
Approximation Algorithms

Sam McCauley

May 6, 2024



Welcome Back!

• Assignment 8 Wednesday

• SCS today (if you don’t have a computer that’s OK, but please fill it out!)

• Questions?



Final Exam: Updates

• On the final I will drop each student’s lowest-scoring question

• (Idea: less variance; some extra points; less time pressure; OK to be less

comfortable on one topic)

• You can skip a question if you want. I’d recommend at least going for partial

credit on all questions however



Let’s Make a Deal

• Approximation algorithms will not be on the final

• Nor will the “fun” NP-hard problems we talk about

• Stay with me while we have a low-key conversation about them

• Still good practice for final:

• We’ll look at greedy approximation algorithms

• We’ll talk about some counterexamples



Today

• Subset-Sum ≤P Knapsack

• Brief overview of other NP-hard problems

• Approximation algorithms

• End early; Course summary and SCS forms



Subset-Sum ≤P Knapsack



Showing that Knapsack is NP-hard

• Subset sum looks a little bit like knapsack (we’ll go over on the next slide)

• We couldn’t find a polynomial-time algorithm for knapsack and I claimed there

wasn’t one

• Can we prove it?



(Recall) Knapsack

• You are packing a bag, with a weight capacity C

• You have a collection of items to put in your bag

• Each item i has a weight wi and a value vi (both nonnegative integers)

• Choose a subset of items with total weight at most C

• Goal: maximize the total value of the items you pack

• Goal (decision version): can we pack items with value at least V?



Subset-Sum ≤P Knapsack

• Prove Knapsack NP-hard

• Why is Knapsack in NP?

• To show the above: given an instance (S,T) of subset sum, want to create an

instance of Knapsack such that we can pack items with total value ≥ V in the

knapsack if and only if (S,T) has a subset sum



Comparing the Problems

Subset Sum:

• given: set of integers S

• goal: find a subset S′ ⊆ S

• requirement:
∑

s∈S′ s = T (the

elements of s sum to T)

Knapsack

• given: n items, each with a weight

wi and value vi ; capacity C; target

value V

• goal: find a set of items with total

value at least V

• requirement: the set of items have

total weight at most C



Subset sum to Knapsack

Start with S = s1, . . . , sn and T .

In Knapsack, we need total value at least V and total weight at most C. In subset

sum, we needed integers with total exactly T

• Idea: if we have V = C = T then ≥ V,≤ C means = T

• We create a Knapsack instance with V = C = T

• For each item i in our knapsack, let wi = vi = si .

• Now: need to prove correctness.



Correctness Proof

If (S,T) has a subset sum, then our knapsack instance has a solution.

• Let S′ be the solution to S,T ; so
∑

s∈S′ s = T .

• For each si ∈ S′, add item i to our Knapsack instance

• Total weight: T = C

• Total value: T = V

• So the items we have selected have total value at least V , and total weight at

most C.



Correctness Proof

If our knapsack instance has a solution, then (S,T) has a subset sum.

• For each item i in the knapsack solution, add si to the subset sum solution S′

• We know that the total weight of all items in the knapsack solution is at most

C = T

• The total value of all items in the knapsack solution is at least V = T .

• We have vi = wi = si . So the sum of the weights and values of the knapsack

solution are the same, and must be exactly T . This is also
∑

si∈S′ si .



Other NP Complete Problems



Graph 3-coloring

• Given a graph G

• Can we assign colors to each vertex

of the graph (one of 3 colors) such

that each edge has endpoints of

different colors?

• Reduction idea: from 3SAT. Much

like independent set, create

“gadgets” which enforce 3SAT

requirements.



Hamiltonian Cycle

• Given a graph G

• Is there a simple cycle that visits

every vertex exactly once?

• Also NP-complete: is there a simple

path that visits every vertex exactly

once?



Hamiltonian Cycle Reduction

• From 3SAT! Looks a little like

independent set or 3-color

• Diagram on left: must choose if the

path goes through the middle

vertices left or right; corresponds to

variable being positive or negative



Hamiltonian Cycle Reduction

• Need at least one “true” variable in

each clause or you miss some

vertices (see diagram)

• In Theory of Computation will see

in a little more detail



Travelling Salesman Problem (TSP)

• What is the shortest path through a

graph that visits every vertex?

• Decision version: is there a path

that visits every vertex of length k?

• Classic NP-complete problem



TSP Reduction Summary

• From Hamiltonian Cycle. Practice: how can we use Hamiltonian cycle to prove

TSP NP-hard?

• Given a Hamiltonian Cycle instance G

• Create a complete graph G′. Weight of an edge e is 1 if e ∈ G, 2 if e /∈ G.

• Proof summary: G′ has a TSP tour of length k = n if and only if G has a

Hamiltonian cycle



Problems We Have Proven NP-complete





Other/Fun NP-Hard Problems



NP-hard Problems in Other Areas

• Biology/Chemistry: Protein folding

• Civil Engineering: Urban traffic flow equilibrium

• Economics: Arbitrage in financial markets with friction

• Mechanical Engineering: Computing turbulence in sheared flows

• Physics: Partition function of 3D Ising Model

• Political Science: Computing the Dodgson winner of an election

• Statistics: Optimal experimental design



Fun NP-hard Games

• Minesweeper

• Candy Crush saga

• Rubik’s Cube (2017 result; from Hamilton cycle)

• Super Mario Brothers (from 3-SAT; Aaron Williams has a paper on this)

• Tetris



Approximation Algorithms



Approximation Algorithms

• NP-hard problems are very important to solve

• Can’t get the optimal solution efficiently

• Idea: guarantee that we get a good solution—just not an optimal one



Simple Knapsack Variant

• Have a set of items with weight wi , capacity C. (No value!)

• Goal: pick the subset of items with maximum total weight, subject to the total

weight being ≤ C

• Want our knapsack as “full as possible”

• Equivalent to classic knapsack with vi = wi for each item; this is still NP-hard



Greedy Algorithm

• What is a good greedy algorithm for this problem?

• Repeatedly: pick the item with largest weight that does not overfill the

knapsack.

• Let’s do an example [On Board #1]. Items:
{3,4,5,6, 7, 10, 11, 12, 13, 15, 16, 19, 20}; C = 47

• (Not obvious: can get 47 exactly using {3,5, 19, 20}.)

• How long does this greedy algorithm take?



How bad can greedy be?

• It seems like it’s usually pretty good

• Can we come up with an example where it’s possible to get C, but greedy gets

C/2 + 1?

• In particular: let’s say C = 10. Can we come up with an instance where greedy
gets 6, but it’s possible to get 10?

• {6,5,5}

• In general (assume C is divisible by 2): C/2 + 1,C/2,C/2.



Greedy is an Approximation Algorithm

• If the best solution has weight OPT , greedy gets at least OPT/2.

• We say that greedy is a 2-approximation. It’s at most a factor 2 off of the

optimal cost

• How can we prove this?



Greedy is a 2-Approximation Algorithm

• Case 1: First, let’s say there is an item of weight ≥ C/2

• Greedy will achieve at least C/2

• C ≥ OPT , so greedy gets ≥ C/2 ≥ OPT/2

• Case 2: Now, let’s say all items have weight < C/2

• If greedy uses all items, then greedy achieves OPT

• If greedy stops at total weight X , then there is no item left with weight ≤ C− X .
But then X ≥ C/2.



Approximation Algorithms

• When we can’t get the best solution, can get a guarantee on how close we are

• We saw a simple, efficient Knapsack 2-approximation algorithm. Can we do

better?

• Yes! Can get any 1 + ε approximation in polynomial time. (Even with both
weights and values!)

• Surprisingly simple algorithm

• What about other NP-complete problems? Can we approximate them?

• Sometimes...

• Vertex cover: simple 2-approximation algorithm. (Probably) can’t do better!

• Clique: cannot approximate to n1−δ for any δ > 0 unless P = NP.



Algorithms lectures Completed!



Looking Back at the Class

• You’ve learned a lot!



Proof of Correctness and Asymptotics



Stable Matchings



Graph Traversal Algorithms

Ex: topological sort



Greedy Algorithms

Ex: optimal car filling



Divide and Conquer

Ex: finding median without sorting. (Also Merge Sort, etc.)



Dynamic Programming, Network Flows



NP-Hardness

What can we not solve efficiently?



Review Thursday!

• Come with questions

• Assignment questions are always a good option; I’ll come with a few

suggestions as well



SCS Forms



SCS Forms

• You know the drill (but let me know if you have questions)

• Fill out forms on Glow; course called “Course Evaluations”

• Blue sheets are for me only; rest of form is given to admin etc. All are

anonymous; I can’t see anything until I submit grades

• If you can then do them now, but later is OK if necessary. They close 8am on

May 15th.



SCS Forms Speech

Every term, Williams asks students to participate in end-of-semester course evaluations. Your
feedback will help improve this course for other students taking it in the future, and help shape the
Computer Science curriculum.

You may skip questions that you don’t wish to answer, and there is no penalty for choosing not to
participate. All of your answers are confidential and I will only receive a report on your responses
after I have submitted all grades for this course. While evaluations are open, I will receive
information on how many students have filled out the evaluations, but I won’t be told which of you
have and haven’t completed them. I won’t know which responses are associated with which student
unless you identify yourself in the comments.

To access the online evaluations, log into Glow (glow.williams.edu) using your regular Williams
username and password (the same ones you use for your Williams email account). On your Glow
dashboard you’ll see a course called "Course Evaluations." Click on this and then follow the
instructions on the screen. If you have trouble finding the evaluation, you can ask a classmate or
reach out to Institutional Research at ir@williams.edu. The evaluations are open to you from
now through the end of reading period. If you haven’t filled it out by the beginning of reading period,
you will start receiving email reminders.

glow.williams.edu
ir@williams.edu

	Subset-Sum P Knapsack 
	Other NP Complete Problems
	Other/Fun NP-Hard Problems
	Approximation Algorithms
	Algorithms lectures Completed!
	SCS Forms

