P versus NP, NP hard and NP complete

Shifting Focus

- Most of the class has been about how to efficiently solve problems
- Now we're going to shift to a higher-level question
 - What problems can a computer solve efficiently?
 - What problem can a computer not solve efficiently?

Efficiency: Polynomial time

- What problems can a computer solve in polynomial time?
- What problems can a computer (probably) **not** solve in polynomial time?

Technical Setup

- We will now focus on **decision problems** problems with a yes or no answer
 - Does this directed graph have a topological order?
 - Is this graph bipartite?
 - Do these two strings have Edit Distance at most 10?
 - Does this flow network have a max flow of at least 20?

Technical Setup

- Most problems have a decision analog
 - Find the flow of this network -> "does this network have flow at least k?"
 - Find the optimal schedule of these intervals -> "can we schedule at least k intervals?"
- These are (essentially) the same—after all, can always binary search for the optimal value

Technical Setup

- Decision problem means that every solution is "yes" or "no"
- Yes instances can represented as a set of inputs A
 - $x \in A$ means that the solution to x is "yes"
 - $x \notin A$ means that the solution to x is "no"
- So can have (for example): A is the set of all flow networks which permit flow at least k
- Or can have: A is the set of all pairs of strings (a, b) where the edit distance between a and b is at most k

Class P

- P: the class of decision problems that can be solved in polynomial time [in the size of the input]
 - Edit distance is in ${\bf P}$
 - Max flow is in **P**
 - Bipartite matching is in **P**
 - Knapsack?
 - dynamic programming algorithm we saw is pseudopolynomial! So we don't know yet

Class NP

Class NP—Intuition

- NP is the class of problems that can be *verified* in polynomial time
- If I give you helpful information, say a proposed solution, you can easily check that it is correct

Class NP—Intuition

Sudoku is easy if I give you information (by giving you the solution). So sudoku is in **NP**

Class NP—Intuition

- Example (Knapsack capacity C = 11)
 - {3, 4} has value \$40 (and weight 11)

i	Vi	Wi
1	\$1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

knapsack instance (weight limit W = 11)

Knapsack is easy if I give you information (by giving you the solution). So knapsack is in NP

Class NP: Formally

Definition. Algorithm V(s, c) is a verifier for problem X if for every input s there exists a certificate, a string c, such that V(s, c) = yes iff $s \in X$.

Definition. NP = set of decision problems for which there exists a polynomial-time verifier

- V(s, c) is a polynomial time algorithm
- Certificate *c* is of polynomial size:
 - $|c| \le p(|s|)$ for some polynomial p(.)
- A solution is often a good certificate! But any polynomial-size certificate is allowed

$\mathsf{Graph}\text{-}\mathsf{Coloring}\ \in\mathsf{NP}$

Graph-Coloring. Given a graph G = (V, E), is it possible to color the vertices of G using only three colors, such that no edge has both end points colored with the same color.

- Graph-Coloring $\in NP$
 - Certificate: assignment of colors to vertices
 - Poly-time verifier: check if at most 3 colors used, check for each edge if ends points same color or not

A 3-colorable graph

Independent Set

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem.

Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

independent set of size 6

IND-SET \in NP

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem. Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?
- IND-SET \in NP.
 - **Certificate:** a subset of vertices (the independent set of size at least *k*)
 - **Poly-time verifier:** check if any two vertices are adjacent and check if size is at least *k*

Testing Your Intuition

Not all problems can be easily verified (not all problems are in NP)

- Is there an input that causes this computer program to run infinitely?
- You can give me an input and claim that the computer program runs infinitely, but I can't verify that in polynomial time

I mean **can't.** Not obvious: you'll explore in 361

Quick Question

- Is P ⊆ NP?
 - If a problem is in **P**, does that mean that it is in **NP**?
- Yes! If a problem can be solved in polynomial time, it can be verified in polynomial time.
- Just solve directly (Can just set c = ""—we don't need advice to solve this problem)

Satisfiability

- The next problem is the classic example of a problem in NP
 - (and, as we'll soon see, probably not in **P**)
- Many different small variations on the same problem (we'll see a couple)
- Idea: given a logical equation, can we assign "true" and "false" to the variables to satisfy the equation?

SAT, 3SAT \in NP

- SAT. Given a CNF formula ϕ , does it have a satisfying truth assignment?
- **3SAT.** A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
- Satisfying instance: $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$, where 1 : true, 0 : false
- SAT, 3-SAT \in NP
 - Certificate: truth assignment to variables
 - Poly-time verifier: check if assignment evaluates to true

P versus NP

P vs NP

- We know that every problem in **P** is also in **NP**
- What about the reverse? That is to say:
 - If a problem can be efficiently *verified*, does that mean it can be efficiently solved in the first place?
 - Or, do there exist problems that can be verified quickly that are *impossible* to solve quickly?

Why Do We Care?

- If P = NP, the consequences:
 - Lots of important problems can be solved quickly!
 - Can build things better, faster, more efficiently
 - (Public key) cryptography does not exist
- If $P \neq NP$:
 - Many problems can't be solved quickly
 - Can stop trying to solve them
 - Most researchers think this is more likely to be the case

Million Dollar Question: P vs NP

P vs NP and the \$1M Millennium Prize Problems

What's the most difficult way to earn \$1M US Dollars?

https://medium.com/@mpreziuso/

Million Dollar Question: P vs NP

- The biggest open problem in computer science
- One of the biggest in math as well
- We are not even close to solving it!

NP-hard and NP-Complete Problems

Cook-Levin Theorem

- If SAT can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- So if **SAT** can be solved in polynomial time, then P = NP
- How is this possible?

Cook-Levin Theorem

- Idea: any computer program can be represented by a circuit.
- Solve SAT in poly time -> can figure out the answer given by the circuit for NP problem in poly time

You'll see the proof in CS 361

NP-Hard Problems

- A problem X is **NP-hard** if:
 - If X can be solved in polynomial time, then any problem in NP can be solved in polynomial time
 - That is, if X can be solved in polynomial time, then $\mathbf{P} = \mathbf{NP}$

What Does This Mean?

- We think that, probably, $\mathsf{P} \neq \mathsf{NP}$
- So if a problem is **NP**-hard, then you probably cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

- We are frustratingly unable to prove a lot of problems are impossible to solve efficiently
- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Instead we say X is NP-hard: if $X \in P$, then P = NP

Classifying Problems as Hard

- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Instead we say X is NP-hard: if $X \in P$, then P = NP
- (Erickson) Calling a problem NP hard is like saying, "If I own a dog, then it can speak fluent English"
 - You probably don't know whether or not I own a dog, but you are definitely sure I don't own a talking dog
 - Corollary: No one should believe that I own a dog
- If a problem is NP hard, no one should believe it can be solved in polynomial time

NP Completeness

- **Definition.** A problem X is NP complete if X is NP hard and $X \in NP$
- SAT is **NP** complete
 - SAT ∈ NP: given an assignment to input gates (certificate), can verify whether output is one or zero in poly-time
 - SAT is NP hard (Cook-Levin Theorem); probably not in P

Summary

- X is NP-hard NP-hard \Leftrightarrow if $X \in P$, then P = NP
- A problem X is NP complete if X is NP hard and $X \in NP$
- Alternate definition of NP hard:
 - X is NP hard if all languages in NP reduce it to in polynomial time
- Thus, NP-complete problems are the hardest problems in NP

NP Hardness Reductions

Relative Hardness

- How do we compare the relative hardness of problems?
- Recurring idea in this class: reductions!
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
 - Bipartite matching reduces to max flow
 - Finding opportunity cycles reduces to finding negative cycles

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

• Solving X is no harder than solving Y: if we have an algorithm for Y, we can use it + poly time reduction to solve X

Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
 - Let's do this on the board
- Graph 2-Color can be solved in polynomial time
 - How?
 - Can decide if a graph is bipartite in O(n + m) time using BFS
- Graph 3-color (we'll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Use of Reductions: $X \leq_p Y$

Design algorithms:

• If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

• If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

• If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_p Y$

NP hard: Operational Definition

- New definition of NP hard using reductions.
 - A problem *Y* is NP hard, if for any problem $X \in \mathbb{NP}$, $X \leq_p Y$
- Recall we said Y is NP hard if $Y \in P$, then P = NP.
- Lets show that both definitions are equivalent
 - (\Rightarrow) every problem in NP reduces to Y, and if $Y \in P$, then P = NP
 - (⇐) Suppose Y ∈ P, then P = NP: which means every problem in NP(= P) reduces to Y

Proving NP Hardness

- To prove problem Y is **NP**-hard
 - Difficult to prove every problem in ${\sf NP}$ reduces to Y
 - Instead, we use a known-NP-hard problem \boldsymbol{Z}
 - We know every problem X in NP, $X \leq_p Z$
 - Notice that \leq_p is transitive
 - Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Known NP Hard Problems?

- For now: **3SAT** and **SAT** (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing **3SAT** to other problems to prove them NP hard, let us practice some easier reductions first

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

VERTEX-COVER \equiv_p **IND-SET**

IND-SET

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem. Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

independent set of size 6

Vertex-Cover

- Given a graph G = (V, E), a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph G = (V, E) and an integer k, does G have a vertex cover of size at most k?

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff V S is a vertex cover of size n k.
- **Proof.** (\Rightarrow) Consider an edge $e = (u, v) \in E$
 - S is independent: u, v both cannot be in S
 - At least one of $u, v \in V S$
 - V-S covers e
 - •

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. *S* is an independent set of size *k* iff V S is a vertex cover of size n k.
- **Proof.** (\Leftarrow) Consider an edge $e = (u, v) \in E$
 - V-S is a vertex cover: at least one of u, v must be in V-S
 - Both u, v cannot be in S
 - Thus, S is an independent set.

Vertex Cover \equiv_p IND Set

- VERTEX-COVER \leq_p IND-SET
- Reduction. Let G' = G, k' = n k.
 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'
 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k
- IND-SET \leq_p VERTEX-COVER
 - Same reduction works: G' = G, k' = n k
- VERTEX-COVER \equiv_p IND-SET

VERTEX-COVER \leq_p SET-COVER

Set Cover

• Set-Cover. Given a set U of elements, a collection S of subsets of U and an integer k, are there **at most** k subsets S_1, \ldots, S_k whose union covers U, that is, $U \subseteq \bigcup_{i=1}^k S_i$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 3, 7 \}$$

$$S_b = \{ 2, 4 \}$$

$$S_c = \{ 3, 4, 5, 6 \}$$

$$S_d = \{ 5 \}$$

$$S_e = \{ 1 \}$$

$$S_f = \{ 1, 2, 6, 7 \}$$

$$k = 2$$

a set cover instance

Vertex Cover \leq_p Set Cover

- Theorem. VERTEX-COVER \leq_p SET-COVER
- **Proof.** Given instance $\langle G, k \rangle$ of vertex cover, construct an instance $\langle U, S, k' \rangle$ of set cover problem such that
- G has a vertex cover of size at most k if and only if $\langle U, S, k' \rangle$ has a set cover of size at most k.

Algorithm for VertexCover

Vertex Cover \leq_p Set Cover

- Theorem. VERTEX-COVER \leq_p SET-COVER
- Proof. Given instance ⟨G, k⟩ of vertex cover, construct an instance ⟨U, S, k⟩ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.
- **Reduction.** U = E, for each node $v \in V$, let $S_v = \{e \in E \mid e \text{ incident to } v\}$

(k = 2)

 $U = \{ e_1, e_2, \dots, e_7 \}$ $S_a = \{ e_3, e_7 \} \qquad S_b = \{ e_2, e_4 \}$ $S_c = \{ e_3, e_4, e_5, e_6 \} \qquad S_d = \{ e_5 \}$ $S_e = \{ e_1 \} \qquad S_f = \{ e_1, e_2, e_6, e_7 \}$

set cover instance (k = 2)

Correctness

- Claim. (\Rightarrow) If G has a vertex cover of size at most k, then U can be covered using at most k subsets.
- **Proof.** Let $X \subseteq V$ be a vertex cover in G
 - Then, $Y = \{S_v \mid v \in X\}$ is a set cover of U of the same size

Correctness

- Claim. (\Leftarrow) If U can be covered using at most k subsets then G has a vertex cover of size at most k.
- **Proof.** Let $Y \subseteq \mathcal{S}$ be a set cover of size k
 - Then, $X = \{v \mid S_v \in Y\}$ is a vertex cover of size k

$$U = \{ e_1, e_2, \dots, e_7 \}$$

$$S_a = \{ e_3, e_7 \}$$

$$S_b = \{ e_2, e_4 \}$$

$$S_c = \{ e_3, e_4, e_5, e_6 \}$$

$$S_d = \{ e_5 \}$$

$$S_e = \{ e_1 \}$$

$$S_f = \{ e_1, e_2, e_6, e_7 \}$$

set cover instance (k = 2)

Class Exercise IND-SET \leq_p Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?
- CLIQUE \in NP
 - Certificate: a subset of vertices
 - Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is k

IND-SET to CLIQUE

- **Theorem.** IND-SET \leq_p CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that
 - G has independent set of size k iff G' has clique of size k'.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_p CLIQUE.
- Proof. Given instance $\langle G, k \rangle$ of independent set, we construct an instance $\langle G', k' \rangle$ of clique such that G has independent set of size k iff G' has clique of size k'
- Reduction.
 - Let $G' = (V, \overline{E})$, where $e = (u, v) \in \overline{E}$ iff $e \notin E$ and k' = k
 - (\Rightarrow) G has an independent set S of size k, then S is a clique in G'
 - (\Leftarrow) G' has a clique Q of size k, then Q is an independent set in G

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
 - If x is a "yes" instance of X, then y is a "yes" instance of Y
 - If y is a "yes" instance of Y, then x is a "yes" instance of X \iff if x is a "no" instance of X, then y is a "no" instance of Y

