
Network Flows



Admin
• TA evaluation form!  https://forms.gle/nZSPcwbaP3WCWxqEA


• Please fill out by next Friday


• Assignment 4 back to you ASAP (Friday?); Assignment 5 after


• Network flow practice problem canceled


• Just do the practice midterm instead


• Practice midterm posted on GLOW, linked from website


• Draft solutions out ASAP (Friday?)


• Final will look very similar with better (?) problems, length


• Questions?

https://forms.gle/nZSPcwbaP3WCWxqEA


What’s a Flow Network?
• A flow network is a directed graph  with a


• A source is a vertex  with in degree 


• A sink is a vertex  with out degree 


• Each edge  has edge capacity 

G = (V, E)
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Assumptions
• Assume that each node  is on some  path, that is, 

  exists, for any vertex 


• Implies  is connected and 


• Assume capacities are integers

• Will revisit this assumption and what happens if not


• Directed edge  written as 


• For simplifying expositions, we will sometimes write 

 when 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

(u, v) u → v

c(u → v) = 0 (u, v) ∉ E



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies the 
following two constraints:


• [Flow conservation]   , for  where 
 

             

          


• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v
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Feasible Flow
• And second, a feasible flow must satisfy the capacity 

constraints of the network, that is,


[Capacity constraint]  for each , e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is .f v( f ) fout(s)

  =  5 + 10 + 10  =  25v( f )
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Value of a Flow
• Definition. The value of a flow , written , is .


• Lemma. 

f v( f ) fout(s)

fout(s) = fin(t)

value  =  5 + 10 + 10  =  25
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this is true?



Value of a Flow
• Lemma. 


•
Proof.   Let 


•
Then, 


• For every   flow conversation implies 


• Thus all terms cancel out on both sides except 



• But 

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

u v

f



Value of a Flow
• Lemma. 


• Corollary. .

fout(s) = fin(t)

v( f ) = fin(t)

value  =  5 + 10 + 10  =  25
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Max-Flow Problem
• Problem.  Given an  flow network, find a feasible  flow of 

maximum value.
s-t s-t
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Minimum Cut Problem



Cuts are Back!
• Cuts in graphs played a lead role when we were designing 

algorithms for MSTs


• What is the definition of a cut?

ts



Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty.


• Definition. An -cut is a cut  s.t.  and .

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

ts



Cut Capacity
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty.


• Definition. An -cut is a cut  s.t.  and .


• Capacity of a -cut  is the sum of the capacities of 
edges leaving :


•

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Quick Quiz
Question.  What is the capacity of the  cut given by grey and white 
nodes?


A.  11  (20 + 25 − 8 − 11 − 9 − 6)


B.  34  (8 + 11 + 9 + 6) 


C.  45  (20 + 25)


D.  79  (20 + 25 + 8 + 11 + 9 + 6) 

s-t

812 9

8

161

s

86

25 t

1020

6 11

c(S, T ) = ∑
v∈S,w∈T

c(v → w)



Min Cut Problem
• Problem.  Given an  flow network, find an  cut of 

minimum capacity.
s-t s-t
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Relationship between  
Flows and Cuts



Flows and Cuts
• Cuts represent "bottlenecks" in a flow network


• For any cut, our flow needs to “get out” of that cut on its 
route from  to 


• Let us formalize this intuition

s t

s t



• Claim.  Let  be any  flow and  be any  cut then 
 


• There are two  cuts for which this is easy to see, which ones?

f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

s-t

Flows and Cuts
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• Claim.  Let  be any  flow and  be any  cut then 
 


• There are two  cuts for which this is easy to see, which ones?

f s-t (S, T ) s-t
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• To prove this for any cut, we first relate the flow value in a 
network to the net flow leaving a cut 


• Lemma.  For any feasible -flow  on  and 
any -cut , , where


•
 (sum of flow ‘leaving’ )


•
 (sum of flow ‘entering’ )


• Note:     and 

(s, t) f G = (V, E)
(s, t) v( f ) = fout(S) − fin(S)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T ) fin(S) = fout(T )

Flows and Cuts



Proof.   


=        [by definition]


fout(S) − fin(S)

∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

ts

Flows and Cuts

These are the same sum: 
they sum the flow of all edges 

with both vertices in S

Adding zero terms



Proof.   














    

fout(S) − fin(S)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) + ∑
v∈S,w∈T

f(v → w) − ∑
v,u∈S

f(u → v) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

fout(v) − fin(v)

= fout(s) = v( f ) ∎

ts

Flows and Cuts
Rearranging terms

Cancels out for all except s



Flows and Cuts
• We use this result to prove that the value of a flow cannot exceed 

the capacity of any cut in the network 


• Claim.  Let  be any  flow and  be any  cut then 




• Proof.  





f s-t (S, T ) s-t
v( f ) ≤ c(S, T )

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T )

When is v( f ) = c(S, T )?

fin(S) = 0, fout(S) = c(S, T )



• Suppose the  is the capacity of the minimum cut in a network


• What can we say about the feasible flow we can send through it


• cannot be more than 


• In fact, whenever we find any  flow  and any  cut  such 
that,  we can conclude that:


•  is the maximum flow, and, 


•  is the minimum cut


• The question now is, given any flow network with min cut , is it 
always possible to route a feasible  flow  with 

cmin

cmin

s-t f s-t (S, T )
v( f ) = c(S, T )

f

(S, T )

cmin
s-t f v( f ) = cmin

Max-Flow & Min-Cut



Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two 

problems in given by the following theorem


• Theorem.  Given any flow network , there exists a feasible 
-flow   and a -cut   such that,





• Informally, in a flow network, the max-flow = min-cut


• This will guide our algorithm design for finding max flow


• (Will prove this theorem by construction in a bit—our 
algorithm will prove the theorem! (like with Gale-Shapley))

G
(s, t) f (s, t) (S, T )

v( f ) = c(S, T )



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union 
and Eastern Europe


• Vertices were the geographic regions


• Edges were railway links between the regions


• Edge weights were the rate at which material could be 
shipped from one region to next


• Ross and Harris determined:


• Maximum amount of stuff that could be  
moved from Russia to Europe (max flow)


• Cheapest way to disrupt the network by  
removing rail links  (min cut) 



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for 
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States 

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



Towards a Max-Flow Algorithm
• Today:  we will prove the max-flow min-cut theorem 

constructively 


• We will design a max-flow algorithm and show that there is a  
cut s.t. value of flow computed by algorithm  capacity of cut


• Let's start with a greedy approach


• Push as much flow as possible down a  path


• This won't actually work


• But gives us a sense of what we need to keep track 
off to improve upon it

s-t
=

s-t



Towards a Max-Flow Algorithm
• Greedy strategy:


• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck


• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P



Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck

f(e) = 0
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Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck
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Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck
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s ↝ t P f(e) < c(e)

P

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9s t



Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10
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Towards a Max-Flow Algorithm
• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm

s t
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• Start with  for each edge


• Find an  path  where each edge has 


• “Augment” flow (as much as possible) along path 


• Repeat until you get stuck
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s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm
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Towards a Max-Flow Algorithm

max-flow value = 19
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Towards a Max-Flow Algorithm

max-flow value = 19
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision


• Consider the following flow network 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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision


• Consider the following flow network


• Unique max flow has 


• Greedy could choose  as first  
 
 
 
 
 

• Takeaway:  Need a mechanism to “undo” bad flow decisions 

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22



Ford-Fulkerson 
Algorithm



Ford Fulkerson: Idea
• Want to make “forward progress” while letting ourselves 

undo previous decisions if they’re getting in our way


• Idea: keep track of where we can push flow 


• Can push more flow along an edge with remaining 
capacity 


• Can also push flow “back” along an edge that already 
has flow down it


• Need a way to systematically track these decisions



Residual Graph
• Given flow network  and a feasible flow  on , the 

residual graph  is defined as:


• Vertices in  same as 


• (Forward edge) For  with residual capacity
, create  with capacity 


• (Backward edge) For  with , create  
  with capacity 

G = (V, E, c) f G
Gf = (V, Ef , cf )

Gf G

e ∈ E
c(e) − f(e) > 0 e ∈ Ef c(e) − f(e)

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge



Flow Algorithm Idea
• Now we have a residual graph that lets us make forward 

progress or push back existing flow


• We will look for  paths in   rather than 


• Once we have a path, we will "augment" flow along it similar to 
greedy


• find bottleneck capacity edge on the path and push that 
much flow through it in 


• When we translate this back to , this means:


• We increment existing flow on a forward edge


• Or we decrement flow on a backward edge

s ↝ t Gf G

Gf

G



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph 


• The bottleneck capacity  of an augmenting path  is the 
minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.


b

b

b

The path  is in P Gf

Updating flow in G



Ford-Fulkerson Algorithm
• Start with  for each edge 


• Find a simple  path  in the residual network 


• Augment flow along path  by bottleneck capacity 


• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P b

FORD–FULKERSON(G)                          

_____

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Analysis: Ford-Fulkerson



• Feasibility and value of flow:


• Show that each time we update the flow, we are routing a 
feasible  flow through the network


• And that value of this flow increases each time by that amount


• Optimality:


• Final value of flow is the maximum possible 


• Running time:


• How long does it take for the algorithm to terminate?


• Space:


• How much total space are we using

s-t

Analysis Outline



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then  is a feasible flow.


• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let 


• If  is a forward edge:   





• If  is a backward edge:  


 


• Conservation constraint hold on any node in :


• , therefore  for both cases

f G P
Gf b

f′￼← AUGMENT( f, P) f′￼

P
f′￼= f e = (u, v) ∈ P

e f′￼(e) = f(e) + b
≤ f(e) + (c(e) − f(e)) = c(e)

e f′￼(e) = f(e) − b
≥ f(e) − f(e) = 0

u ∈ P
fin(u) = fout(u) f′￼in(u) = f′￼out(u)

Feasibility of Flow



• Claim.  Let  be a feasible flow in  and let  be an 
augmenting path in  with bottleneck capacity .  Let  

, then .


• Proof. 


• First edge  must be out of  in 


• (  is simple so never visits  again)


•  must be a forward edge (  is a path from  to )


• Thus  increases by , increasing  by  


• Note.  Means the algorithm makes forward progress each time!

f G P
Gf b

f′￼← AUGMENT( f, P) v( f′￼) = v( f ) + b

e ∈ P s Gf

P s

e P s t

f(e) b v( f ) b ∎

Value of Flow:  Making Progress



Optimality



Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -  cut 

then .


• We will show that the Ford-Fulkerson algorithm terminates in 
a flow that achieves equality, that is,


• Ford-Fulkerson finds a flow  and there exists a cut  
such that,   


• Proving this shows that it finds the maximum flow (and the 
min cut)


• This also proves the max-flow min-cut theorem

f s t (S, T ) s t
v( f ) ≤ c(S, T )

f* (S*, T*)
v( f*) = c(S*, T*)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof.


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof.


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 


•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 


• Let ,   


• Is this an  cut?  


• ,  and 


• Consider an edge  with , then what 
can we say about ? 


•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v v ∈ S*, w ∈ T*
f(e)

f(e) = 0



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there exists a cut 
 such that .  


• Proof. (Cont.) 

• Let ,   


• Thus, all edges leaving  are completely saturated and all 
edges entering  have zero flow


•  


• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

• Does the algorithm terminate?  


• Can we bound the number of iterations it does?


• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Recall we proved that with each call to AUGMENT, we increase 
value of flow by 


• Assumption.  Suppose all capacities  are integers.


• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus .


• Let  be the maximum capacity among edges 

leaving the source .  


• It must be that 


• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time



Ford-Fulkerson Performance

• Operations in each iteration?


• Find an augmenting path in 


• Augment flow on path


• Update 

Gf

Gf

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.



• Claim.  Ford-Fulkerson can be implemented to run in time 
, where  and .


• Proof.  Time taken by each iteration:


• Finding an augmenting path in 


•  has at most  edges, using BFS/DFS takes 

 time


• Augmenting flow in  takes  time


• Given new flow, we can build new residual graph in  time


• Overall,  time per iteration 

O(nmC) m = |E | ≥ n − 1 C = max
u

c(s → u)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m)

O(m) ∎

Ford-Fulkerson Running Time



Midterm Review

• Topics:


• Dijkstra’s/max flow min cut


• Divide and conquer


• Dynamic Programming



Midterm Tips
• Review topics according to the practice midterm


• Use lectures, assignments


• Write what you can for partial solutions


• If your DP recurrence isn’t right, still write the memoization 
table, the final solution (given your recurrence), etc


• If your Divide and Conquer algorithm isn’t right, still write 
the running time as a recurrence and solve it


• 1 page 2 sided “cheat sheet” allowed (probably not too useful)



Review Plan

• First: any questions?


• Then: let’s pick some homework questions to do on 
the board


• I’ll have to be a little vague for Assignment 5 due 
to extensions (for holidays/travel/etc.)


