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Admin
• TA evaluation form!  https://forms.gle/nZSPcwbaP3WCWxqEA 

• Please fill out by Friday 

• Apply to be a TA next year!  https://csci.williams.edu/tatutor-application/ 

• Also due Friday! 

• You should apply if interested!  Don’t need to be sailing through the 
course 

• Declare CS major/advising (should have gotten email); prereg sess Friday 

• Assignment 6 out: individual, but short (3 questions) 

• Midterm back next week 

• Questions?

https://forms.gle/nZSPcwbaP3WCWxqEA
https://csci.williams.edu/tatutor-application/


What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Each edge  has edge capacity 

G = (V, E)
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Max-Flow Min-Cut Theorem

• Theorem.  Given any flow network , there exists an 
-flow   and a -cut   such that, 

 

• Will prove this theorem by construction in a bit—our 
algorithm will prove the theorem! (like with Gale-Shapley)

G (s, t)
f (s, t) (S, T )

v( f ) = c(S, T )



Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves 

undo previous decisions if they’re getting in our way 

• Idea: keep track of where we can push flow  

• Can push more flow along an edge with remaining 
capacity  

• Can also push flow “back” along an edge that already 
has flow down it 

• Need a way to systematically track these decisions



Residual Graph
• Given flow network  and a feasible flow  on , the 

residual graph  is defined as: 

• Vertices in  same as  

• (Forward edge) For  with residual capacity
, create  with capacity  

• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow
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Flow Algorithm Idea
• Now we have a residual graph that lets us make forward 

progress or push back existing flow 

• We will look for  paths in   rather than  

• Once we have a path, we will "augment" flow along it similar to 
greedy 

• find bottleneck capacity edge on the path and push that 
much flow through it in  

• When we translate this back to , this means: 

• We increment existing flow on a forward edge 

• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow: 

• Show that each time we update the flow, we still get a flow (it 
satisfies the constraints: no edge has more flow assigned than 
capacity, and flow in = flow out). 

• And that value of this flow increases each time by that amount 

• Optimality: 

• Final value of flow is the maximum possible  

• Running time: 

• How long does it take for the algorithm to terminate? 

• Space: 

• How much total space are we using

Analysis Outline



• Claim.  Let  be a flow in  and let  be an augmenting path in 
 with bottleneck capacity .  Let  , then 

 is a flow. 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:    

 

• If  is a backward edge:   

  

• Conservation constraint hold on any node in : 

• , therefore  for both cases

f G P
Gf b f′ ← AUGMENT( f, P)
f′ 

P
f′ = f e = (u, v) ∈ P

e f′ (e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′ (e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′ in(u) = f′ out(u)

Feasibility of Flow



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then . 

• Proof.  

• First edge  must be out of  in  

• (  is simple so never visits  again) 

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′ ← AUGMENT( f, P) v( f′ ) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress



Optimality



Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -  cut 

then . 

• We will show that the Ford-Fulkerson algorithm terminates in 
a flow that achieves equality, that is, 

• Ford-Fulkerson finds a flow  and there exists a cut  
such that,    

• Proving this shows that it finds the maximum flow (and the 
min cut) 

• This also proves the max-flow min-cut theorem

f s t (S, T ) s t
v( f ) ≤ c(S, T )

f* (S*, T*)
v( f*) = c(S*, T*)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. 

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.)  

• Let ,    

• Is this an  cut?   

• ,  and  

• Consider an edge  with , then what 
can we say about ?  

•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .   

• Proof. (Cont.) 

• Let ,    

• Thus, all edges leaving  are completely saturated and all 
edges entering  have zero flow 

•   

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

• Operations in each iteration? 

• Find an augmenting path in  

• Augment flow on path 

• Update 

Gf

Gf

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and . 

• Proof.  Time taken by each iteration: 

• Finding an augmenting path in  

•  has at most  edges, using BFS/DFS takes 

 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in  time 

• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time



[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time polynomial in 

the input size?  

• Running time is , where  

• What is the input size? 

•  vertices,  edges,  capacities 

•  represents the magnitude of the maximum capacity 
leaving the source node 

• How many bits to represent ? 

• Let us take an example

O(nmC) C = max
u

c(s → u)

n m m
C

C



• Question.  Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input? 

• Answer.  No. if max capacity is , the algorithm can take  
iterations.  Consider the following example.

C ≥ C

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each with 

capacity  

•  = , then  takes  bits to represent 

• Input size:  bits 

• Running time:  

• Exponential in the size of   

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude but not 
size of an input parameter. 

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log C)

C



Non-Integral Capacities?
• If the capacities are rational, can just multiply to obtain a 

large integer (massively increases running time) 

• If capacities are irrational, Ford-Fulkerson can run 
infinitely! 

• Improvement at each step can be arbitrarily small 

• Can create bad instances where it doesn't terminate 
in finite steps



Network Flow:  
Beyond Ford Fulkerson



Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which path in 

the residual graph to augment 

• Poor worst-case behavior of the algorithm can be blamed on 
bad choices on augmenting path 

• Better choice of augmenting paths.  In 1970s, Jack Edmonds 
and Richard Karp published two natural rules for choosing 
augmenting paths 

• Widest path first: paths with largest bottleneck capacity 

• Shortest (in terms of edges) augmenting paths first (Dinitz 
independently discovered & analyzed this rule)



Widest Augmenting Paths First
• Ford Fulkerson can be improved with a greedy algorithm way 

of choosing augmenting paths: 

• Choose the augmenting path with largest bottleneck 
capacity 

• Largest bottleneck path can be computed in  time 
in a directed graph 

• Similar to Dijkstra’s analysis 

• How many iterations if we use this rule? 

• Won’t prove this: but takes  iterations 

• Overall running time is  (polynomial time!) 

• Still depends on  though

O(m log n)

O(m log C)

O(m2 log n log C)
C



Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges 

• Can be found using BFS on  in  time 

• Surprisingly, this resulting a polynomial-time algorithm 
independent of the actual edge capacities ! 

• Analysis looks at “level” of vertices in the BFS tree of  
rooted at  —levels only grow over time 

• Analyzes # of times an edge  disappears from  

• Takes  iterations overall 

• Thus overall running time is 

Gf O(m + n) = O(m)

Gf

s

u → v Gf

O(mn)

O(m2n)



Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

Best among “combinatorial” 
approaches that push flow 

through the graph 



Progress on Network Flows
• More recently: [Chen et al. 2022] achieve running time 

better than  for any constant  

• Specifically:  

• (don’t worry about this running time) 
• Not combinatorial: uses “interior point methods” 

• “Jumps” between solutions with drastically different, 
non-integral flow values 

• (Very intense math)

O(m1+ϵ) ϵ

O (m1+1/log1/168 m)



Progress on Network Flows
• Let’s say that the best known:  

• For the purpose of this class, network flows can be 
solved in  time 

• Some of these algorithms do REALLY well in “practice” 
basically 

O(nm)

O(nm)

O(n + m)



Applications of 
Network Flow:  
Solving Problems by  

Reduction to Network Flows



Max-Flow Min-Cut  Applications
• Data mining 
• Bipartite matching 
• Network reliability 
• Image segmentation 
• Baseball elimination 
• Network connectivity 
• Markov random fields 
• Distributed computing 
• Network intrusion detection 
• Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)



Max-Flow Min-Cut  Applications
• Network flows model a variety of optimization problems 

• These optimization problems look complicated with lots of 
constraints; on the face of it seem to have nothing to do 
with networks or flows

Clients to base stations.  Consider a set of mobile computing clients who 
each need to be connected to one of several possible base stations. We’ll suppose 
there are  clients and  base stations; the position of each of these is specified by 
their  coordinates in the plane.  

For each client, we wish to connect it to exactly one of the base stations, 
constrained in the following ways:  a client can only be connected to a base station 
that is within distance ,  and no more than  clients can be connected to any 
single base station. Design a polynomial time algorithm for the problem.

n k
(x, y)

r L



Max-Flow Min-Cut  Applications
• Network flows model a variety of optimization problems 

• These optimization problems look complicated with lots of 
constraints; on the face of it seem to have nothing to do 
with networks or flows

Survey design:  Design survey asking  consumers about  products.
・Can survey consumer  about product  only if they own it.

・Ask consumer  between  and  questions.

・Ask between  and  consumers about product .
 
Goal.  Design a survey that meets these specs, if possible.

n1 n2

i j
i ci c′ i

pj p′ j j



Max-Flow Min-Cut  Applications
• Network flows model a variety of optimization problems 

• These optimization problems look complicated with lots of 
constraints; on the face of it seem to have nothing to do 
with networks or flows

Airline scheduling:  A very complicated scheduling problem but we can turn 
it into a simplified one:

Every day we have k flights and flight i leaves origin oi at time si and arrives at 
destination di at time fi. 
Goal.  Minimize number of flight crews.



Reductions

• We will solve all these problems by reducing them to a 
network flow problem 

• We'll focus on the concept of problem reductions



Anatomy of Problem 
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• At a high level, a problem  reduces to a problem  
if an algorithm for  can be used to solve  

• Reduction.  Convert an arbitrary instance  of  to a 
special instance  of  such that there is a 1-1 
correspondence between them

X Y
Y X

x X
y Y



Anatomy of Problem 
Reductions

• Claim.   satisfies a property iff  satisfies a corresponding 
property 

• Proving a reduction is correct: prove both directions 
•  has a property (e.g. has matching of size    has a 

corresponding property (e.g. has a flow of value  
•  does not have a property (e.g. does not have matching of 

size    does not have a corresponding property 
(e.g. does not have a flow of value   

• Or equivalently (and this is often easier to prove): 
•  has a property (e.g. has flow of value    has a 

corresponding property (e.g. has a matching of value 

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)

Remember: must 
give the same 

answer! 



Bipartite Matching



Review: Matching in Graphs
• Definition.  Given an undirected graph , a matching 

 of  is a subset of edges such that no two edges in  
are incident on the same vertex. 

• In other words,  each node appears in at most one edge in 

G = (V, E)
M ⊆ E G M

M



Review: Matching in Graphs
• Definition.  Given an undirected graph , a matching 

 of  is a subset of edges such that no two edges in  
are incident on the same vertex. 

• In other words,  each node appears in at most one edge in  

• A perfect matching matches all nodes in  

• Max matching problem. Find a matching of maximum 
cardinality for a given graph, that is, a matching with maximum 
number of edges 

• A perfect matching if it exists is maximum!

G = (V, E)
M ⊆ E G M

M

G



Review: Bipartite Graphs
• A graph is bipartite if its vertices can be partitioned into two 

subsets  such that every edge  connects  
and  

• Bipartite matching problem. Given a bipartite graph 
 find a maximum matching.

X, Y e = (u, v) u ∈ X
v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'



Bipartite Matching Examples
• Models many assignment problems 

•  is a set of jobs,  as a set of machines 

• Edge  indicates where machine  is able to process 
job  

• Perfect matching:   way to assign each job to a machine that 
can process it, such that, each machine is assigned exactly 
one job 

• Assigning customers to stores, students to dorms, etc 

• Note. This is a different problem than the one we studied for 
Gale-Shapely matching!

A B

(ai, bj) bj

ai



Maximum & Perfect Matchings
• One of the oldest problems in combinatorial algorithms: 

• Determine the largest matching in a bipartite graph 

• This doesn't seem like a network flow problem 

• But we will turn it into one



Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• Given arbitrary instance  of bipartite matching problem 
:   and edges  between  and  

• Goal. Create a special instance  of a max-flow problem 
: flow network: , source , sink   s.t. 

• 1-1 correspondence.  There exists a matching of size  iff 
there is a flow of value 

x
(X) A, B E A B

y
(Y ) G(V, E, c) s t ∈ V

k
k



Reduction to Max Flow
• Create a new directed graph  

• Add edge  to  for all nodes  

• Add edge  to  for all nodes  

• Direct edge   in  if   

• Set capacity of all edges in   to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B

a → b E′ (a, b) ∈ E
E′ 

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'



Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value .

( ⇒ )
(A, B, E) M k

G′ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G
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5
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5'

2

4

2'

4'



Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value . 

• Proof. 

• For every edge , let  be the flow resulting 
from sending 1 unit of flow along the path 

  

•  is a feasible flow (satisfies capacity and conservation) 
and integral 

•   

( ⇒ )
(A, B, E) M k

G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v( f ) = k



• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size .

( ⇐ )
G′ k
(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′

Correctness of Reduction

G

1

3

5

1'

3'

5'

2

4

2'

4'



• Claim .  
If flow-network  has an integral flow of value , then the 
bipartite graph  has matching  of size . 

• Proof. 

• Let set of edges from  to  with . 

• No two edges in  share a vertex, why? 

•   

•  for any  cut 

• Let 

( ⇐ )
G′ k
(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v( f ) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction



• Proved matching of size  iff flow of value  

• Thus, max-flow iff max matching 

• Running time of algorithm overall: 

• Running time of reduction + running time of 
solving the flow problem (dominates) 

• What is running time of Ford–Fulkerson algorithm for a 
flow network with all unit capacities? 

•  

• Overall running time of finding max-cardinality bipartite 
matching: 

k k

O(nm)

O(nm)

Summary & Running Time

Can also use 
Orlin’s algorithm 


