P versus NP. NP hard and
NP complete

Shifting Focus

Most of the class has been about how to efficiently solve

problems
Now we're going to shitt to a higher-level question
 What problems can a computer solve etticiently?

 What problem can a computer not solve efficiently?

Efficiency: Polynomial time

 What problems can a computer solve in polynomial time”

 What problems can a computer (probably) not solve in

polynomial time?

-
-

-~

= By R S PL 11
0 e e RS e N

Technical Setup

 We will now focus on decision problems — problems
with a yes or no answer

* Does this directed graph have a topological order?
* |s this graph bipartite?
* Do these two strings have Edit Distance at most 107

 Does this flow network have a max flow of at least 207

Technical Setup

 Most problems have a decision analog

 Find the flow of this network -> “does this network have

flow at least k?”

* Find the optimal schedule of these intervals -> “can we
schedule at least k intervals?”

 These are (essentially) the same—-atfter all, can always
binary search for the optimal value

Technical Setup

Decision problem means that every solution is “yes” or “no’
Yes instances can represented as a set of inputs A

« X € A means that the solution to x is “yes”

« X & A means that the solution to x is “no”

So can have (for example): A is the set of all flow networks
which permit flow at least k

Or can have: A is the set of all pairs of strings (a, b) where
the edit distance between a and b is at most k

Class P

« P: the class of decision problems that can be solved in

polynomial time [in the size of the input]
 EditdistanceisinP

e MaxflowisinP

e Bipartite matchingisin P
 Knapsack?

e dynamic programming algorithm we saw Is pseudo-
polynomiall So we don’t know yet

Class NP

Class NP —Intuition

NP is the class of problems that can be verified in
polynomial time

* |f | give you helpful information, say a proposed solution,
you can easily check that it is correct

Class NP —Intuition

8 678
e

7 9| |2 1198|3425 |6]7

5 ¥ 4 8597_61

1 3| | 7[1(3[9(2]a]8|5]6

‘

8|9 1| [2(8(714(1[9]6(3 |5

9 4 : 3(4|s|2]8l6]1|7]9

e ¥ ¥ ¥ o % K Fe K K

Sudoku is easy if | give you information (by
giving you the solution). So sudoku is in NP

Class NP —Intuition

* Example (Knapsack capacity C = 11)
* {3, 4} has value $40 (and weight 11)

Vi Wi ‘
$1g ‘
$1 1ke ~ saaore
$6 2 kg %
$18 5keg ,
$22 6 kg mﬂ d')
$1 1 k9

knapsack instance
(weight limit W = 11)

N -h () (\ ek ~.

Knapsack is easy if | give you information (by
giving you the solution). So knapsack is in NP

Class NP: Formally

Definition. Algorithm V(s, ¢) is a verifier for problem X if for every
input s there exists a certificate, a string ¢, such that V(s, c) = yes
iff s € X.

Definition. NP = set of decision problems for which there exists a
polynomial-time verifier

« V(s, c) is a polynomial time algorithm
o Certificate ¢ is of polynomial size:
. |c| < p(|s]) for some polynomial p(.)

« A solution is often a good certificate! But any polynomial-size
certificate is allowed

Graph-Coloring € NP

Graph-Coloring. Given a graph G = (V, E), is it possible to color
the vertices of G using only three colors, such that no edge has
both end points colored with the same color.

« Graph-Coloring € NP
e Certificate: assignment of colors to vertices

* Poly-time verifier: check it at most 3 colors used, check for
each edge it ends points same color or not

A 3-colorable graph

Independent Set

« Givenagraph G = (V, E), an independent set is a subset of
vertices S C V such that no two of them are adjacent, that is, for
anyx,y €SS, (x,y) € E

 IND-SET Problem.
Given a graph G = (V, E) and an integer k, does G have an
independent set of size at least k?

e 6 (o O

‘ independent set of size 6

O—@® @ —OU—0O

IND-SET & NP

« Givenagraph G = (V, E), an independent set is a subset of
vertices S C V such that no two of them are adjacent, that is, for
anyx,y €SS, (x,y) € E

« IND-SET Problem. Given a graph G = (V, E) and an integer k,
does G have an independent set of size at least k?

* IND-SET € NP.

Certificate: a subset of vertices (the independent set of
size at least k)

Poly-time verifier: check if any two vertices are adjacent
and check if size is at least k

Testing Your Intuition

Not all problems can be easily verified (not all
problems are in NP)

e |sthere an input that causes this computer
program to run infinitely”?

* You can give me an input and claim that the
computer program runs infinitely, but | can’t verify
that in polynomial time

| mean can’t.
Not obvious:

Apple Campus
- 1 Infinite Loop

you'll explore Iin
361

Quick Question

« IsP C NP7
o |f aproblemisin P, does that mean that it is in NP?

 Yes! |f aproblem can be solved in polynomial time, it can

be verified in polynomial time.

o Just solve directly (Can just set ¢ = ""—we don't need

advice to solve this problem)

Satisfiability
 The next problem is the classic example of a problem in
NP

 (and, as we'll soon see, probably not in P)

 Many different small variations on the same problem (we'll
see a couple)

* |ldea: given a logical equation, can we assign “true” and

“false” to the variables to satisty the equation”

SAT, 3SAT € NP

SAT. Given a CNF formula ¢, does it have a satisfying truth
assignment?

3SAT. A SAT formula where each clause contains exactly 3
iterals (corresponding to different variables)

=X VX VX)AX VI VX)ANGX VXV
] VA2V A3] VA2V A3 1 VAV Ay

Satisfying instance: x; =1, x =1, x=0,x;, =0, where 1 :
true, O : false

SAT, 3-SAT € NP
* (ertificate: truth assignment to variables

* Poly-time verifier: check if assignment evaluates to true

P versus NP

P vs NP

 We know that every problem in P is also in NP
 What about the reverse” That is to say:

* |[f a problem can be efticiently verified, does that mean

it can be efficiently solved in the first place?

* Or, do there exist problems that can be verified quickly
that are impossible to solve quickly?

Why Do We Care?

« |If P = NP, the consequences:
e |ots of important problems can be solved quickly!
* (Can build things better, faster, more efficiently
* (Public key) cryptography does not exist
o IfP #= NP:
 Many problems can't be solved quickly
» (Can stop trying to solve them

 Most researchers think this is more likely to be the case

Million Dollar Question:
Pvs NP

P vs NP and the $1M Millennium
Prize Problems

What’s the most difficult way to earn $1M US Dollars?

https://medium.com/@mpreziuso/

Million Dollar Question:
Pvs NP

* The biggest open problem in computer science
* One of the biggest in math as well

 We are not even close to solving it!

NP-hard and
NP-Complete Problems

Cook-Levin Theorem

* |f SAT can be solved in polynomial time, then any problem

iIn NP can be solved in polynomial time

e So if SAT can be solved in polynomial time, then P = NP

 How is this possible?

Cook-Levin Theorem

e |dea: any computer program can be represented by a
circuit,

* Solve SAT in poly time -> can figure out the answer given

by the circuit for NP problem in poly time

1171

H
)
o
4=
mqs|
Ie T W
ol=& = O
olmino O
¢ o
=3 7o
— C

,,,,,,

Clock ‘

You'll see the
poroof in CS 361

NP-Hard Problems

« A problem X is NP-hard if:

 |If X can be solved in polynomial time, then any problem

IN NP can be solved in polynomial time

« Thatis, if X can be solved in polynomial time, then
P=NP

What Does This Mean?

« We think that, probably, P # NP

SO If a problem is NP-hard, then you probably cannot

obtain a polynomial-time algorithm for it

Classifying Problems as Hard

 We are frustratingly unable to prove a lot of problems are
impossible to solve efficiently

« Instead, we say problem X is likely very hard to solve by
saying, if a polynomial-time algorithm was found for X, then
something we all believe is impossible will happen

« Instead we say X is NP-hard: if X € P, then P = NP

Classifying Problems as Hard

Instead, we say problem X is likely very hard to solve by
saying, if a polynomial-time algorithm was found for X, then
something we all believe is impossible will happen

Instead we say X is NP-hard: if X € P, then P = NP

(Erickson) Calling a problem NP hard is like saying, “If | own
a dog, then it can speak fluent English”

* You probably don't know whether or not | own a dog, but
you are definitely sure | don’t own a talking dog

e Corollary: No one should believe that | own a dog

It a problem is NP hard, no one should believe it can be
solved in polynomial time

(ot M

NP Completeness
« Definition. A problem X is NP complete if X is NP hard and
X eNP
o SAT is NP complete

« SAT € NP: given an assignment to input gates (certificate),
can verity whether output is one or zero in poly-time

« SAT is NP hard (Cook-Levin Theorem); probably not in P

NP NP hard

A NP complete

Summary

X is NP-hard NP-hard & if X € P, then P = NP
A problem X is NP complete if X is NP hard and X € NP

Alternate definition of NP hard:
« X is NP hard if all languages in NP reduce it to in polynomial time

Thus, NP-complete problems are the hardest problems in NP

NP NP hard

. NP complete

NP Hardness Reductions

Relative Hardness

How do we compare the relative hardness of problems?
Recurring idea In this class: reductions!

Informally, we say a problem X reduces to a problem Y, if can use an
algorithm for Y to solve X

e Bipartite matching reduces to max flow

* Finding opportunity cycles reduces to finding negative
cycles

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to
decision problem Y if given any instance x of X, we can construct an
instance y of Y in polynomial time s.t x € X ifandonlyify € Y.

Notation. X gp Y

« Solving X is no harder than solving Y: if we have an algorithm for
Y, we can use it + poly time reduction to solve X

Yes

Yes

Instance of X Instance of Y

—————— Poly time
X

Algorithm for Y

Algorithm for X

Reductions Quiz

Say X Sp Y. Which of the following can we infer?

« |f X can be solved in polynomial time, then so can Y.

X can be solved in poly time iff Y can be solved in poly time.

If X cannot be solved in polynomial time, then neither can Y.

If Y cannot be solved in polynomial time, then neither can X.

Yes

Yes

Instance of X Instance of Y

—————— Poly time
X

Algorithm for Y

Algorithm for X

Digging Deeper

* Graph 2-Color reduces to Graph 3-color
* Let's do this on the board
* Graph 2-Color can be solved in polynomial time
e How?
« Can decide if a graph is bipartite in O(n + m) time using BFS

* Graph 3-color (we'll show) is NP hard and unlikely to have a
polynomial-time solution

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

Use of Reductions: X sp Y

Design algorithms:

« If Y can be solved in polynomial time, we know X can also be
solved in polynomial time

Establish intractability:

« If we know that X is known to be impossible/hard to solve in
polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:
. IfX <, Yand Y <, X then X can be solved in poly-time iff Y can

be solved in poly time and we use the notation X =, Y

NP hard: Operational Definition

* New definition of NP hard using reductions.

« A problem Y is NP hard, if for any problem X € NP, X <, Y

o Recall we said Yis NP hard if Y € P, then P = NP.
e Lets show that both definitions are equivalent

e (=)every problemin NP reducesto Y, and if Y € P, then
P=NP

« (<) Suppose Y € P, then P = NP: which means every problem
in NP(= P) reducesto Y

Proving NP Hardness

« To prove problem Y is NP-hard
« Difficult to prove every problem in NP reduces to Y
 Instead, we use a known-NP-hard problem Z

« We know every problem X in NP, X <, /
« Notice that Sp s transitive

« Thus, enough to prove Z <, Y

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z 10 Y

Known NP Hard Problems?

 For now: 3SAT and SAT (Cook-Levin Theorem)

* We will prove a whole repertoire of NP hard and NP complete
problems by using reductions

* Before reducing 3SAT to other problems to prove them NP hard, let us
practice some easier reductions first

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z 10 Y

VERTEX-COVER =, IND-SET

IND-SET

« Givenagraph G = (V, E), an independent set is a subset of
vertices § C V such that no two of them are adjacent, that is, for any

x,y€S, (x,y) € E

« IND-SET Problem. Given a graph G = (V, E) and an integer k, does
G have an independent set of size at least k?

‘ independent set of size 6

@ 6 (O

Vertex-Cover

« Givenagraph G = (V, E), a vertex cover is a subset of vertices
T C V such that for every edge e = (u,v) € E, eitheru € Torv € T.

« VERTEX-COVER Problem. Given a graph G = (V, E) and an integer &,
does (G have a vertex cover of size at most k?

Q vertex cover of size 4

e 6 (O ©o

Q ‘ independent set of size 6

Our First Reduction

VERTEX-COVER <, IND-SET

e Suppose we know how to solve independent set, can we use it
to solve vertex cover?

Claim. S is an independent set of size k iff V — S is a vertex cover of
sizen — k.

Proof. (=) Consider anedge e = (u,v) € E
« Sisindependent: u, v both cannot be in §
e Atleastoneofu,ve V-39S

e V—Scoverse

Our First Reduction

VERTEX-COVER <, IND-SET

e Suppose we know how to solve independent set, can we use it
to solve vertex cover?

Claim. S is an independent set of size k iff V — S is a vertex cover of
sizen — k.

Proof. (<) Consider anedge e = (u,v) € E

« V —Sisavertex cover: atleastone of u,v mustbein V- 39§

o Both u,v cannotbein$

e Thus, S is an independent set. K

Vertex Cover =, IND Set

VERTEX-COVER <, IND-SET
Reduction. LetG' =G, kK'=n—k.

« (=) If G has a vertex cover of size at most k then G" has an
independent set of size at least k'

« (<) If G'has an independent set of size at least k' then G has a
vertex cover of size at most k

IND-SET <, VERTEX-COVER

« Same reductionworks: G'=G, k'=n—k

VERTEX-COVER =, IND-SET

VERTEX-COVER <, SET-COVER

Set Cover

« Set-Cover. Given a set U of elements, a collection & of subsets of U

and an integer k, are there at most k subsets S, ..., S, whose union
covers U, thatis, U C Ule S

E U={1,2,3,4,5,6,7}
- S,={3,7} Sy={2,4}
(5.={3,4,5,6) S;={5}

= S,={1} S;= {1,2,6,7)

k=2

a set cover instance

Vertex Cover Sp Set Cover

« Theorem. VERTEX-COVER <, SET-COVER

. Proof. Given instance (G, k) of vertex cover, construct an instance
(U, S, k') of set cover problem such that

G has a vertex cover of size at most k if and only if (U, &, k") has a
set cover of size at most k.

Instance of Instance of Yes Yes

VertexCover (G, k) SetCover (G', k')
—— 5 Polytime

Algorithm for SetCover

Algorithm for VertexCover

Vertex Cover Sp Set Cover

« Theorem. VERTEX-COVER <, SET-COVER

. Proof. Given instance (G, k) of vertex cover, construct an instance
(U, 8, k) of set cover problem that has a set cover of size k iff G has
a vertex cover of size k.

e Reduction. U = E, foreachnodev € V, let
S, = {e € E | eincident to v}

(@) O,

€ € e, G U=1e,¢6 er}
S,=1e3,e7} S, =16, e4}
‘ (©)
@ 0 S.={eseqes5,6} S;={es}
€1 €s Se={€1} Sf—{el 626667}
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

« Claim. (=) If G has a vertex cover of size at most k, then U can be
covered using at most k subsets.

e Proof. Let X C V be a vertex cover in G

« Then, Y= {S, | v € X} is a set cover of U of the same size

€7 () e €4 ; U - { el’ 627 ’ 87}
- Sy=1e367; Sp =1 €2, €4}
e ©®
0 0 (Scz{e3,e4,85,e6} S;={es}
€ €s : Se = { €1 } CSf = { €1, €9, €, 67}
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

e Claim. (<) If U can be covered using at most k subsets then G
has a vertex cover of size at most k.

e Proof.Let Y C & be a set cover of size k

« Then, X ={v | S, € Y} isavertex cover of size k

€7 () e €4 ; U - { el’ 627 ’ 87}
- Sy=1e367; Sp =1 €2, €4}
e ©®
0 0 (Scz{e3,e4,85,e6} S;={es}
€ €s : Se = { €1 } CSf = { €1, €9, €, 67}
vertex cover instance set cover instance

(k = 2) (k = 2)

Class Exercise
IND-SET <, Clique

Clique

A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A k-clique is a clique that
contains k nodes.

e CLIQUE. Given a graph G and a number k, does G contain a k
-clique”

Clique

A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A k-clique is a clique that
contains k nodes.

e CLIQUE. Given a graph G and a number k, does G contain a k
-clique”

e CLIQUE & NP
e (ertificate: a subset of vertices

» Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is k

IND-SET to CLIQUE

« Theorem. IND-SET <, CLIQUE.

* Inclass exercise. Reduce IND-SET to Clique. Given instance (G, k) of
independent set, construct an instance {(G’, k") of clique such that

« G has independent set of size k iff G' has clique of size k’

Yes Yes

Instance of Instance of

IND-SET (G, k) Poly fime CLIQUE (G’, k")

Algorithm for CLIQUE

Algorithm for IND-SET

IND-SET to CLIQUE

Theorem. IND-SET <, CLIQUE.

Proof. Given instance (G, k) of independent set, we construct
an instance (G’, k') of clique such that G has independent set
of size k iff G’ has clique of size k’

Reduction.
e LetG'=(V,E), wheree = (u,v) € Eiffe € Eandk’' =k

« (=) G has anindependent set S of size k, then § is a
clique in G’

« (<) G'hasaclique Q of size k, then Q is an independent
setin G

Reductions: General Pattern

e Describe a polynomial-time algorithm to transtform an arbitrary

instance x of Problem X into a special instance y of Problem Y
* Prove that:

« If xisa “yes” instance of X, then y is a “yes” instance of ¥

« Ifyisa “yes” instance of Y, then x is a “yes” instance of X

< if xis a "'no" instance of X, then y is a "no" instance of Y

Yes Yes

Instance of X Instance of Y

——————————— Poly time
X

Algorithm for Y
Algorithm for X

