Dynamic Programming and Network Flows

Admin

- TA evaluation form! https://forms.gle/nZSPcwbaP3WCWxqEA
- Please fill out by next Friday
- TA hours 8-10 tonight cancelled
- Video of knapsack DP example posted
- May be helpful for you to make the step from DP formulation to algorithm
- We'll see a similar example today
- Practice exam, network flow practice problem posted Wednesday night
- Assignment 5 due Wednesday; back to you Sunday

Midterm

- In-person during class a week from today
- Very strong focus on topics since last midterm:
- Divide and conquer/recurrences
- Dynamic programming
- Network flows, Dijkstra’s algorithm
- Closed book, but you can bring a 1-page (2-sided) cheat sheet
- I don't think it will be too helpful

Last Topic in Dynamic Programming: Shortest Paths Revisited

Shortest Path Problem

- Single-Source Shortest Path Problem.

Given a directed graph $G=(V, E)$ with edge weights w_{e} on each $e \in E$ and a a source node s, find the shortest path from s to to all nodes in G.

- Negative weights. The edge-weights w_{e} in G can be negative. (When we studied Dijkstra's, we assumed non-negative weights.)
- Let P be a path from s to t, denoted $s \leadsto t$.
- The length of P is the number of edges in P
- The cost or weight of P is $w(P)=\sum_{e \in P} w_{e}$
- Goal: cost of the shortest path from s to all nodes

Negative Weights \& Dijkstra's

- Dijkstra's Algorithm. Does the greedy approach work for graphs with negative edge weights?
- Dijkstra's will explore s 's neighbor and add t, with $d[t]=w_{s v}=2$ to the shortest path tree
- Dijkstra assumes that there cannot be a "longer path" that has lower cost (relies on edge weights being non-negative)

Dijkstra's will find $s \rightarrow t$ as shortest path with cost 2 But the shortest path is $s \rightarrow v \rightarrow w \rightarrow t$ with cost 1

Negative Cycles

- Definition. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- Question. How do negative cycles affect shortest path?

a negative cycle $\mathbf{W}: \quad \ell(W)=\sum_{e \in W} \ell_{e}<0$

Negative Cycles \& Shortest Paths

- Claim. If a path from s to some node v contains a negative cycle, then there does not exist a shortest path from s to v.
- Proof.
- Suppose there exists a shortest $s \leadsto v$ path with cost d that traverses the negative cycle t times for $t \geq 0$.
- Can construct a shorter path by traversing the cycle $t+1$ times $\Rightarrow \Leftarrow \square$
- Assumption. G has no negative cycle.
- Later in the lecture: how can we detect whether the input graph G contains a negative cycle?

Dynamic Programming Approach

- First step to a dynamic program? Recursive formulation
- What is the subproblem? What is the recurrence?
- Dijkstra's algorithm: for each v the subproblem is the shortest path from s to v
- Why doesn't this work?
- There may be a shorter path out of the cut (but it must have more edges)
- Idea: subproblem (v, k) is the shortest path from s to v consisting of at most k edges
- How big can k get?

No. of Edges in Shortest Path

- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most $n-1$ edges.
- Proof. Suppose there exists a shortest path from s to u made up of n or more edges
- A path of length at least n must visit at least $n+1$ nodes
- There exists a node x that is visited more than once (pigeonhole principle). Let P denote the portion of the path between the successive visits.
- Can remove P without increasing cost of path. \square

Shortest Path Subproblem

- Subproblem. $D[v, i]$: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases.
- $D[s, i]=0$ for any i
- $D[v, 0]=\infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
- $D[v, n-1]$

- Suppose we have found shortest paths to all nodes of length at most $i-1$
- We are now considering shortest paths of length i
- Cases to consider for the recurrence of $D[v, i]$
- Case 1. Shortest path to v was already found (is same as $D[v, i-1])$
- Case 2. Shortest path to v is "longer" than paths found so far:
- Look at all nodes u that have incoming edges to v
- Take minimum over their distances and add $w_{u v}$

Bellman-Ford-Moore Algorithm

- Recurrence. For all nodes $v \neq s$, and for all $1 \leq i \leq n-1$,

$$
D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}
$$

- Called the Bellman-Ford-Moore algorithm

Bellman-Ford-Moore Algorithm

- Subproblem. $D[v, i]$: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Recurrence.

$$
D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}
$$

- Memoization structure. Two-dimensional array
- Evaluation order.
- $i: 1 \rightarrow n-1$ (column major order)
- Starting from \boldsymbol{s}, the row of vertices can
be in any order

Running Time

- Recurrence.

$$
D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}
$$

- Naive analysis. $O\left(n^{3}\right)$ time
- Each entry takes $O(n)$ to compute, there are $O\left(n^{2}\right)$ entries
- Improved analysis. For a given $i, v, d[v, i]$ looks at each incoming edge of v
- Takes indegree(v) accesses to the table
- For a given i, filling $d[-, i]$ takes $\sum_{v \in V}$ indegree (v) accesses
- At most $O(n+m)=O(m)$ accesses for connected graphs where $m \geq n-1$
- Overall running time is $O(\mathrm{~nm})$
- Shortest-Path Summary. Assuming there are no negative cycles in G, we can compute the shortest path from s to all nodes in G in $O(n m)$ time using the Bellman-Ford-Moore algorithm

Dynamic Programming Shortest Path:
 Bellman-Ford-Moore Example

- $D[s, i]=0$ for any i
- $D[v, 0]=\infty$ for any $v \neq s$

	0	1	2	3
s	0	0	0	0
a	\inf			
b	\inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf			
b	\inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3		
b	inf	2		
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2	2	
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2	2	
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	-3
b	inf	2	2	
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3	-3	-3
b	inf	2	2	-1
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3	-3	-3
b	\inf	2	2	-1
c	\inf	\inf	-2	-2

Dynamic Programming
 Shortest Path:
 Detecting a Negative Cycle

Negative Cycle

- Definition. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- Claim. If a path from s to some node v contains a negative cycle, then there does not exist a shortest path from s to v.

a negative cycle $\mathbf{W}: \quad \ell(W)=\sum_{e \in W} \ell_{e}<0$

Detecting a Negative Cycle

- Question. Given a directed graph $G=(V, E)$ with edgeweights w_{e} (can be negative), determine if G contains a negative cycle.
- Now, we don't a specific source node given to us
- Let's change this problem a little bit
- Problem. Given G and source s, find if there is negative cycle on a $s \leadsto v$ path for any node v.

Detecting a Negative Cycle

- Problem. Given G and source s, find if there is negative cycle on a $s \leadsto v$ path for any node v.
- $D[v, i]$ is the cost of the shortest path from s to v of length at most i
- Suppose there is a negative cycle on a $s \leadsto v$ path
- Then $\lim _{i \rightarrow \infty} D[v, i]=-\infty$
- If $D[v, n]=D[v, n-1]$ for every node v then
G has no negative cycles exists!
- Table values converge, no further improvements possible

Detecting a Negative Cycle

- Lemma. If $D[v, n]<D[v, n-1]$ then any shortest $s \leadsto v$ path contains a negative cycle.
- Proof. [By contradiction] Suppose G does not contain a negative cycle
- Since $D[v, n]<D[v, n-1]$, the shortest $s \leadsto v$ path that caused this update has exactly n edges
- By pigeonhole principle, path must contain a repeated node, let the cycle between two successive visits to the node be P
- If P has non-negative weight, removing it would give us a shortest path with less than n edges $\Rightarrow \Leftarrow$

Analysis: First Attempt

- Now we know how to detect negative cycles on a shortest path from s to some node v.
- How do we detect a negative cycle anywhere in G ?
- Do the above for each $s \in V$
- Running time?
- $O(n m \cdot n)=O\left(n^{2} m\right)$
- Can we improve this?

Problem Reduction

- Now we know how to detect negative cycles on a shortest path from s to some node v.
- How do we detect a negative cycle anywhere in G ?
- Reduction. Given graph G, add a source s and connect it to all vertices in G with edge weight 0 . Let the new graph be G^{\prime}
- Claim. G has a negative cycle iff G^{\prime} has a negative cycle from s to some node v.
- Proof. \Rightarrow If G has a negative cycle, then this cycle lies on the shortest path from s to a node on the cycle in G^{\prime}
- \Leftarrow If G^{\prime} has a negative cycle on a shortest path from s to some node, then that node is on a negative cycle in G

Problem Reduction

- Running time is now $O(n m)$ rather than $O\left(n^{2} m\right)$
- Idea: our original algorithm was for a slightly different problem than what we wanted. Rather than running it over and over, we changed the input and ran it once
- Gave us the answer for the final problem
- We'll see many more reductions in part 3 of the course

Bellman-Ford Fun Facts

- Can we improve on $O(\mathrm{~nm})$ for single source shortest paths with negative edges?
- Open problem since invention in 1956
- [Fineman 2024]: $O\left(n^{8 / 9} m\right)$ algorithm
- Uses a very clever and complicated reduction to Dijkstra's algorithm

Single-Source Shortest Paths with
Negative Real Weights in $\tilde{O}\left(m n^{8 / 9}\right)$ Time

Jeremy T. Fineman
Georgetown University
jf474@georgetown.edu

Introduction to Network Flows

Story So Far

- Algorithmic design paradigms:
- Greedy: simplest to design but works only for certain limited class of optimization problems
- A good starting point for most problems but rarely optimal
- Divide and Conquer
- Solving a problem by breaking it down into smaller subproblems and recursing
- Dynamic programming
- Recursion with memoization: avoiding repeated work
- Trading off space for time

Network Flows

- Graph-based problem; looks like a lot of what we learned in part 1
- After midterm: we'll use what we learn about network flows to solve much more general problems
- Problems where you revisit* (and improve) past solutions
- Solve problems that even dynamic programming can't* solve!
- Restricted case of Linear/Convex Programming; "algorithmic power tools"

What's a Flow Network?

- A flow network is a directed graph $G=(V, E)$ with a
- A source is a vertex s with in degree 0
- A sink is a vertex t with out degree 0
- Each edge $e \in E$ has edge capacity $c(e)>0$

Visualize

Assumptions

- Assume that each node v is on some s - t path, that is, $s \leadsto v \leadsto t$ exists, for any vertex $v \in V$
- Implies G is connected and $m \geq n-1$
- Assume capacities are integers
- Will revisit this assumption and what happens if not
- Directed edge (u, v) written as $u \rightarrow v$
- For simplifying expositions, we will sometimes write $c(u \rightarrow v)=0$ when $(u, v) \notin E$

What's a Flow?

- Given a flow network, an (s, t)-flow or just flow (if source s and sink t are clear from context) $f: E \rightarrow \mathbb{Z}^{+}$satisfies the following two constraints:
- [Flow conservation] $f_{\text {in }}(v)=f_{\text {out }}(v)$, for $v \neq s, t$ where

$$
\begin{aligned}
& f_{\text {in }}(v)=\sum_{u} f(u \rightarrow v) \\
& f_{\text {out }}(v)=\sum_{w} f(v \rightarrow w)
\end{aligned}
$$

- To simplify, $f(u \rightarrow v)=0$ if there is no edge from u to v

Feasible Flow

- And second, a feasible flow must satisfy the capacity constraints of the network, that is,
[Capacity constraint] for each $e \in E, 0 \leq f(e) \leq c(e)$

Value of a Flow

- Definition. The value of a flow f, written $v(f)$, is $f_{\text {out }}(s)$.

What is $v(f)$ here?

$v(f)=5+10+10=25$

Value of a Flow

- Definition. The value of a flow f, written $v(f)$, is $f_{\text {out }}(s)$.
- Lemma. $f_{\text {out }}(s)=f_{\text {in }}(t)$

Intuitively, why do you think this is true?
value $=5+10+10=25$
10/16

Value of a Flow

- Lemma. $f_{\text {out }}(s)=f_{\text {in }}(t)$
- Proof. Let $f(E)=\sum_{e \in E} f(e)$
- Then, $\sum_{v \in V} f_{\text {in }}(v)=f(E)=\sum_{v \in V} f_{\text {out }}(v)$

- For every $v \neq s, t$ flow conversation implies $f_{\text {in }}(v)=f_{\text {out }}(v)$
- Thus all terms cancel out on both sides except

$$
f_{\text {in }}(s)+f_{\text {in }}(t)=f_{\text {out }}(s)+f_{\text {out }}(t)
$$

- $\operatorname{But} f_{\text {in }}(s)=f_{\text {out }}(t)=0$

Value of a Flow

- Lemma. $f_{\text {out }}(s)=f_{\text {in }}(t)$
- Corollary. $v(f)=f_{\text {in }}(t)$.

Max-Flow Problem

- Problem. Given an $s-t$ flow network, find a feasible s - t flow of maximum value.

Minimum Cut Problem

Cuts are Back!

- Cuts in graphs played a lead role when we were designing algorithms for MSTs
- What is the definition of a cut?

Cuts in Flow Networks

- Recall. A cut (S, T) in a graph is a partition of vertices such that $S \cup T=V, S \cap T=\varnothing$ and S, T are non-empty.
- Definition. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.

Cut Capacity

- Recall. A cut (S, T) in a graph is a partition of vertices such that $S \cup T=V, S \cap T=\varnothing$ and S, T are non-empty.
- Definition. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.
- Capacity of a (s, t)-cut (S, T) is the sum of the capacities of edges leaving S :
$c(S, T)=\sum_{v \in S, w \in T} c(v \rightarrow w)$

Quick Quiz

Question. What is the capacity of the s - t given by grey and white nodes?
A. $11(20+25-8-11-9-6)$
B. $34(8+11+9+6)$

$$
c(S, T)=\sum_{v \in S, w \in T} c(v \rightarrow w)
$$

C. $45(20+25)$
D. $79(20+25+8+11+9+6)$

Min Cut Problem

- Problem. Given an $s-t$ flow network, find an $s-t$ cut of minimum capacity.

Relationship between Flows and Cuts

Flows and Cuts

- Cuts represent "bottlenecks" in a flow network
- For any cut, our flow needs to "get out" of that cut on its route from s to t
- Let us formalize this intuition

Flows and Cuts

- Claim. Let f be any s - t flow and (S, T) be any s - t cut then $v(f) \leq c(S, T)$
- There are two s - t cuts for which this is easy to see, which ones?

Flows and Cuts

- Claim. Let f be any s - t flow and (S, T) be any s - t cut then $v(f) \leq c(S, T)$
- There are two s - t cuts for which this is easy to see, which ones?

Flows and Cuts

- To prove this for any cut, we first relate the flow value in a network to the net flow leaving a cut
- Lemma. For any feasible (s, t)-flow f on $G=(V, E)$ and any (s, t)-cut, $v(f)=f_{\text {out }}(S)-f_{\text {in }}(S)$, where
- $f_{\text {out }}(S)=\sum_{v \in S, w \in T} f(v \rightarrow w)$ (sum of flow 'leaving' S)
. $f_{\text {in }}(S)=\sum_{v \in S, w \in T} f(w \rightarrow v)$ (sum of flow 'entering' S)
- Note: $f_{\text {out }}(S)=f_{\text {in }}(T)$ and $f_{\text {in }}(S)=f_{\text {out }}(T)$

Flows and Cuts

Proof. $f_{\text {out }}(S)-f_{\text {in }}(S)$

$=\sum_{v \in S, w \in T} f(v \rightarrow w)-\sum_{v \in S, u \in T} f(u \rightarrow v) \quad$ [by definition]
Adding zero terms
$=\left[\sum_{v, w \in S} f(v \rightarrow w)-\sum_{v, u \in S} f(u \rightarrow v)\right]+\sum_{v \in S, w \in T} f(v \rightarrow w)-\sum_{v \in S, u \in T} f(u \rightarrow v)$

These are the same sum: they sum the flow of all edges with both vertices in S

Flows and Cuts

Proof. $f_{\text {out }}(S)-f_{\text {in }}(S)$
Rearranging terms
$=\left[\sum_{v, w \in S} f(v \rightarrow w)-\sum_{v, u \in S} f(u \rightarrow v)\right]+\sum_{v \in S, w \in T} f(v \rightarrow w)-\sum_{v \in S, u \in T} f(u \rightarrow v)$
$=\sum_{v, w \in S} f(v \rightarrow w)+\sum_{v \in S, w \in T} f(v \rightarrow w)-\sum_{v, u \in S} f(u \rightarrow v)-\sum_{v \in S, u \in T} f(u \rightarrow v)$
$=\sum_{v \in S}\left(\sum_{w} f(v \rightarrow w)-\sum_{u} f(u \rightarrow v)\right)$
$=\sum_{v \in S} f_{\text {out }}(v)-f_{\text {in }}(v)$
$=f_{\text {out }}(s)=v(f)$
Cancels out for all except s

Flows and Cuts

- We use this result to prove that the value of a flow cannot exceed the capacity of any cut in the network
- Claim. Let f be any s - t flow and (S, T) be any s - t cut then $v(f) \leq c(S, T)$
- Proof. $v(f)=f_{\text {out }}(S)-f_{\text {in }}(S)$

$$
\begin{aligned}
& \leq f_{\text {out }}(S)=\sum_{v \in S, w \in T} f(v \rightarrow w) \\
& \leq \sum_{v \in S, w \in T} c(v, w)=c(S, T)
\end{aligned}
$$

Max-Flow \& Min-Cut

- Suppose the $c_{\text {min }}$ is the capacity of the minimum cut in a network
- What can we say about the feasible flow we can send through it
- cannot be more than $c_{\text {min }}$
- In fact, whenever we find any s - t flow f and any s - t cut (S, T) such that, $v(f)=c(S, T)$ we can conclude that:
- f is the maximum flow, and,
- (S, T) is the minimum cut
- The question now is, given any flow network with min cut $c_{\text {min }}$, is it always possible to route a feasible s - t flow f with $v(f)=c_{\text {min }}$

Max-Flow Min-Cut Theorem

- A beautiful, powerful relationship between these two problems in given by the following theorem
- Theorem. Given any flow network G, there exists a feasible (s, t)-flow f and a (s, t)-cut (S, T) such that,

$$
v(f)=c(S, T)
$$

- Informally, in a flow network, the max-flow = min-cut
- This will guide our algorithm design for finding max flow
- (Will prove this theorem by construction in a bit—our algorithm will prove the theorem! (like with Gale-Shapley))

Network Flow History

- In 1950s, US military researchers Harris and Ross wrote a classified report about the rail network linking Soviet Union and Eastern Europe
- Vertices were the geographic regions
- Edges were railway links between the regions
- Edge weights were the rate at which material could be shipped from one region to next
- Ross and Harris determined:
- Maximum amount of stuff that could be moved from Russia to Europe (max flow)
- Cheapest way to disrupt the network by removing rail links (min cut)

Network Flow History

Fig. 7 - Traffic pattern: entire network available

Legend:

-... International boundary
(B) Railway operating division

- $\frac{9}{12}$ - Capacity: 12 each way per day. Required flow of 9 per day toward destinations (in direction of arrow with equivalent number of returning
trains in opposite direction

All capaclties in trains $\begin{gathered}\text { traons of tons }\} \text { \}each way per duy }\end{gathered}$
Origins: Divisions $2,3 W, 3 E, 25,13 N, 13 S$, 12, 52 (USSR), and Roumania

Destinctions: Divisions 3,6,9(Polond);
B (Czechoslovavakia); and 2,3 (Austrla)
Alternative destinations: Germany or Eagt Germany

Note IIX of Division 9 , Poland \qquad

Towards a Max-Flow Algorithm

- Today: we will prove the max-flow min-cut theorem constructively
- We will design a max-flow algorithm and show that there is a s - t cut s.t. value of flow computed by algorithm = capacity of cut
- Let's start with a greedy approach
- Push as much flow as possible down a $s-t$ path
- This won't actually work
- But gives us a sense of what we need to keep track off to improve upon it

Towards a Max-Flow Algorithm

- Greedy strategy:
- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck
- Let's take an example

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

> Is this the best we can do?

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

ending flow value $=16$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck
max-flow value $=19$

Towards a Max-Flow Algorithm

- Start with $f(e)=0$ for each edge
- Find an $s \leadsto t$ path P where each edge has $f(e)<c(e)$
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

```
max-flow value = 19
```


Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network

Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network
- Unique max flow has $f(v \rightarrow w)=0$
- Greedy could choose $s \rightarrow v \rightarrow w \rightarrow t$ as first P

- Takeaway: Need a mechanism to "undo" bad flow decisions

Ford-Fulkerson Algorithm

Ford Fulkerson: Idea

- Want to make "forward progress" while letting ourselves undo previous decisions if they're getting in our way
- Idea: keep track of where we can push flow
- Can push more flow along an edge with remaining capacity
- Can also push flow "back" along an edge that already has flow down it
- Need a way to systematically track these decisions

Residual Graph

- Given flow network $G=(V, E, c)$ and a feasible flow f on G, the residual graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ is defined as:
- Vertices in G_{f} same as G
- (Forward edge) For $e \in E$ with residual capacity $c(e)-f(e)>0$, create $e \in E_{f}$ with capacity $c(e)-f(e)$
- (Backward edge) For $e \in E$ with $f(e)>0$, create $e_{\text {reverse }} \in E_{f}$ with capacity $f(e)$
original flow network G

residual network G_{f}

reverse edge

Flow Algorithm Idea

- Now we have a residual graph that lets us make forward progress or push back existing flow
- We will look for $s \leadsto t$ paths in G_{f} rather than G
- Once we have a path, we will "augment" flow along it similar to greedy
- find bottleneck capacity edge on the path and push that much flow through it in G_{f}
- When we translate this back to G, this means:
- We increment existing flow on a forward edge
- Or we decrement flow on a backward edge

Augmenting Path \& Flow

- An augmenting path P is a simple $s \leadsto t$ path in the residual graph G_{f}
- The bottleneck capacity b of an augmenting path P is the minimum capacity of any edge in P.

The path P is in G_{f}
AUGMENT (f, P)
$b \leftarrow$ bottleneck capacity of augmenting path P.
Foreach edge $e \in P$:
IF ($e \in E$, that is, e is forward edge)
Updating flow in G
Increase $f(e)$ in G by b
ElSE
Decrease $f(e)$ in G by b
RETURN f.

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for each edge $e \in E$
- Find a simple $s \leadsto t$ path P in the residual network G_{f}
- Augment flow along path P by bottleneck capacity b
- Repeat until you get stuck

FORD-FULKERSON(G)
FOREACH edge $e \in E: f(e) \leftarrow 0$.
$G_{f} \leftarrow$ residual network of G with respect to flow f.
While (there exists an s \leadsto t path P in G_{f})
$f \leftarrow \operatorname{Augment}(f, P)$.
Update G_{f}.
RETURN f.

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

P in residual network G_{f}

Ford-Fulkerson Example

residual network \mathbf{G}_{f}

Ford-Fulkerson Example

Analysis: Ford-Fulkerson

Analysis Outline

- Feasibility and value of flow:
- Show that each time we update the flow, we are routing a feasible s - t flow through the network
- And that value of this flow increases each time by that amount
- Optimality:
- Final value of flow is the maximum possible
- Running time:
- How long does it take for the algorithm to terminate?
- Space:
- How much total space are we using

Feasibility of Flow

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_{f} with bottleneck capacity b. Let $f^{\prime} \leftarrow \operatorname{AUGMENT}(f, P)$, then f^{\prime} is a feasible flow.
- Proof. Only need to verify constraints on the edges of P (since $f^{\prime}=f$ for other edges). Let $e=(u, v) \in P$
- If e is a forward edge: $f^{\prime}(e)=f(e)+b$

$$
\leq f(e)+(c(e)-f(e))=c(e)
$$

- If e is a backward edge: $f^{\prime}(e)=f(e)-b$

$$
\geq f(e)-f(e)=0
$$

- Conservation constraint hold on any node in $u \in P$:
- $f_{\text {in }}(u)=f_{\text {out }}(u)$, therefore $f_{\text {in }}^{\prime}(u)=f_{\text {out }}^{\prime}(u)$ for both cases

Value of Flow: Making Progress

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_{f} with bottleneck capacity b. Let $f^{\prime} \leftarrow \operatorname{AUGMENT}(f, P)$, then $v\left(f^{\prime}\right)=v(f)+b$.
- Proof.
- First edge $e \in P$ must be out of s in G_{f}
- (P is simple so never visits s again)
- e must be a forward edge (P is a path from s to t)
- Thus $f(e)$ increases by b, increasing $v(f)$ by b
- Note. Means the algorithm makes forward progress each time!

Optimality

Ford-Fulkerson Optimality

- Recall: If f is any feasible s - t flow and (S, T) is any s - t cut then $v(f) \leq c(S, T)$.
- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves equality, that is,
- Ford-Fulkerson finds a flow f^{*} and there exists a cut $\left(S^{*}, T^{*}\right)$ such that, $v\left(f^{*}\right)=c\left(S^{*}, T^{*}\right)$
- Proving this shows that it finds the maximum flow (and the min cut)
- This also proves the max-flow min-cut theorem

Ford-Fulkerson Optimality

- Lemma. Let f be a s - t flow in G such that there is no augmenting path in the residual graph G_{f}, then there exists a cut (S^{*}, T^{*}) such that $v(f)=c\left(S^{*}, T^{*}\right)$.
- Proof.
- Let $S^{*}=\left\{v \mid v\right.$ is reachable from s in $\left.G_{f}\right\}, T^{*}=V-S^{*}$
- Is this an s - t cut?
- $s \in S, t \in T, S \cup T=V$ and $S \cap T=\varnothing$
- Consider an edge $e=u \rightarrow v$ with $u \in S^{*}, v \in T^{*}$, then what can we say about $f(e)$?

Recall: Ford-Fulkerson Example

Ford-Fulkerson Optimality

- Lemma. Let f be a s - t flow in G such that there is no augmenting path in the residual graph G_{f}, then there exists a cut $\left(S^{*}, T^{*}\right)$ such that $v(f)=c\left(S^{*}, T^{*}\right)$.
- Proof.
- Let $S^{*}=\left\{v \mid v\right.$ is reachable from s in $\left.G_{f}\right\}, T^{*}=V-S^{*}$
- Is this an $s-t$ cut?
- $s \in S, t \in T, S \cup T=V$ and $S \cap T=\varnothing$
- Consider an edge $e=u \rightarrow v$ with $u \in S^{*}, v \in T^{*}$, then what can we say about $f(e)$?

$$
\text { - } f(e)=c(e)
$$

Ford-Fulkerson Optimality

- Lemma. Let f be a s - t flow in G such that there is no augmenting path in the residual graph G_{f}, then there exists a cut (S^{*}, T^{*}) such that $v(f)=c\left(S^{*}, T^{*}\right)$.
- Proof. (Cont.)
- Let $S^{*}=\left\{v \mid v\right.$ is reachable from s in $\left.G_{f}\right\}, T^{*}=V-S^{*}$
- Is this an $s-t$ cut?
- $s \in S, t \in T, S \cup T=V$ and $S \cap T=\varnothing$
- Consider an edge $e=w \rightarrow v$ with $v \in S^{*}, w \in T^{*}$, then what can we say about $f(e)$?

Recall: Ford-Fulkerson Example

Ford-Fulkerson Optimality

- Lemma. Let f be a s - t flow in G such that there is no augmenting path in the residual graph G_{f}, then there exists a cut (S^{*}, T^{*}) such that $v(f)=c\left(S^{*}, T^{*}\right)$.
- Proof. (Cont.)
- Let $S^{*}=\left\{v \mid v\right.$ is reachable from s in $\left.G_{f}\right\}, T^{*}=V-S^{*}$
- Is this an $s-t$ cut?
- $s \in S, t \in T, S \cup T=V$ and $S \cap T=\varnothing$
- Consider an edge $e=w \rightarrow v$ with $v \in S^{*}, w \in T^{*}$, then what can we say about $f(e)$?
- $f(e)=0$

Ford-Fulkerson Optimality

- Lemma. Let f be a s - t flow in G such that there is no augmenting path in the residual graph G_{f}, then there exists a cut (S^{*}, T^{*}) such that $v(f)=c\left(S^{*}, T^{*}\right)$.
- Proof. (Cont.)
- Let $S^{*}=\left\{v \mid v\right.$ is reachable from s in $\left.G_{f}\right\}, T^{*}=V-S^{*}$
- Thus, all edges leaving S^{*} are completely saturated and all edges entering S^{*} have zero flow
- $v(f)=f_{\text {out }}\left(S^{*}\right)-f_{\text {in }}\left(S^{*}\right)=f_{\text {out }}\left(S^{*}\right)=c\left(S^{*}, T^{*}\right) \square$
- Corollary. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

```
Ford-FuLKERSON(G)
FOREACH edge e\inE:f(e)\leftarrow0.
Gf}\leftarrow\mathrm{ residual network of G}\mathrm{ with respect to flow }f\mathrm{ .
WHile (there exists an s}\mp@subsup{\textrm{s}}{}{~}\mathrm{ path P in G}\mp@subsup{G}{f}{}
    f\leftarrow AUGMEnt ( }f,P)\mathrm{ .
    Update Gf.
RETURN }f\mathrm{ .
```

- Does the algorithm terminate?
- Can we bound the number of iterations it does?
- Running time?

Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase value of flow by $b=\operatorname{bottleneck}\left(G_{f}, P\right)$
- Assumption. Suppose all capacities $c(e)$ are integers.
- Integrality invariant. Throughout Ford-Fulkerson, every edge flow $f(e)$ and corresponding residual capacity is an integer. Thus $b \geq 1$.
- Let $C=\max c(s \rightarrow u)$ be the maximum capacity among edges u leaving the source s.
- It must be that $v(f) \leq(n-1) C$
- Since, $v(f)$ increases by $b \geq 1$ in each iteration, it follows that FF algorithm terminates in at most $v(f)=O(n C)$ iterations.

Ford-Fulkerson Performance

```
Ford-FulkERSON(G)
FOREACH edge e\inE:f(e)\leftarrow0.
Gf}\leftarrow\mathrm{ residual network of }G\mathrm{ with respect to flow }f\mathrm{ .
While (there exists an s}\mp@subsup{\textrm{s}}{}{~}\mathrm{ path P in G}\mp@subsup{G}{f}{}\mathrm{ )
    f\leftarrow\operatorname{AUGMENT}(f,P).
    Update Gf.
RETURN f.
```

- Operations in each iteration?
- Find an augmenting path in G_{f}
- Augment flow on path
- Update G_{f}

Ford-Fulkerson Running Time

- Claim. Ford-Fulkerson can be implemented to run in time $O(n m C)$, where $m=|E| \geq n-1$ and $C=\max c(s \rightarrow u)$.
u
- Proof. Time taken by each iteration:
- Finding an augmenting path in G_{f}
- G_{f} has at most $2 m$ edges, using BFS/DFS takes $O(m+n)=O(m)$ time
- Augmenting flow in P takes $O(n)$ time
- Given new flow, we can build new residual graph in $O(m)$ time
- Overall, $O(m)$ time per iteration \square

