
P versus NP, NP hard and
NP complete

Shifting Focus
• Most of the class has been about how to efficiently solve

problems

• Now we’re going to shift to a higher-level question

• What problems can a computer solve efficiently?

• What problem can a computer not solve efficiently?

Efficiency: Polynomial time
• What problems can a computer solve in polynomial time?

• What problems can a computer (probably) not solve in
polynomial time?

Technical Setup
• We will now focus on decision problems — problems

with a yes or no answer

• Does this directed graph have a topological order?

• Is this graph bipartite?

• Do these two strings have Edit Distance at most 10?

• Does this flow network have a max flow of at least 20?

Technical Setup
• Most problems have a decision analog

• Find the flow of this network -> “does this network have
flow at least ?”

• Find the optimal schedule of these intervals -> “can we
schedule at least intervals?”

• These are (essentially) the same—-after all, can always
binary search for the optimal value

k

k

Technical Setup
• Decision problem means that every solution is “yes” or “no”

• Yes instances can represented as a set of inputs

• means that the solution to is “yes”

• means that the solution to is “no”

• So can have (for example): is the set of all flow networks
which permit flow at least

• Or can have: is the set of all pairs of strings where
the edit distance between and is at most

A

x ∈ A x

x ∉ A x

A
k

A (a, b)
a b k

Class P
• P: the class of decision problems that can be solved in

polynomial time [in the size of the input]

• Edit distance is in P

• Max flow is in P

• Bipartite matching is in P

• Knapsack?

• dynamic programming algorithm we saw is pseudo-
polynomial! So we don’t know yet

Class NP

Class NP—Intuition
• NP is the class of problems that can be verified in

polynomial time

• If I give you helpful information, say a proposed solution,
you can easily check that it is correct

Sudoku is easy if I give you information (by
giving you the solution). So sudoku is in NP

Class NP—Intuition

Class NP—Intuition

Knapsack is easy if I give you information (by
giving you the solution). So knapsack is in NP

• Example (Knapsack capacity C = 11)

• {3, 4} has value $40 (and weight 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

Class NP: Formally
Definition. Algorithm is a verifier for problem if for every
input there exists a certificate, a string , such that yes
iff .

Definition. = set of decision problems for which there exists a
polynomial-time verifier

• is a polynomial time algorithm

• Certificate is of polynomial size:

• for some polynomial

• A solution is often a good certificate! But any polynomial-size
certificate is allowed

V(s, c) X
s c V(s, c) =

s ∈ X

𝖭𝖯

V(s, c)

c

|c | ≤ p(|s |) p(.)

Graph-Coloring ∈ 𝖭𝖯
Graph-Coloring. Given a graph , is it possible to color
the vertices of using only three colors, such that no edge has
both end points colored with the same color.

• Graph-Coloring

• Certificate: assignment of colors to vertices

• Poly-time verifier: check if at most 3 colors used, check for
each edge if ends points same color or not

G = (V, E)
G

∈ 𝖭𝖯

A 3-colorable graph

• Given a graph , an independent set is a subset of
vertices such that no two of them are adjacent, that is, for
any ,

• IND-SET Problem.
Given a graph and an integer , does have an
independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

independent set of size 6

Independent Set

• Given a graph , an independent set is a subset of
vertices such that no two of them are adjacent, that is, for
any ,

• IND-SET Problem. Given a graph and an integer ,
does have an independent set of size at least ?

• IND-SET .

• Certificate: a subset of vertices (the independent set of
size at least)

• Poly-time verifier: check if any two vertices are adjacent
and check if size is at least

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k
G k

∈ 𝖭𝖯

k

k

IND-SET ∈ 𝖭𝖯

Testing Your Intuition
Not all problems can be easily verified (not all
problems are in NP)

• Is there an input that causes this computer
program to run infinitely?

• You can give me an input and claim that the
computer program runs infinitely, but I can’t verify
that in polynomial time

I mean can’t.
Not obvious:

you’ll explore in
361

Quick Question
• Is ?

• If a problem is in P, does that mean that it is in NP?

• Yes! If a problem can be solved in polynomial time, it can
be verified in polynomial time.

• Just solve directly (Can just set ””—we don’t need
advice to solve this problem)

𝖯 ⊆ 𝖭𝖯

c =

Satisfiability
• The next problem is the classic example of a problem in

NP

• (and, as we’ll soon see, probably not in P)

• Many different small variations on the same problem (we’ll
see a couple)

• Idea: given a logical equation, can we assign “true” and
“false” to the variables to satisfy the equation?

SAT, 3SAT ∈ 𝖭𝖯
• SAT. Given a CNF formula , does it have a satisfying truth

assignment?

• 3SAT. A SAT formula where each clause contains exactly 3
literals (corresponding to different variables)

•

• Satisfying instance: , where
true, false

•

• Certificate: truth assignment to variables

• Poly-time verifier: check if assignment evaluates to true

ϕ

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0 1 :
0 :

SAT, 3-SAT ∈ 𝖭𝖯

 P versus NP

P vs NP
• We know that every problem in P is also in NP

• What about the reverse? That is to say:

• If a problem can be efficiently verified, does that mean
it can be efficiently solved in the first place?

• Or, do there exist problems that can be verified quickly
that are impossible to solve quickly?

Why Do We Care?
• If , the consequences:

• Lots of important problems can be solved quickly!

• Can build things better, faster, more efficiently

• (Public key) cryptography does not exist

• If :

• Many problems can’t be solved quickly

• Can stop trying to solve them

• Most researchers think this is more likely to be the case

𝖯 = 𝖭𝖯

𝖯 ≠ 𝖭𝖯

Million Dollar Question:  
P vs NP

https://medium.com/@mpreziuso/

• The biggest open problem in computer science

• One of the biggest in math as well

• We are not even close to solving it!

Million Dollar Question:  
P vs NP

NP-hard and
NP-Complete Problems

Cook-Levin Theorem
• If SAT can be solved in polynomial time, then any problem

in NP can be solved in polynomial time

• So if SAT can be solved in polynomial time, then P = NP

• How is this possible?

Cook-Levin Theorem
• Idea: any computer program can be represented by a

circuit.

• Solve SAT in poly time -> can figure out the answer given
by the circuit for NP problem in poly time

You’ll see the
proof in CS 361

NP-Hard Problems

• A problem is NP-hard if:

• If can be solved in polynomial time, then any problem
in NP can be solved in polynomial time

• That is, if can be solved in polynomial time, then
P = NP

X

X

X

What Does This Mean?
• We think that, probably,

• So if a problem is NP-hard, then you probably cannot
obtain a polynomial-time algorithm for it

𝖯 ≠ 𝖭𝖯

Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems are

impossible to solve efficiently

• Instead, we say problem is likely very hard to solve by
saying, if a polynomial-time algorithm was found for , then
something we all believe is impossible will happen

• Instead we say is -hard: if , then

X
X

X 𝖭𝖯 X ∈ 𝖯 𝖯 = 𝖭𝖯

Classifying Problems as Hard
• Instead, we say problem is likely very hard to solve by

saying, if a polynomial-time algorithm was found for , then
something we all believe is impossible will happen

• Instead we say is -hard: if , then

• (Erickson) Calling a problem NP hard is like saying, “If I own
a dog, then it can speak fluent English”

• You probably don’t know whether or not I own a dog, but
you are definitely sure I don’t own a talking dog

• Corollary: No one should believe that I own a dog

• If a problem is NP hard, no one should believe it can be
solved in polynomial time

X
X

X 𝖭𝖯 X ∈ 𝖯 𝖯 = 𝖭𝖯

NP Completeness
• Definition. A problem is NP complete if is NP hard and

• SAT is NP complete

• SAT : given an assignment to input gates (certificate),
can verify whether output is one or zero in poly-time

• SAT is NP hard (Cook-Levin Theorem); probably not in

X X
X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Summary
• is -hard -hard if , then

• A problem is NP complete if is NP hard and

• Alternate definition of NP hard:

• is NP hard if all languages in NP reduce it to in polynomial time

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

X

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

NP Hardness Reductions

Relative Hardness
• How do we compare the relative hardness of problems?

• Recurring idea in this class: reductions!

• Informally, we say a problem reduces to a problem , if can use an
algorithm for to solve

• Bipartite matching reduces to max flow

• Finding opportunity cycles reduces to finding negative
cycles

X Y
Y X

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

[Karp] Reductions
Definition. Decision problem polynomial-time (Karp) reduces to
decision problem if given any instance of , we can construct an
instance of in polynomial time s.t if and only if .

Notation.

• Solving is no harder than solving : if we have an algorithm for
, we can use it + poly time reduction to solve

X
Y x X

y Y x ∈ X y ∈ Y

X ≤p Y
X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Reductions Quiz
Say . Which of the following can we infer?

• If can be solved in polynomial time, then so can .

• can be solved in poly time iff can be solved in poly time.

• If cannot be solved in polynomial time, then neither can .

• If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• Let’s do this on the board

• Graph 2-Color can be solved in polynomial time

• How?

• Can decide if a graph is bipartite in time using BFS

• Graph 3-color (we’ll show) is NP hard and unlikely to have a
polynomial-time solution

O(n + m)

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

Use of Reductions: X ≤p Y
Design algorithms:

• If can be solved in polynomial time, we know can also be
solved in polynomial time

Establish intractability:

• If we know that is known to be impossible/hard to solve in
polynomial-time, then we can conclude the same about problem

Establish Equivalence:

• If and then can be solved in poly-time iff can
be solved in poly time and we use the notation

Y X

X
Y

X ≤p Y Y ≤p X X Y
X ≡p Y

NP hard: Operational Definition
• New definition of NP hard using reductions.

• A problem is NP hard, if for any problem ,

• Recall we said is NP hard if .

• Lets show that both definitions are equivalent

• every problem in NP reduces to , and if , then

• Suppose , then : which means every problem
in reduces to

Y X ∈ 𝖭𝖯 X ≤p Y

Y Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

(⇒) Y Y ∈ 𝖯
𝖯 = 𝖭𝖯

(⇐) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯(= 𝖯) Y

Proving NP Hardness
• To prove problem is -hard

• Difficult to prove every problem in reduces to

• Instead, we use a known-NP-hard problem

• We know every problem in ,

• Notice that is transitive

• Thus, enough to prove

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Known NP Hard Problems?
• For now: 3SAT and SAT (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard and NP complete
problems by using reductions

• Before reducing 3SAT to other problems to prove them NP hard, let us
practice some easier reductions first

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

VERTEX-COVER IND-SET≡p

IND-SET

• Given a graph , an independent set is a subset of
vertices such that no two of them are adjacent, that is, for any

,

• IND-SET Problem. Given a graph and an integer , does
 have an independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k
G k

independent set of size 6

Vertex-Cover

• Given a graph , a vertex cover is a subset of vertices
 such that for every edge , either or .

• VERTEX-COVER Problem. Given a graph and an integer ,
does have a vertex cover of size at most ?

G = (V, E)
T ⊆ V e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E) k
G k

vertex cover of size 4

independent set of size 6

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is independent: both cannot be in

• At least one of

• covers

•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set, can we use it
to solve vertex cover?

• Claim. is an independent set of size iff is a vertex cover of
size .

• Proof. () Consider an edge

• is a vertex cover: at least one of must be in

• Both cannot be in

• Thus, is an independent set.

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎

Vertex Cover IND Set≡p
• VERTEX-COVER IND-SET

• Reduction. Let .

• If has a vertex cover of size at most then has an
independent set of size at least

• If has an independent set of size at least then has a
vertex cover of size at most

• IND-SET VERTEX-COVER

• Same reduction works: ,

• VERTEX-COVER IND-SET

≤p

G′ = G, k′ = n − k

(⇒) G k G′

k′

(⇐) G′ k′ G
k

≤p

G′ = G k′ = n − k

≡p

VERTEX-COVER SET-COVER≤p

Set Cover
• Set-Cover. Given a set of elements, a collection of subsets of

and an integer , are there at most subsets whose union
covers , that is,

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si

Vertex Cover Set Cover≤p

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem such that

• has a vertex cover of size at most if and only if has a
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of
VertexCover ⟨G, k⟩

Instance of
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an instance
 of set cover problem that has a set cover of size iff has

a vertex cover of size .

• Reduction. , for each node , let

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover Set Cover≤p

Correctness
• Claim. If has a vertex cover of size at most , then can be

covered using at most subsets.

• Proof. Let be a vertex cover in

• Then, is a set cover of of the same size

(⇒) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Correctness
• Claim. If can be covered using at most subsets then

has a vertex cover of size at most .

• Proof. Let be a set cover of size

• Then, is a vertex cover of size

(⇐) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }

Sc = { } Sd = { }

Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Class Exercise
IND-SET Clique≤p

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

k
k

G k G k

Clique

• A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A -clique is a clique that
contains nodes.

• CLIQUE. Given a graph and a number , does contain a
-clique?

• CLIQUE

• Certificate: a subset of vertices

• Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is

k
k

G k G k

∈ 𝖭𝖯

k

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• In class exercise. Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

• Theorem. IND-SET CLIQUE.

• Proof. Given instance of independent set, we construct
an instance of clique such that has independent set
of size iff has clique of size

• Reduction.

• Let , where iff and

• has an independent set of size , then is a
clique in

• has a clique of size , then is an independent
set in

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

(⇒) G S k S
G′

(⇐) G′ Q k Q
G

IND-SET to CLIQUE

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem

• Prove that:

• If is a “yes” instance of , then is a “yes” instance of

• If is a “yes” instance of , then is a “yes” instance of
 if is a "no" instance of , then is a "no" instance of

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

