P versus NP, NP hard and NP complete

Shifting Focus

- Most of the class has been about how to efficiently solve problems
- Now we're going to shift to a higher-level question
- What problems can a computer solve efficiently?
- What problem can a computer not solve efficiently?

Efficiency: Polynomial time

- What problems can a computer solve in polynomial time?
- What problems can a computer (probably) not solve in polynomial time?

Technical Setup

- We will now focus on decision problems - problems with a yes or no answer
- Does this directed graph have a topological order?
- Is this graph bipartite?
- Do these two strings have Edit Distance at most 10?
- Does this flow network have a max flow of at least 20?

Technical Setup

- Most problems have a decision analog
- Find the flow of this network -> "does this network have flow at least k ?"
- Find the optimal schedule of these intervals -> "can we schedule at least k intervals?"
- These are (essentially) the same--after all, can always binary search for the optimal value

Technical Setup

- Decision problem means that every solution is "yes" or "no"
- Yes instances can represented as a set of inputs A
- $x \in A$ means that the solution to x is "yes"
- $x \notin A$ means that the solution to x is "no"
- So can have (for example): A is the set of all flow networks which permit flow at least k
- Or can have: A is the set of all pairs of strings (a, b) where the edit distance between a and b is at most k

Class P

- \mathbf{P} : the class of decision problems that can be solved in polynomial time [in the size of the input]
- Edit distance is in \mathbf{P}
- Max flow is in \mathbf{P}
- Bipartite matching is in \mathbf{P}
- Knapsack?
- dynamic programming algorithm we saw is pseudopolynomial! So we don't know yet

Class NP

Class NP-Intuition

- NP is the class of problems that can be verified in polynomial time
- If I give you helpful information, say a proposed solution, you can easily check that it is correct

Class NP-Intuition

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Sudoku is easy if I give you information (by giving you the solution). So sudoku is in NP

Class NP-Intuition

- Example (Knapsack capacity C = 11)
- $\{3,4\}$ has value $\$ 40$ (and weight 11)

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg

knapsack instance (weight limit $\mathrm{W}=11$)

Knapsack is easy if I give you information (by giving you the solution). So knapsack is in NP

Class NP: Formally

Definition. Algorithm $V(s, c)$ is a verifier for problem X if for every input s there exists a certificate, a string c, such that $V(s, c)=$ yes iff $s \in X$.

Definition. NP = set of decision problems for which there exists a polynomial-time verifier

- $V(s, c)$ is a polynomial time algorithm
- Certificate c is of polynomial size:
- $|c| \leq p(|s|)$ for some polynomial $p($.
- A solution is often a good certificate! But any polynomial-size certificate is allowed

Graph-Coloring $\in N P$

Graph-Coloring. Given a graph $G=(V, E)$, is it possible to color the vertices of G using only three colors, such that no edge has both end points colored with the same color.

- Graph-Coloring \in NP
- Certificate: assignment of colors to vertices
- Poly-time verifier: check if at most 3 colors used, check for each edge if ends points same color or not

Independent Set

- Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S,(x, y) \notin E$
- IND-SET Problem.

Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?

IND-SET $\in N P$

- Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S,(x, y) \notin E$
- IND-SET Problem. Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?
- IND-SET \in NP.
- Certificate: a subset of vertices (the independent set of size at least k)
- Poly-time verifier: check if any two vertices are adjacent and check if size is at least k

Testing Your Intuition

Not all problems can be easily verified (not all problems are in NP)

- Is there an input that causes this computer program to run infinitely?
- You can give me an input and claim that the computer program runs infinitely, but I can't verify that in polynomial time

I mean can't.
Not obvious: you'll explore in 361

Quick Question

- Is $\mathrm{P} \subseteq \mathrm{NP}$?
- If a problem is in \mathbf{P}, does that mean that it is in $\mathbf{N P}$?
- Yes! If a problem can be solved in polynomial time, it can be verified in polynomial time.
- Just solve directly (Can just set $c=$ ""-we don't need advice to solve this problem)

Satisfiability

- The next problem is the classic example of a problem in NP
- (and, as we'll soon see, probably not in P)
- Many different small variations on the same problem (we'll see a couple)
- Idea: given a logical equation, can we assign "true" and "false" to the variables to satisfy the equation?

SAT, 3 SAT $\in N P$

- SAT. Given a CNF formula ϕ, does it have a satisfying truth assignment?
- 3SAT. A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)$
- Satisfying instance: $x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0$, where 1 : true, 0 : false
- $\operatorname{SAT}, 3-S A T \in N P$
- Certificate: truth assignment to variables
- Poly-time verifier: check if assignment evaluates to true
P versus NP

P vs NP

- We know that every problem in \mathbf{P} is also in NP
- What about the reverse? That is to say:
- If a problem can be efficiently verified, does that mean it can be efficiently solved in the first place?
- Or, do there exist problems that can be verified quickly that are impossible to solve quickly?

Why Do We Care?

- If $P=N P$, the consequences:
- Lots of important problems can be solved quickly!
- Can build things better, faster, more efficiently
- (Public key) cryptography does not exist
- If $P \neq N P$:
- Many problems can't be solved quickly
- Can stop trying to solve them
- Most researchers think this is more likely to be the case

Million Dollar Question: P vs NP

P vs NP and the \$1M Millennium Prize Problems

What's the most difficult way to earn \$1M US Dollars?

Million Dollar Question: P vs NP

- The biggest open problem in computer science
- One of the biggest in math as well
- We are not even close to solving it!

NP-hard and NP-Complete Problems

Cook-Levin Theorem

- If SAT can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- So if SAT can be solved in polynomial time, then $\mathbf{P}=\mathbf{N P}$
- How is this possible?

Cook-Levin Theorem

- Idea: any computer program can be represented by a circuit.
- Solve SAT in poly time -> can figure out the answer given by the circuit for NP problem in poly time

You'll see the proof in CS 361

NP-Hard Problems

- A problem X is NP-hard if:
- If X can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- That is, if X can be solved in polynomial time, then $P=N P$

What Does This Mean?

- We think that, probably, $\mathrm{P} \neq \mathrm{NP}$
- So if a problem is NP-hard, then you probably cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

- We are frustratingly unable to prove a lot of problems are impossible to solve efficiently
- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Instead we say X is NP-hard: if $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$

- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Instead we say X is NP-hard: if $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- (Erickson) Calling a problem NP hard is like saying, "If I own a dog, then it can speak fluent English"
- You probably don't know whether or not I own a dog, but you are definitely sure I don't own a talking dog
- Corollary: No one should believe that I own a dog
- If a problem is NP hard, no one should believe it can be solved in polynomial time

NP Completeness

- Definition. A problem X is NP complete if X is NP hard and $X \in$ NP
- SAT is NP complete
- $S A T \in N P:$ given an assignment to input gates (certificate), can verify whether output is one or zero in poly-time
- SAT is NP hard (Cook-Levin Theorem); probably not in P

Summary

- X is NP-hard NP-hard \Leftrightarrow if $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- A problem X is NP complete if X is NP hard and $X \in$ NP
- Alternate definition of NP hard:
- X is NP hard if all languages in NP reduce it to in polynomial time
- Thus, NP-complete problems are the hardest problems in NP

NP Hardness Reductions

Relative Hardness

- How do we compare the relative hardness of problems?
- Recurring idea in this class: reductions!
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
- Bipartite matching reduces to max flow
- Finding opportunity cycles reduces to finding negative cycles

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_{p} Y$

- Solving X is no harder than solving Y : if we have an algorithm for Y, we can use it + poly time reduction to solve X

Algorithm for X

Reductions Quiz

Say $X \leq_{p} Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.

Algorithm for X

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
- Let's do this on the board
- Graph 2-Color can be solved in polynomial time
- How?
- Can decide if a graph is bipartite in $O(n+m)$ time using BFS
- Graph 3-color (we'll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Use of Reductions: $X \leq_{p} Y$

Design algorithms:

- If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

- If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

- If $X \leq_{p} Y$ and $Y \leq_{p} X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_{p} Y$

NP hard: Operational Definition

- New definition of NP hard using reductions.
- A problem Y is NP hard, if for any problem $X \in \mathrm{NP}, X \leq_{p} Y$
- Recall we said Y is NP hard if $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.
- Lets show that both definitions are equivalent
- (\Rightarrow) every problem in NP reduces to Y, and if $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- (\Leftarrow) Suppose $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$: which means every problem in $\mathrm{NP}(=\mathrm{P})$ reduces to Y

Proving NP Hardness

- To prove problem Y is NP-hard
- Difficult to prove every problem in NP reduces to Y
- Instead, we use a known-NP-hard problem Z
- We know every problem X in NP, $X \leq_{p} Z$
- Notice that \leq_{p} is transitive
- Thus, enough to prove $Z \leq_{p} Y$

> TO PROVE THAT A PROBLEM Y IS NP HARD, REDUCE A KNOWN NP HARD PROBLEM Z to Y

Known NP Hard Problems?

- For now: 3SAT and SAT (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing 3SAT to other problems to prove them NP hard, let us practice some easier reductions first

> To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

VERTEX-COVER \equiv_{p} IND-SET

IND-SET

- Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S,(x, y) \notin E$
- IND-SET Problem. Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?

Vertex-Cover

- Given a graph $G=(V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e=(u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph $G=(V, E)$ and an integer k, does G have a vertex cover of size at most k ?

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
- Proof. (\Rightarrow) Consider an edge $e=(u, v) \in E$
- S is independent: u, v both cannot be in S
- At least one of $u, v \in V-S$
- $V-S$ covers e
- ■

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
- Proof. (\Leftarrow) Consider an edge $e=(u, v) \in E$
- $V-S$ is a vertex cover: at least one of u, v must be in $V-S$
- Both u, v cannot be in S
- Thus, S is an independent set. \square

Vertex Cover \equiv_{p} IND Set

- VERTEX-COVER \leq_{p} IND-SET
- Reduction. Let $G^{\prime}=G, k^{\prime}=n-k$.
- (\Rightarrow) If G has a vertex cover of size at most k then G^{\prime} has an independent set of size at least k^{\prime}
- (\Leftarrow) If G^{\prime} has an independent set of size at least k^{\prime} then G has a vertex cover of size at most k
- IND-SET \leq_{p} VERTEX-COVER
- Same reduction works: $G^{\prime}=G, k^{\prime}=n-k$
- VERTEX-COVER \equiv_{p} IND-SET

VERTEX-COVER \leq_{p} SET-COVER

Set Cover

- Set-Cover. Given a set U of elements, a collection \mathcal{S} of subsets of U and an integer k, are there at most k subsets S_{1}, \ldots, S_{k} whose union covers U, that is, $U \subseteq \cup_{i=1}^{k} S_{i}$

$$
\begin{array}{lc}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
k=2 &
\end{array}
$$

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ of set cover problem such that
- G has a vertex cover of size at most k if and only if $\left\langle U, \mathcal{S}, k^{\prime}\right\rangle$ has a set cover of size at most k.

Vertex Cover \leq_{p} Set Cover

- Theorem. VERTEX-COVER \leq_{p} SET-COVER
- Proof. Given instance $\langle G, k\rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k\rangle$ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.
- Reduction. $U=E$, for each node $v \in V$, let $S_{v}=\{e \in E \mid e$ incident to $v\}$

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
($k=2$)

correctnese

- Claim. (\Rightarrow) If G has a vertex cover of size at most k, then U can be covered using at most k subsets.
- Proof. Let $X \subseteq V$ be a vertex cover in G
- Then, $Y=\left\{S_{v} \mid v \in X\right\}$ is a set cover of U of the same size

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
(k = 2)

correctnese

- Claim. (\Leftarrow) If U can be covered using at most k subsets then G has a vertex cover of size at most k.
- Proof. Let $Y \subseteq \mathcal{S}$ be a set cover of size k
- Then, $X=\left\{v \mid S_{v} \in Y\right\}$ is a vertex cover of size k

vertex cover instance
($k=2$)

$$
\begin{array}{ll}
U=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\} & \\
S_{a}=\left\{e_{3}, e_{7}\right\} & S_{b}=\left\{e_{2}, e_{4}\right\} \\
S_{c}=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\} & S_{d}=\left\{e_{5}\right\} \\
S_{e}=\left\{e_{1}\right\} & S_{f}=\left\{e_{1}, e_{2}, e_{6}, e_{7}\right\}
\end{array}
$$

set cover instance
($k=2$)

Class Exercise

IND-SET \leq_{p} Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?
- CLIQUE \in NP
- Certificate: a subset of vertices
- Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is k

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k\rangle$ of independent set, construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that
- G has independent set of size k iff G^{\prime} has clique of size k^{\prime}.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- Proof. Given instance $\langle G, k\rangle$ of independent set, we construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that G has independent set of size k iff G^{\prime} has clique of size k^{\prime}
- Reduction.
- Let $G^{\prime}=(V, \bar{E})$, where $e=(u, v) \in \bar{E}$ iff $e \notin E$ and $k^{\prime}=k$
- $(\Rightarrow) G$ has an independent set S of size k, then S is a clique in G^{\prime}
- $(\Leftarrow) G^{\prime}$ has a clique Q of size k, then Q is an independent set in G

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
- If x is a "yes" instance of X, then y is a "yes" instance of Y
- If y is a "yes" instance of Y, then x is a "yes" instance of X \Longleftrightarrow if x is a "no" instance of X, then y is a "no" instance of Y

