Network Flows
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What's a Flow Network?

« A flow network is a directed graph G = (V, E) with a
« A source is a vertex s with in degree O
« A sink is a vertex t with out degree O

« Each edge e € E has edge capacity c(e) > 0O
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Max-Flow Min-Cut Theorem

« Theorem. Given any flow network G, there exists an (s, 1)
flow f and a (s, t)-cut (S, T) such that,

v(f) =¢S5, T)

* Wil prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley)



Ford Fulkerson: Idea

 Want to make “forward progress” while letting ourselves
undo previous decisions if they're getting in our way

* |ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

e (Can also push flow “back” along an edge that already
has flow down it

 Need a way to systematically track these decisions



Residual Graph

« Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, ¢) is defined as:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge




Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge



Fora-Fulkerson Example
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Analysis: Ford-Fulkerson



Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we still get a flow (it
satisfies the constraints: no edge has more flow assigned than
capacity, and flow in = flow out).

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

* How much total space are we using



Feasibility of Flow

« Claim. Let fbe aflowin G and let P be an augmenting path in
G, with bottleneck capacity b. Let f* <= AUGMENT(f, P), then

f"is a flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases



Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!



Optimality



Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T') is any s-f cut
thenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm terminates in

a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut (8, T%)
such that, v(f*) = c(8*, T*)

Proving this shows that it finds the maximum flow (and the

min cut)

This also proves the max-flow min-cut theorem



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof.
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?
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Ford-Fulkerson Optimality

Lemma. Let f be a s- flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(8*, T™).

Proof.

Let % = {v | visreachable from sin G¢}, T* = V — §*
s this an s-f cut?

e sESteT SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

» fle) = c(e)



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — vwithv € S*, w € T%, then what
can we say about f(e)?
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Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — v withv € §*,w € T™, then what
can we say about f(e)?

» fle)=0



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and all
edges entering $* have zero flow

V() = JoulS™) = Jin(S*) = Joud $*) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?



Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be thatv(f) < (n— 1)C

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

« (QOperations in each iteration”

. Find an augmenting path in G,

 Augment flow on path

. Update Gf



Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B



[Digging Deeper] Polynomial time*?

* Does the Ford-Fulkerson algorithm run in time polynomial in
the input size?

Running time is O(nmC), where C = max c(s — u)
u

 What is the input size?
e 1 vertices, m edges, m capacities

« ( represents the magnitude of the maximum capacity
eaving the source node

« How many bits to represent C?

* Let us take an example



[Digging Deeper] Polynomial time*?

* Question. Does the Ford-Fulkerson algorithm run in polynomial-
time in the size of the input? < ~mnandlogC

« Answer. No. if max capacity is C, the algorithm can take > C
iterations. Consider the following example.

* §S—SVv—=w—>f
¢ (—p—p—>t each augmenting path
<«<——  sendsonly 1 unit of flow

¢ (s * (—>pP—W—>t (# augmenting paths = 2C)

/ \ ¢ s—W—Y—>f
% 1 >

* s—=V—w—t

* S—SW—V—>t




[Digger Deeper] Pseudo-Polynomial

. Input graph has n nodes and m = O(n?) edges, each with
capacity c,

C = max c(e), then c(e) takes O(log C) bits to represent
eek

« Inputsize: Q(nlogn + mlogn + mlog C) bits
. Running time: O(nmC) = O(nm?2'°8¢)
« Exponential in the size of C

e Such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude but not
size of an input parameter.

 We saw this for knapsack as well!



Non-Integral Capacities?

* |f the capacities are rational, can just multiply to obtain a
large integer (massively increases running time)

e |f capacities are irrational, Ford-Fulkerson can run
Infinitely!

* Improvement at each step can be arbitrarily small

« (Can create bad instances where it doesn't terminate
in finite steps



Network Flow:
Beyond Ford Fulkerson



Edmond and Karp’s Algorithms

 Ford and Fulkerson’s algorithm does not specity which path in
the residual graph to augment

e Poor worst-case behavior of the algorithm can be blamed on
bad choices on augmenting path

* Better choice of augmenting paths. In 1970s, Jack Edmonds
and Richard Karp published two natural rules for choosing
augmenting paths

* Widest path first: paths with largest bottleneck capacity

e Shortest (in terms of edges) augmenting paths first (Dinitz
independently discovered & analyzed this rule)



Widest Augmenting Paths First

Ford Fulkerson can be improved with a greedy algorithm way
of choosing augmenting paths:

 (Choose the augmenting path with largest bottleneck
capacity

Largest bottleneck path can be computed in O(m log n) time
In a directed graph

e Similar to Dijkstra’s analysis
How many iterations if we use this rule”?

« Won't prove this: but takes O(m log C) iterations
Overall running time is O(m?log nlog C) (polynomial time!)

o Still depends on C though



Shortest Augmenting Paths First

* Choose the augmenting path with the smallest # of edges

» Can be found using BFS on G¢in O(m + n) = O(m) time

e Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

« Analysis looks at “level” of vertices in the BFS tree of Gf

rooted at s —levels only grow over time

« Analyzes # of times an edge u — v disappears from Gf

« Takes O(mn) iterations overall

. Thus overall running time is O(m?n)



Progress on Network Flows

1951 O(m n* C) Dantzig

1955 O(mn C) Ford—Fulkerson
1970 O(m n?) Edmonds—Karp, Dinitz
1974 o) Karzanov

1983 O(m n log n) Sleator—Tarjan
1985 O(m n log C) Gabow

1988 O(m n log (n* / m)) Goldberg—Tarjan
1998 O(m>? log (n* / m) log C) Goldberg—Rao
2013 O(m n) Orlin

Best among “combinatorial”
approaches that push flow
through the graph




Progress on Network Flows

 More recently: [Chen et al. 2022] achieve running time
better than O(m ' €) for any constant €

. Specifically: O <m1+1/10gm68m>

e (don't worry about this running time)
 Not combinatorial: uses “interior point methods™

e “Jumps” between solutions with drastically different,
non-integral flow values

* (Very intense math)




Progress on Network Flows

Let’s say that the best known: O(nm)

For the purpose of this class, network flows can be

solved in O(nm) time

Some of these algorithms do REALLY well in “practice”

basically O(n + m)



Applications of

Network Flow:

Solving Problems by
Reduction to Network Flows



Max-Flow Min-Cut Applications

* Data mining

* Bipartite matching

* Network reliability

* Image segmentation
* Baseball elimination

* Network connectivity
 Markov random fields

* Distributed computing

* Network intrusion detection

Many, many, more.

liver and hepatic vascularization segmentation

Liver and hepatic vascularization segmentation using a Min-cut/Max-flow algorithm (S. Esneault, T. Pham, K. Torres)



Max-Flow Min-Cut Applications

 Network flows model a variety of optimization problems

* [hese optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do

with networks or flows

Clients to base stations. Consider a set of mobile computing clients who
each need to be connected to one of several possible base stations. We'll suppose
there are n clients and k base stations; the position of each of these is specified by

their (x, y) coordinates in the plane.

For each client, we wish to connect it to exactly one of the base stations,
constrained in the following ways: a client can only be connected to a base station
that i1s within distance r, and no more than L clients can be connected to any
single base station. Design a polynomial time algorithm for the problem.



Max-Flow Min-Cut Applications

 Network flows model a variety of optimization problems

* [hese optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do

with networks or flows

Survey design: Design survey asking n; consumers about n, products.

* (Can survey consumer I about product j only if they own it.
* Ask consumer i between c¢; and ¢; questions.

* Ask between p; and pJf consumers about product J.

Goal. Design a survey that meets these specs, If possible.



Max-Flow Min-Cut Applications

 Network flows model a variety of optimization problems

* These optimization problems look complicated with lots of
constraints; on the face of it seem to have nothing to do
with networks or flows

Airline scheduling: A very complicated scheduling problem but we can turn
it Into a simplified one:

Every day we have k flights and flight i leaves origin o; at time s; and arrives at

destination d; at time f;
Goal. Minimize number of flight crews.



Reductions

* We will solve all these problems by reducing them to a
network flow problem

 We'll focus on the concept of problem reductions



Anatomy of Problem
Reductions

« At a high level, a problem X reduces to a problem Y
if an algorithm for Y can be used to solve X

« Reduction. Convert an arbitrary instance x of X to a
special instance y of Y such that there is a 1-1
correspondence between them

Positive instance

Instance of X

— R o dUCtiON
X

Instance of Y

Negative instance

Algorithm for Y

Algorithm for X



Anatomy of Problem e ——
Reductions vl

7

Claim. Xx satisfies a property iff y satisfies a corresponding
property
Proving a reduction is correct: prove both directions

X has a property (e.g. has matching of size k) = y has a
corresponding property (e.g. has a flow of value k)

X does not have a property (e.g. does not have matching of
size k) = y does not have a corresponding property
(e.g. does not have a flow of value k)

Or equivalently (and this is often easier to prove):

« Y has a property (e.g. has flow of value k) = x has a
corresponding property (e.g. has a matching of value k)



Bipartite Matching



Review: Matching in Graphs

« Definition. Given an undirected graph G = (V, E), a matching
M C E of G is a subset of edges such that no two edges in M
are incident on the same vertex.

« In other words, each node appears in at most one edge in M




Review: Matching in Graphs

« Definition. Given an undirected graph G = (V, E), a matching
M C E of G is a subset of edges such that no two edges in M
are incident on the same vertex.

« In other words, each node appears in at most one edge in M
A perfect matching matches all nodes in G

 Max matching problem. Find a matching of maximum
cardinality for a given graph, that is, a matching with maximum
number of edges

* A perfect matching it it exists is maximum!



Review: Bipartite Graphs

A graph is bipartite if its vertices can be partitioned into two
subsets X, Y such that every edge e = (i, v) connects u € X
andv €Y

* Bipartite matching problem. Given a bipartite graph
G =(XUY,E)find amaximum matching.




Bipartite Matching Examples

* Models many assignment problems
« A is a setof jobs, B as a set of machines

. Edge (g, bj) indicates where machine bj is able to process

job a;

* Perfect matching: way to assign each job to a machine that
can process it, such that, each machine is assigned exactly
one job

* Assigning customers to stores, students to dorms, etc

 Note. This is a different problem than the one we studied for
Gale-Shapely matching!



Maximum & Perfect Matchings

* One of the oldest problems in combinatorial algorithms:
* Determine the largest matching in a bipartite graph
* This doesn't seem like a network flow problem

e But we will turn it into one



Reduction to Max Flow

« Given arbitrary instance x of bipartite matching problem
(X): A, B and edges E between A and B

« Goal. Create a special instance y of a max-flow problem
(Y): flow network: G(V, E, ¢), source §, sinkt € Vs.t.

« 1-1 correspondence. There exists a matching of size k iff
there is a flow of value k

Positive instance

Instance of X Instance of Y

- Reduction

X Negative instance

Algorithm for Y

Algorithm for X



Reduction to Max Flow

Create a new directed graph G' = (AU B U {s,t}, E’, ¢)
Add edge s — ato E'for allnodesa € A

Add edge b — tto E'for allnodes b € B

Directedge a =» binE'if (a,b) € E

Set capacity of all edges in £ to 1
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Correctness of Reduction

« Claim ( = ).
f the bipartite graph (A, B, E') has matching M of size k
then flow-network G’ has an integral flow of value k.

) —, D— + —>@

/ \



Correctness of Reduction

Claim ( = ).
f the bipartite graph (A, B, E') has matching M of size k
then flow-network G has an integral flow of value k.

Proof.

« Foreveryedgee = (a,b) € M, let f be the flow resulting

from sending 1 unit of flow along the path
s—>a—>b-—t

« fis afeasible flow (satisfies capacity and conservation)
and integral

» V() =k



Correctness of Reduction

« Claim ( < ).
If flow-network G has an integral flow of value k, then the
bipartite graph (A, B, E') has matching M of size k.

I T
s :
@ >



Correctness of Reduction

« Claim ( < ).
If flow-network G has an integral flow of value k, then the
bipartite graph (A, B, E') has matching M of size k.

* Proof.
« Let M = set of edges from A to B with f(e) = 1.
« No two edges in M share a vertex, why?
» M| =k
e v(f)=/,,(S) -1, (S)forany (§,V —=35) cut
e LetS =AU {s}



Summary & Running Time

Proved matching of size k iff flow of value k

Thus, max-flow iff max matching

Running time of algorithm overall:

* Running time of reduction + running time of
solving the flow problem (dominates)

What is running time of Ford—Fulkerson algorithm for a
flow network with all unit capacities”

« O(nm)

Overall running time of finding max-cardinality bipartite
matching: O(nm)

Can also use
Orlin’s algorithm




