Network Flows

Admin

- TA evaluation form! <u>https://forms.gle/nZSPcwbaP3WCWxqEA</u>
 - Please fill out by next Friday
- Assignment 4 back to you ASAP (Friday?); Assignment 5 after
- Network flow practice problem canceled
 - Just do the practice midterm instead
- Practice midterm posted on GLOW, linked from website
 - *Draft* solutions out ASAP (Friday?)
 - Final will look very similar with better (?) problems, length
- Questions?

What's a Flow Network?

- A flow network is a directed graph G = (V, E) with a
 - A **source** is a vertex *s* with in degree 0
 - A **sink** is a vertex *t* with out degree 0
 - Each edge $e \in E$ has edge capacity c(e) > 0

Assumptions

• Assume that each node v is on some *s*-*t* path, that is,

 $s \sim v \sim t$ exists, for any vertex $v \in V$

- Implies *G* is connected and $m \ge n-1$
- Assume capacities are integers
 - Will revisit this assumption and what happens if not
- Directed edge (u, v) written as $u \rightarrow v$
- For simplifying expositions, we will sometimes write $c(u \rightarrow v) = 0$ when $(u, v) \notin E$

What's a Flow?

- Given a flow network, an (s, t)-flow or just flow (if source s and sink t are clear from context) $f : E \to \mathbb{Z}^+$ satisfies the following two constraints:
- **[Flow conservation]** $f_{in}(v) = f_{out}(v)$, for $v \neq s, t$ where

Feasible Flow

• And second, a feasible flow must satisfy the capacity constraints of the network, that is,

[Capacity constraint] for each $e \in E$, $0 \le f(e) \le c(e)$

• **Definition.** The value of a flow f, written v(f), is $f_{out}(s)$.

• **Definition.** The value of a flow f, written v(f), is $f_{out}(s)$.

• Lemma
$$f_{out}(s) = f_{in}(t)$$

• **Proof**. Let
$$f(E) = \sum_{e \in E} f(e)$$

Then, $\sum_{v \in E} f_{in}(v) = f(E) = \sum_{v \in E} f_{out}(v)$

 $v \in V$

• For every $v \neq s, t$ flow conversation implies $f_{in}(v) = f_{out}(v)$

 $v \in V$

• Thus all terms cancel out on both sides except $f_{in}(s) + f_{in}(t) = f_{out}(s) + f_{out}(t)$

• But
$$f_{in}(s) = f_{out}(t) = 0$$

- Lemma $f_{out}(s) = f_{in}(t)$
- Corollary. $v(f) = f_{in}(t)$.

Max-Flow Problem

Problem. Given an *s*-*t* flow network, find a feasible *s*-*t* flow of maximum value.

Minimum Cut Problem

Cuts are Back!

- Cuts in graphs played a lead role when we were designing algorithms for MSTs
- What is the definition of a cut?

Cuts in Flow Networks

- Recall. A cut (S, T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S, T are non-empty.
- **Definition**. An (s, t)-*cut* is a cut (S, T) s.t. $s \in S$ and $t \in T$.

Cut Capacity

- Recall. A cut (S, T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S, T are non-empty.
- **Definition**. An (s, t)-*cut* is a cut (S, T) s.t. $s \in S$ and $t \in T$.
- **Capacity** of a (*s*, *t*)-cut (*S*, *T*) is the sum of the capacities of edges leaving *S*:

•
$$c(S,T) = \sum_{v \in S, w \in T} c(v \to w)$$

Quick Quiz

Question. What is the capacity of the *s*-*t* cut given by grey and white nodes?

A. 11 (20 + 25 - 8 - 11 - 9 - 6)

B. 34 (8 + 11 + 9 + 6)

(C.)45 (20 + 25)

 $c(S,T) = \sum c(v \to w)$ $v \in S, w \in T$

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

Min Cut Problem

• **Problem**. Given an *s*-*t* flow network, find an *s*-*t* cut of **minimum** capacity.

Relationship between Flows and Cuts

- Cuts represent "**bottlenecks**" in a flow network
- For any cut, our flow needs to "get out" of that cut on its route from *s* to *t*
- Let us formalize this intuition

- Claim. Let f be any s-t flow and (S, T) be any s-t cut then $v(f) \le c(S, T)$
- There are two *s*-*t* cuts for which this is easy to see, which ones?

- Claim. Let f be any s-t flow and (S, T) be any s-t cut then $v(f) \le c(S, T)$
- There are two *s*-*t* cuts for which this is easy to see, which ones?

- To prove this for any cut, we first relate the flow value in a network to the net flow leaving a cut
- Lemma. For any feasible (s, t)-flow f on G = (V, E) and any (s, t)-cut, $v(f) = f_{out}(S) f_{in}(S)$, where

•
$$f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w)$$
 (sum of flow 'leaving' S)

•
$$f_{in}(S) = \sum_{v \in S, w \in T} f(w \to v)$$
 (sum of flow 'entering' S)

• Note:
$$f_{out}(S) = f_{in}(T)$$
 and $f_{in}(S) = f_{out}(T)$

- We use this result to prove that the value of a flow cannot exceed the capacity of any cut in the network
- Claim. Let f be any s-t flow and (S, T) be any s-t cut then $v(f) \le c(S, T)$

• **Proof.**
$$v(f) = f_{out}(S) - f_{in}(S)$$

$$\leq f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w) \qquad \text{When is } v(f) = c(S, T)?$$
$$\leq \sum_{v \in S, w \in T} c(v, w) = c(S, T) \qquad f_{in}(S) = 0, f_{out}(S) = c(S, T)$$

Max-Flow & Min-Cut

- Suppose the $c_{\rm min}$ is the capacity of the minimum cut in a network
- What can we say about the feasible flow we can send through it
 - cannot be more than c_{\min}
- In fact, whenever we find any *s*-*t* flow *f* and any *s*-*t* cut (*S*, *T*) such that, v(f) = c(S, T) we can conclude that:
 - f is the maximum flow, and,
 - (S, T) is the minimum cut
- The question now is, given any flow network with min cut c_{\min} , is it always possible to route a feasible *s*-*t* flow *f* with $v(f) = c_{\min}$

Max-Flow Min-Cut Theorem

- A beautiful, powerful relationship between these two problems in given by the following theorem
- **Theorem**. Given any flow network G, there exists a feasible (s, t)-flow f and a (s, t)-cut (S, T) such that,

v(f) = c(S,T)

- Informally, in a flow network, the max-flow = min-cut
- This will guide our algorithm design for finding max flow
- (Will prove this theorem by construction in a bit—our algorithm will prove the theorem! (like with Gale-Shapley))

Network Flow History

- In 1950s, US military researchers Harris and Ross wrote a classified report about the rail network linking Soviet Union and Eastern Europe
 - Vertices were the geographic regions
 - Edges were railway links between the regions
 - Edge weights were the rate at which material could be shipped from one region to next
- Ross and Harris determined:
 - Maximum amount of stuff that could be moved from Russia to Europe (max flow)
 - Cheapest way to disrupt the network by removing rail links (min cut)

Network Flow History

Image Credits: — Jeff Erickson's book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

- Today: we will prove the max-flow min-cut theorem constructively
- We will design a max-flow algorithm and show that there is a s-t cut s.t. value of flow computed by algorithm = capacity of cut
- Let's start with a greedy approach
 - Push as much flow as possible down a *s*-*t* path
 - This won't actually work
 - But gives us a sense of what we need to keep track off to improve upon it

- Greedy strategy:
 - Start with f(e) = 0 for each edge
 - Find an $s \sim t$ path P where each edge has f(e) < c(e)
 - "Augment" flow (as much as possible) along path ${\it P}$
 - Repeat until you get stuck
- Let's take an example

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \prec t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Why Greedy Fails

- **Problem**: greedy can never "undo" a bad flow decision
- Consider the following flow network

Why Greedy Fails

- **Problem**: greedy can never "undo" a bad flow decision
- Consider the following flow network
 - Unique max flow has $f(v \rightarrow w) = 0$
 - Greedy could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first P

• Takeaway: Need a mechanism to "undo" bad flow decisions

Ford-Fulkerson Algorithm

Ford Fulkerson: Idea

- Want to make "forward progress" while letting ourselves undo previous decisions if they're getting in our way
- Idea: keep track of where we can push flow
 - Can push more flow along an edge with remaining capacity
 - Can also push flow "back" along an edge that already has flow down it
- Need a way to systematically track these decisions

Residual Graph

- Given flow network G = (V, E, c) and a feasible flow f on G, the residual graph $G_f = (V, E_f, c_f)$ is defined as:
 - Vertices in G_f same as G
 - (Forward edge) For $e \in E$ with residual capacity c(e) f(e) > 0, create $e \in E_f$ with capacity c(e) f(e)
 - (Backward edge) For $e \in E$ with f(e) > 0, create $e_{\text{reverse}} \in E_f$ with capacity f(e)

reverse edge

Flow Algorithm Idea

- Now we have a residual graph that lets us make forward progress or push back existing flow
- We will look for $s \thicksim t$ paths in G_f rather than G
- Once we have a path, we will "augment" flow along it similar to greedy
 - find bottleneck capacity edge on the path and push that much flow through it in G_f
- When we translate this back to G, this means:
 - We increment existing flow on a forward edge
 - Or we decrement flow on a backward edge

Augmenting Path & Flow

- An augmenting path P is a simple $s \leadsto t$ path in the residual graph G_f
- The **bottleneck capacity** *b* of an augmenting path *P* is the minimum capacity of any edge in *P*.

```
The path P is in G_f
                         AUGMENT(f, P)
                         b \leftarrow bottleneck capacity of augmenting path P.
                         FOREACH edge e \in P:
                           IF (e \in E, that is, e is forward edge)
Updating flow in G
                                     Increase f(e) in G by b
                           ELSE
                                    Decrease f(e) in G by b
                         RETURN f.
```

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for each edge $e \in E$
- Find a simple $s \sim t$ path P in the residual network G_f
- Augment flow along path ${\it P}$ by bottleneck capacity b
- Repeat until you get stuck

```
FORD-FULKERSON(G)

FOREACH edge e \in E: f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s~t path P in G_f)

f \leftarrow AUGMENT(f, P).

Update G_f.

RETURN f.
```


residual network G_f

P in residual network G_f

P in residual network G_f

residual network G_f

P in residual network G_f

residual network G_f

9

S

9

No s-t path left!

10

t

Analysis: Ford-Fulkerson

Analysis Outline

- Feasibility and value of flow:
 - Show that each time we update the flow, we are routing a feasible *s*-*t* flow through the network
 - And that value of this flow increases each time by that amount
- Optimality:
 - Final value of flow is the maximum possible
- Running time:
 - How long does it take for the algorithm to terminate?
- Space:
 - How much total space are we using

Feasibility of Flow

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then f' is a feasible flow.
- **Proof**. Only need to verify constraints on the edges of P (since f' = f for other edges). Let $e = (u, v) \in P$
 - If *e* is a forward edge: f'(e) = f(e) + b

$$\leq f(e) + (c(e) - f(e)) = c(e)$$

• If *e* is a backward edge: f'(e) = f(e) - b

$$\geq f(e) - f(e) = 0$$

- Conservation constraint hold on any node in $u \in P$:
 - $f_{in}(u) = f_{out}(u)$, therefore $f'_{in}(u) = f'_{out}(u)$ for both cases

Value of Flow: Making Progress

• **Claim**. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let

 $f' \leftarrow \text{AUGMENT}(f, P)$, then v(f') = v(f) + b.

- Proof.
 - First edge $e \in P$ must be out of s in G_f
 - (*P* is simple so never visits *s* again)
 - e must be a forward edge (P is a path from s to t)
 - Thus f(e) increases by b, increasing v(f) by $b \blacksquare$
- Note. Means the algorithm makes forward progress each time!

Optimality
- **Recall**: If *f* is any feasible *s*-*t* flow and (S, T) is any *s*-*t* cut then $v(f) \le c(S, T)$.
- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves equality, that is,
- Ford-Fulkerson finds a flow f^* and there exists a cut (S^*, T^*) such that, $v(f^*) = c(S^*, T^*)$
- Proving this shows that it finds the maximum flow (and the min cut)
- This also proves the max-flow min-cut theorem

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof.
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof.
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?
 - f(e) = c(e)

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?
 - f(e) = 0

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Thus, all edges leaving S^{\ast} are completely saturated and all edges entering S^{\ast} have zero flow
- $v(f) = f_{out}(S^*) f_{in}(S^*) = f_{out}(S^*) = c(S^*, T^*) \blacksquare$
- **Corollary**. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

```
FORD-FULKERSON(G)
```

```
FOREACH edge e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.
```

```
WHILE (there exists an s\negt path P in G<sub>f</sub>)
```

```
f \leftarrow \operatorname{AUGMENT}(f, P).
```

Update G_f .

RETURN f.

- Does the algorithm terminate?
- Can we bound the number of iterations it does?
- Running time?

Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase value of flow by $b = \text{bottleneck}(G_f, P)$
- Assumption. Suppose all capacities c(e) are integers.
- Integrality invariant. Throughout Ford–Fulkerson, every edge flow f(e) and corresponding residual capacity is an integer. Thus $b \ge 1$.
- Let $C = \max_{u} c(s \rightarrow u)$ be the maximum capacity among edges leaving the source *s*.
- It must be that $v(f) \leq (n-1)C$
- Since, v(f) increases by $b \ge 1$ in each iteration, it follows that FF algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Performance

```
FORD-FULKERSON(G)
```

```
FOREACH edge e \in E : f(e) \leftarrow 0.
```

 $G_f \leftarrow$ residual network of G with respect to flow f.

WHILE (there exists an s \neg t path *P* in *G*_{*f*})

 $f \leftarrow \text{AUGMENT}(f, P).$

Update G_f .

RETURN *f*.

- Operations in each iteration?
 - Find an augmenting path in G_f
 - Augment flow on path
 - Update G_{f}

Ford-Fulkerson Running Time

- **Claim.** Ford-Fulkerson can be implemented to run in time O(nmC), where $m = |E| \ge n 1$ and $C = \max_{u} c(s \to u)$.
- **Proof**. Time taken by each iteration:
- Finding an augmenting path in G_f
 - G_f has at most 2m edges, using BFS/DFS takes O(m + n) = O(m) time
- Augmenting flow in P takes O(n) time
- Given new flow, we can build new residual graph in O(m) time
- Overall, O(m) time per iteration

Midterm Review

- Topics:
 - Dijkstra's/max flow min cut
 - Divide and conquer
 - Dynamic Programming

Midterm Tips

- Review topics according to the practice midterm
- Use lectures, assignments
- Write what you can for partial solutions
 - If your DP recurrence isn't right, still write the memoization table, the final solution (given your recurrence), etc
 - If your Divide and Conquer algorithm isn't right, still write the running time as a recurrence and solve it
- 1 page 2 sided "cheat sheet" allowed (probably not too useful)

Review Plan

- First: any questions?
- Then: let's pick some homework questions to do on the board
 - I'll have to be a little vague for Assignment 5 due to extensions (for holidays/travel/etc.)