
P versus NP, NP hard and 
NP complete



Shifting Focus
• Most of the class has been about how to efficiently solve 

problems 

• Now we’re going to shift to a higher-level question 

• What problems can a computer solve efficiently? 

• What problem can a computer not solve efficiently?



Efficiency:  Polynomial time
• What problems can a computer solve in polynomial time? 

• What problems can a computer (probably) not solve in 
polynomial time?



Technical Setup
• We will now focus on decision problems — problems 

with a yes or no answer 

• Does this directed graph have a topological order? 

• Is this graph bipartite? 

• Do these two strings have Edit Distance at most 10? 

• Does this flow network have a max flow of at least 20?



Technical Setup
• Most problems have a decision analog 

• Find the flow of this network -> “does this network have 
flow at least ?” 

• Find the optimal schedule of these intervals -> “can we 
schedule at least  intervals?” 

• These are (essentially) the same—-after all, can always 
binary search for the optimal value
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Technical Setup
• Decision problem means that every solution is “yes” or “no” 

• Yes instances can represented as a set of inputs  

•  means that the solution to  is “yes” 

•  means that the solution to  is “no” 

• So can have (for example):  is the set of all flow networks 
which permit flow at least  

• Or can have:  is the set of all pairs of strings  where 
the edit distance between  and  is at most 

A

x ∈ A x

x ∉ A x
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Class P
• P:   the class of decision problems that can be solved in 

polynomial time [in the size of the input] 

• Edit distance is in P 

• Max flow is in P 

• Bipartite matching is in P 

• Knapsack? 

• dynamic programming algorithm we saw is pseudo-
polynomial!  So we don’t know yet



Class NP



Class NP—Intuition
• NP is the class of problems that can be verified in 

polynomial time 

• If I give you helpful information,  say a proposed solution, 
you can easily check that it is correct



Sudoku is easy if I give you information (by 
giving you the solution).  So sudoku is in NP

Class NP—Intuition



Class NP—Intuition

Knapsack is easy if I give you information (by 
giving you the solution).  So knapsack is in NP

• Example (Knapsack capacity C = 11) 

• {3, 4} has value $40 (and weight 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)



Class NP:  Formally
Definition. Algorithm  is a verifier for problem  if for every 
input  there exists a certificate, a string , such that  yes 
iff .  

Definition.   = set of decision problems for which there exists a 
polynomial-time verifier 

•  is a polynomial time algorithm 

• Certificate  is of polynomial size:  

•  for some polynomial   

• A solution is often a good certificate!  But any polynomial-size 
certificate is allowed

V(s, c) X
s c V(s, c) =

s ∈ X

𝖭𝖯

V(s, c)

c

|c | ≤ p( |s | ) p( . )



Graph-Coloring ∈ 𝖭𝖯
Graph-Coloring.  Given a graph , is it possible to color 
the vertices of  using only three colors, such that no edge has 
both end points colored with the same color. 

• Graph-Coloring  

• Certificate: assignment of colors to vertices 

• Poly-time verifier: check if at most 3 colors used, check for 
each edge if ends points same color or not

G = (V, E)
G

∈ 𝖭𝖯

A 3-colorable graph



• Given a graph , an independent set is a subset of 
vertices  such that no two of them are adjacent, that is, for 
any ,   

• IND-SET Problem.   
Given a graph  and an integer , does  have an 
independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

independent set of size 6

Independent Set



• Given a graph , an independent set is a subset of 
vertices  such that no two of them are adjacent, that is, for 
any ,   

• IND-SET Problem.  Given a graph  and an integer , 
does  have an independent set of size at least ? 

• IND-SET .  

• Certificate: a subset of vertices (the independent set of 
size at least ) 

• Poly-time verifier:  check if any two vertices are adjacent 
and check if size is at least 

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k
G k

∈ 𝖭𝖯

k

k

IND-SET ∈ 𝖭𝖯



Testing Your Intuition
Not all problems can be easily verified (not all 
problems are in NP) 

• Is there an input that causes this computer 
program to run infinitely? 

• You can give me an input and claim that the 
computer program runs infinitely, but I can’t verify 
that in polynomial time

I mean can’t.  
Not obvious: 

you’ll explore in 
361 



Quick Question
• Is ?   

• If a problem is in P, does that mean that it is in NP? 

• Yes!  If a problem can be solved in polynomial time, it can 
be verified in polynomial time. 

• Just solve directly (Can just set ””—we don’t need 
advice to solve this problem)

𝖯 ⊆ 𝖭𝖯

c =



Satisfiability
• The next problem is the classic example of a problem in 

NP 

•  (and, as we’ll soon see, probably not in P) 

• Many different small variations on the same problem (we’ll 
see a couple) 

• Idea: given a logical equation, can we assign “true” and 
“false” to the variables to satisfy the equation?



SAT, 3SAT ∈ 𝖭𝖯
• SAT.  Given a CNF formula , does it have a satisfying truth 

assignment?  

• 3SAT.  A SAT formula where each clause contains exactly 3 
literals (corresponding to different variables) 

•   

• Satisfying instance:   , where  
true,  false  

•   

• Certificate: truth assignment to variables 

• Poly-time verifier: check if assignment evaluates to true

ϕ

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0 1 :
0 :

SAT, 3-SAT ∈ 𝖭𝖯



 P versus NP 



P vs NP
• We know that every problem in P is also in NP 

• What about the reverse?  That is to say: 

• If a problem can be efficiently verified, does that mean 
it can be efficiently solved in the first place? 

• Or, do there exist problems that can be verified quickly 
that are impossible to solve quickly?



Why Do We Care?
• If , the consequences: 

• Lots of important problems can be solved quickly! 

• Can build things better, faster, more efficiently 

• (Public key) cryptography does not exist 

• If : 

• Many problems can’t be solved quickly 

• Can stop trying to solve them 

• Most researchers think this is more likely to be the case

𝖯 = 𝖭𝖯

𝖯 ≠ 𝖭𝖯



Million Dollar Question:   
P vs NP

https://medium.com/@mpreziuso/



• The biggest open problem in computer science 

• One of the biggest in math as well 

• We are not even close to solving it!

Million Dollar Question:   
P vs NP



NP-hard and  
NP-Complete Problems



Cook-Levin Theorem
• If SAT can be solved in polynomial time, then any problem 

in NP can be solved in polynomial time 

• So if SAT can be solved in polynomial time, then P = NP 

• How is this possible?



Cook-Levin Theorem
• Idea: any computer program can be represented by a 

circuit.  

• Solve SAT in poly time -> can figure out the answer given 
by the circuit for NP problem in poly time

You’ll see the 
proof in CS 361



NP-Hard Problems

• A problem  is NP-hard if: 

• If  can be solved in polynomial time, then any problem 
in NP can be solved in polynomial time 

• That is, if  can be solved in polynomial time, then  
P = NP

X

X

X



What Does This Mean?
• We think that, probably,  

• So if a problem is NP-hard, then you probably cannot 
obtain a polynomial-time algorithm for it

𝖯 ≠ 𝖭𝖯



Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems are 

impossible to solve efficiently 

• Instead, we say problem  is likely very hard to solve by 
saying, if a polynomial-time algorithm was found for , then 
something we all believe is impossible will happen 

• Instead we say  is -hard:  if  , then 

X
X

X 𝖭𝖯 X ∈ 𝖯 𝖯 = 𝖭𝖯



Classifying Problems as Hard
• Instead, we say problem  is likely very hard to solve by 

saying, if a polynomial-time algorithm was found for , then 
something we all believe is impossible will happen 

• Instead we say  is -hard:  if  , then  

• (Erickson)  Calling a problem NP hard is like saying, “If I own 
a dog, then it can speak fluent English” 

• You probably don’t know whether or not I own a dog, but 
you are definitely sure I don’t own a talking dog 

• Corollary: No one should believe that I own a dog 

• If a problem is NP hard, no one should believe it can be 
solved in polynomial time

X
X

X 𝖭𝖯 X ∈ 𝖯 𝖯 = 𝖭𝖯



NP Completeness
• Definition.  A problem  is NP complete if  is NP hard and 

 

• SAT is NP complete 

• SAT : given an assignment to input gates (certificate), 
can verify whether output is one or zero in poly-time 

• SAT is NP hard (Cook-Levin Theorem); probably not in 

X X
X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



Summary
•  is -hard -hard   if  ,  then  

• A problem  is NP complete if  is NP hard and  

• Alternate definition of NP hard: 

•  is NP hard if all languages in NP reduce it to in polynomial time 

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

X

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



NP Hardness Reductions



Relative Hardness
• How do we compare the relative hardness of problems? 

• Recurring idea in this class: reductions! 

• Informally, we say a problem  reduces to a problem , if can use an 
algorithm for  to solve  

• Bipartite matching reduces to max flow 

• Finding opportunity cycles reduces to finding negative 
cycles

X Y
Y X

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y



[Karp] Reductions
Definition.  Decision problem  polynomial-time (Karp) reduces to 
decision problem  if given any instance  of , we can construct an 
instance  of  in polynomial time s.t   if and only if . 

Notation.    

• Solving  is no harder than solving :  if we have an algorithm for 
, we can use it + poly time reduction to solve 

X
Y x X

y Y x ∈ X y ∈ Y

X ≤p Y
X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



Reductions Quiz
Say . Which of the following can we infer? 

• If  can be solved in polynomial time, then so can . 

•  can be solved in poly time iff  can be solved in poly time. 

• If  cannot be solved in polynomial time, then neither can . 

• If  cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y

X Y

X Y

Y X

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



Digging Deeper
• Graph 2-Color reduces to Graph 3-color

• Let’s do this on the board 

• Graph 2-Color can be solved in polynomial time 

• How? 

• Can decide if a graph is bipartite in  time using BFS 

• Graph 3-color (we’ll show) is NP hard and unlikely to have a 
polynomial-time solution

O(n + m)

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y



Use of Reductions:  X ≤p Y
Design algorithms: 

• If  can be solved in polynomial time, we know  can also be 
solved in polynomial time 

Establish intractability: 

• If we know that  is known to be impossible/hard to solve in 
polynomial-time, then we can conclude the same about problem  

Establish Equivalence: 

• If  and  then  can be solved in poly-time iff  can 
be solved in poly time and we use the notation 

Y X

X
Y

X ≤p Y Y ≤p X X Y
X ≡p Y



NP hard:  Operational Definition
• New definition of NP hard using reductions.   

• A problem  is NP hard, if for any problem ,   

• Recall we said  is NP hard if . 

• Lets show that both definitions are equivalent 

•  every problem in NP reduces to , and if , then 
 

•  Suppose , then : which means every problem 
in  reduces to  

Y X ∈ 𝖭𝖯 X ≤p Y

Y Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

( ⇒ ) Y Y ∈ 𝖯
𝖯 = 𝖭𝖯

( ⇐ ) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯( = 𝖯) Y



Proving NP Hardness
• To prove problem  is -hard 

• Difficult to prove every problem in  reduces to  

• Instead, we use a known-NP-hard problem  

• We know every problem  in ,  

• Notice that  is transitive  

• Thus, enough to prove 

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



Known NP Hard Problems?
• For now:   3SAT and SAT  (Cook-Levin Theorem) 

• We will prove a whole repertoire of NP hard and NP complete 
problems by using reductions 

• Before reducing 3SAT to other problems to prove them NP hard, let us 
practice some easier reductions first

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



VERTEX-COVER    IND-SET≡p



IND-SET

• Given a graph , an independent set is a subset of 
vertices  such that no two of them are adjacent, that is, for any 

,   

• IND-SET Problem.  Given a graph  and an integer , does 
 have an independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k
G k

independent set of size 6



Vertex-Cover

• Given a graph , a vertex cover is a subset of vertices 
 such that for every edge , either  or . 

• VERTEX-COVER Problem.  Given a graph  and an integer , 
does  have a vertex cover of size at most ?

G = (V, E)
T ⊆ V e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E) k
G k

vertex cover of size 4

independent set of size 6



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, can we use it 
to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a vertex cover of 
size .  

• Proof. ( ) Consider an edge   

•  is independent:  both cannot be in  

• At least one of   

•  covers    

•

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e

∎



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, can we use it 
to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a vertex cover of 
size .  

• Proof. ( ) Consider an edge   

•  is a vertex cover: at least one of  must be in  

• Both  cannot be in   

• Thus,  is an independent set.  

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v V − S

u, v S

S ∎



Vertex Cover  IND Set≡p
• VERTEX-COVER    IND-SET 

• Reduction.  Let  .  

•  If  has a vertex cover of size at most  then  has an 
independent set of size at least   

•  If  has an independent set of size at least  then  has a 
vertex cover of size at most  

• IND-SET    VERTEX-COVER  

• Same reduction works: ,  

• VERTEX-COVER    IND-SET

≤p

G′ = G, k′ = n − k

( ⇒ ) G k G′ 

k′ 

( ⇐ ) G′ k′ G
k

≤p

G′ = G k′ = n − k

≡p



VERTEX-COVER    SET-COVER≤p



Set Cover
• Set-Cover. Given a set  of elements, a collection  of subsets of  

and an integer , are there at most  subsets  whose union 
covers , that is,  

U 𝒮 U
k k S1, …, Sk

U U ⊆ ∪k
i=1 Si



Vertex Cover  Set Cover≤p

• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem such that  

•  has a vertex cover of size at most  if and only if  has a 
set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩

G k ⟨U, 𝒮, k′ ⟩
k

Instance of  
VertexCover ⟨G, k⟩

Instance of  
SetCover ⟨G′ , k′ ⟩

Algorithm for SetCover

Yes

No

Yes

No
Poly time

Algorithm for VertexCover



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an instance 
 of set cover problem that has a set cover of size  iff  has 

a vertex cover of size .  

• Reduction.   , for each node , let
 

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩ k G

k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover  Set Cover≤p



Correctness
• Claim.   If  has a vertex cover of size at most , then  can be 

covered using at most  subsets. 

• Proof. Let  be a vertex cover in  

• Then,  is a set cover of  of the same size  

( ⇒ ) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Correctness
• Claim.   If  can be covered using at most  subsets then  

has a vertex cover of size at most . 

• Proof. Let  be a set cover of size   

• Then,  is a vertex cover of size  

( ⇐ ) U k G
k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }

Sc = { }  Sd = {  } 

Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Class Exercise 
IND-SET    Clique≤p



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique?

k
k

G k G k



Clique

• A clique in an undirected graph is a subset of nodes such that every 
two nodes are connected by an edge. A -clique is a clique that 
contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  contain a 
-clique? 

• CLIQUE  

• Certificate: a subset of vertices  

• Poly-time verifier: check is each pair of vertices have an edge 
between them and if size of subset is 

k
k

G k G k

∈ 𝖭𝖯

k



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• In class exercise.  Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



• Theorem.  IND-SET  CLIQUE. 

• Proof. Given instance  of independent set, we construct 
an instance  of clique such that  has independent set 
of size  iff  has clique of size  

• Reduction.  

• Let , where  iff  and  

•   has an independent set  of size , then   is a 
clique in  

•   has a clique  of size , then  is an independent 
set in 

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G

k G′ k′ 

G′ = (V, E) e = (u, v) ∈ E e ∉ E k′ = k

( ⇒ ) G S k S
G′ 

( ⇐ ) G′ Q k Q
G

IND-SET to CLIQUE



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  

• Prove that: 

• If  is a “yes” instance of , then  is a “yes” instance of  

• If  is a “yes” instance of , then  is a “yes” instance of   
 if  is a "no" instance of , then  is a "no" instance of 

x X y Y

x X y Y

y Y x X
⟺ x X y Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X


