v1] + 1.

The queue now contains v2, v3, . . . , vk, u1, u2, . . . , ur . By I.H. and the above,

L[v2] ≤ L[v3] ≤ · · · ≤ L[vk] ≤ L[u1] ≤ · · · ≤ L[ur] ≤ L[v1] + 1

Since we also had L[v1] ≤ L[v2] from I.H., we are done:

L[v2] ≤ L[v3] ≤ · · · ≤ L[vk] ≤ L[u1] ≤ · · · ≤ L[ur] ≤ L[v2] + 1

Last BFS Application: Bipartite Testing

• Bipartite graph: graph G whose vertices can be partitioned into V1,V2 where

every edge e has one endpoint in V1 and one endpoint in V2.

Last BFS Application: Bipartite Testing

• How can we test if a given graph is bipartite?

• Maybe greedily assign vertices to one set or the other? Does this always work?

• Today: use BFS

• Run BFS from any start vertex. If there is an edge between two vertices at the
same level, return “not bipartite.” Otherwise, return “bipartite.”

Bipartite Testing

Theorem
The BFS bipartite testing algorithm is correct.

Proof (part 1: correct if returns “bipartite”): If the algorithm returns “bipartite,”

then G is bipartite.

Let V1 be all vertices at even levels, and V2 be all vertices at odd levels. We must

show that every edge is between a vertex in V1 and a vertex in V2.

Consider an edge e = (u, v). We must have that |L[u]− L[v]| ≤ 1 by BFS property.

We cannot have L[u] = L[v], so |L[u]− L[v]| = 1. But then u ∈ V1 and v ∈ V2 (or vice

versa).

Bipartite Testing

Theorem
The BFS bipartite testing algorithm is correct.

Proof (part 2: correct if returns “not bipartite”): If the algorithm returns “not

bipartite,” there is an edge e between two vertices v1 and v2 at the same level k (for

some k). Assume by contradiction that G is bipartite. Then v1 and v2 are in different

partitions; let’s say v1 ∈ V1 and v2 ∈ V2.

Let p1 be the path from s to v1 in the BFS tree T , and let p2 be the path from v2 to s

in T . Both p1 and p2 have length k.

Let p1 = (s = u0, u1, u2, . . . , uk = v1). We know that uk ∈ V1, so uk−1 ∈ V2; and so on.

So if k is odd, s ∈ V2; if k is even then s ∈ V1.

Let p2 = (v2 = w0,w2, . . . ,wk = s). We know that w1 ∈ V2, so w2 ∈ V1; and so on. So

if k is odd, s ∈ V1; if k is even then s ∈ V2. In either case (k odd or even) we have a

contradiction.

BFS is a simple algorithm, but—with careful analysis—it
can accomplish quite a lot!

Directed Graphs

Directed Graphs

A

B

C

D

E V = {A,B,C,D,E}

E = {(A,B), (B,A), (A,D), (B,C),

(D,C), (C,E), (D,E)}

• In a directed graph, edges have an ordering: an edge (u, v) is from u to v.

• Called directed edges (some call them arcs; I won’t however)

• Good for capturing some kinds of data (website links, etc.)

• Notion of a path, etc., is the same

BFS Properties Summary (Directed Graphs)

• Starts at some node s

• Partitions vertices into levels L0, L1, . . .

• Gives a BFS tree T ; a vertex at height h in the tree is in Lh

• If (x, y) ∈ E, the level of x and y differ by ≤ 1 [This is only true for undirected

graphs; see lecture 5]

• A vertex is at height h in T if and only if its shortest path from s has distance h

Storing a Graph

How to store a graph?

Goal: Use data structures we know to store a graph to allow things like traversals

• Adjacency List representation

• Adjacency Matrix representation

Adjacency List

• For each vertex, store all neighbor edges/vertices in a linked list

• Works well for:

• Can find all dv neighbors of v in O(1 + dv) time

• Only requires O(n + m) space (why?)

• Does not work well for:

• Given an edge e = (u, v), is e ∈ E?

• Must scan through neighbors of u; requires Ω(du) time.

Example [On Board #1]

Adjacency Matrix

• Store an n× n matrix

• Store a 1 in entry (i, j) if there is an edge from the ith to the jth vertex

• Works well for:

• Given an edge e = (u, v), is e ∈ E in O(1) time.

• Does not work well for:

• Space if graph has few edges (requires Ω(n2) space)

• Finding all dv neighbors of v takes Ω(n) time

• Used much less often

Example [On Board #2]

Depth-First Search

From BFS to DFS

• BFS explores “carefully,” creates wide trees

• Depth-first search (DFS): explore as deep as possible

• We’ll define DFS two ways

DFS: Stack Definition

1 DFS(G, s):
2 Put s in a stack S
3 while S is not empty:
4 v = S.pop() # take the top vertex from S
5 if v is not marked as visited:
6 mark v as visited
7 for each edge (v,w):
8 S.push(w) # add w to the top of S

• We can obtain DFS by using a stack rather than a queue in BFS.

• Define a DFS tree: the parent edge of a node is the edge that marked it visited.

Let’s do an example [On Board #3]

	Breadth-First Search
	Implementing BFS
	Directed Graphs
	Storing a Graph
	Depth-First Search

