Dynamic Programming
and Network Flows



Admin

TA evaluation form! https://forms.gle/nZSPcwbaP3WCWxgEA

* Please fill out by next Friday
TA hours 8-10 tonight cancelled
Video of knapsack DP example posted

 May be helpful for you to make the step from DP
formulation to algorithm

« We'll see a similar example today

Practice exam, network flow practice problem posted
Wednesday night

Assignment 5 due Wednesday; back to you Sunday


https://forms.gle/nZSPcwbaP3WCWxqEA

Midterm

* In-person during class a week from today
* Very strong focus on topics since last midterm:
* Divide and conquer/recurrences
* Dynamic programming
* Network flows, Dijkstra’s algorithm
* Closed book, but you can bring a 1-page (2-sided) cheat sheet

* | don't think it will be too helpful



Last Topic in Dynamic Programming:
Shortest Paths Revisited



Shortest Path Problem

Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w, on each
e € E and a a source node s, find the shortest path from s to to all
nodes in G.

Negative weights. The edge-weights w,in G can be negative.
(When we studied Dijkstra's, we assumed non-negative weights.)

Let P be a path from s to ¢, denoted s ~ t.

« The length of P is the number of edges in P

The cost or weight of P is w(P) = Z w,

ecP

Goal: cost of the shortest path from s to all nodes



Negative Weights & Dijkstra's

* Dijkstra’s Algorithm. Does the greedy approach work for graphs
with negative edge weights?

e Dijkstra’'s will explore s's neighbor and add #, with
d[t] = w,, = 2 to the shortest path tree

* Dikstra assumes that there cannot be a "longer path" that has
lower cost (relies on edge weights being non-negative)

O— . —6
e —8

Dijkstra's will find s — t as shortest path with cost 2
But the shortest path is s — v — w — ¢ with cost 1



Negative Cycles

« Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

 Question. How do negative cycles affect shortest path?
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Negative Cycles & Shortest Paths

« Claim. If a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

 Proof.

« Suppose there exists a shortest s ~ v path with cost d that
traverses the negative cycle t times for t > 0.

« Can construct a shorter path by traversing the cycle t + 1 times
=>< 1
« Assumption. G has no negative cycle.

« Later in the lecture: how can we detect whether the input graph G
contains a negative cycle”



Dynamic Programming Approach

* First step to a dynamic program? Recursive formulation
 What is the subproblem? What is the recurrence?

« Dijkstra’s algorithm: for each v the subproblem is the
shortest path from s to v

 Why doesn't this work?

 There may be a shorter path out of the cut (but it must
have more edges)

 Idea: subproblem (v, k) is the shortest path from s to v
consisting of at most k edges

« How big can k get?



No. of Edges in Shortest Path

« Claim. If G has no negative cycles, then exists a shortest path
from s to any node u that uses at most n — 1 edges.

« Proof. Suppose there exists a shortest path from s to u made
up of n or more edges

« A path of length at least n must visit at least n + 1 nodes

e Jhere exists a node x that is visited more than once
(pigeonhole principle). Let P denote the portion of the path
between the successive Visits.

« Can remove P without increasing cost of path. B

o) (x)

P

(W

w(P) = 0



Shortest Path Subproblem

« Subproblem. DJv,i]: (optimal) cost of shortest path from s
to v using <1 edges

 Base cases.
e Dls,i] =0foranyi
e Dv,0] =00 foranyv #s
« Final answer for shortest path cost to node v

« Dlv,n— 1]



Recurrence

* Suppose we have found shortest paths to all nodes of
length at most 7 — 1

« We are now considering shortest paths of length 1

« Cases to consider for the recurrence of D|v, i]

Case 1. Shortest path to v was already found (is same
as D[v,i — 1))

Case 2. Shortest path to v is "longer” than paths found
SO far:

« Look at all nodes u that have incoming edges to v

« [ake minimum over their distances and add w,,



Bellman-Ford-Moore Algorithm

« Recurrence. Forallnodesv # s,andforalll <i<n-1,

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE

Uu

)
e (Called the Bellman-Ford-Moore algorithm / ;



Bellman-Ford-Moore Algorithm

Subproblem. D]v,i]: (optimal) cost of shortest path from s to v
using < I edges

e Recurrence.

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eEr

 Memoization structure. Two-dimensional array
 Evaluation order.
e 1:1 — n—1 (column major order)

e Starting from s, the row of vertices can
be in any order



Running Time

Recurrence.
D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE
Naive analysis. O(n°>) time
. Each entry takes O(n) to compute, there are O(n?) entries

Improved analysis. For a giveni,v, d[v,i] looks at each incoming
edge of v

. Takes indegree(v) accesses to the table
For a given i, filling d[ — , i] takes Z indegree(v) accesses
vevV

« Atmost O(n + m) = O(m) accesses for connected graphs
wherem > n — 1

Overall running time is O(nm)



* Shortest-Path Summary. Assuming there are no negative
cycles in G, we can compute the shortest path from s to all nodes
in G in O(nm) time using the Bellman-Ford-Moore algorithm



Dynamic Programming
Shortest Path:
Bellman-Ford-Moore Example



e« Dl|s,i] =0foranyi
e DIv,0] =00 foranyv # s
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. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek
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. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek
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. D[v,1] = min{D[v,0], min {D[u,0] +w,, }
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. D[v,1] = min{D[v,0], min {D[u,0] +w,, }
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-3

0 2 3 \ > a
S 0 0 0 0 1

- 2 ) 1
a inf | -3
b inf 2 5 Y

. . b < C
C inf | inf 1




. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek
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. D[v,2] = min{D[v,1], min {D[u,1]+w,,}
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. D[v,2] = min{D[v,1], min {D[u,1]+w,,}
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. D[v,2] = min{D[v,1], min {D[u,1]+w,,}
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. D[v,3] = min{D[v,2], min {D[u,2] +w,,}
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. D[v,3] = min{D[v,2], min {D[u,2] +w,,}
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. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek
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Dynamic Programming
Shortest Path:
Detecting a Negative Cycle



Negative Cycle

Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

Claim. [f a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.
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Detecting a Negative Cycle

Question. Given a directed graph G = (V, E) with edge-
weights w, (can be negative), determine if G contains a
negative cycle.

Now, we don't a specific source node given to us
Let's change this problem a little bit

Problem. Given G and source s, find if there is negative cycle
on as ~ v path for any node v.



Detecting a Negative Cycle

« Problem. Given G and source s, find if there is negative cycle on a

s ~ v path for any node v.

« Dlv,1] is the cost of the shortest path from s to v of length at most i
e Suppose there is a negative cycle onas ~ v path

., Then lim D[v,i] = — o©

1— 00

e If D[v,n] = D|v,n — 1] for every node v then
G has no negative cycles exists!

* Table values converge, no further improvements possible



Detecting a Negative Cycle

Lemma. If D|v, n] < D|[v, n — 1] then any shortest s ~ v
path contains a negative cycle.

Proof. [By contradiction] Suppose G does not contain a
negative cycle

Since D[v, n] < D|v, n — 1], the shortest s ~ v path that
caused this update has exactly n edges

By pigeonhole principle, path must contain a repeated node,
let the cycle between two successive visits to the node be P

If P has non-negative weight, removing it would give us a
shortest path with less than n edges =<

) (x)

P

O



Analysis: First Attempt

Now we know how to detect negative cycles on a shortest path
from § to some node V.

How do we detect a negative cycle anywhere in G7
Do the above foreach s € V

Running time”

. O(nm - n) = O(n’m)

 Can we improve this?



Problem Reduction

Now we know how to detect negative cycles on a shortest path
from § to some node V.

How do we detect a negative cycle anywhere in G7

Reduction. Given graph G, add a source s and connect it to
all vertices in G with edge weight 0. Let the new graph be G’

Claim. G has a negative cycle iff G’ has a negative cycle from
§ 10 some node v.

Proof. = If G has a negative cycle, then this cycle lies
on the shortest path from s to a node on the cycle in G’

< If G’ has a negative cycle on a shortest path from s
to some node, then that node is on a negative cycle in G



Problem Reduction

. Running time is now O(nm) rather than O(n*m)

e |dea: our original algorithm was for a slightly different problem
than what we wanted. Rather than running it over and over, we
changed the input and ran it once

* (Gave us the answer for the final problem

 We'll see many more reductions in part 3 of the course



Bellman-Ford Fun Facts

Can we improve on O(nm) for single source
shortest paths with negative edges”

Open problem since invention in 1956
[Fineman 2024]: O(n®”m) algorithm

 Uses a very clever and complicated reduction
to Dijkstra’'s algorithm

Single-Source Shortest Paths with
Negative Real Weights in O(mn®*?) Time

Jeremy T. Fineman
Georgetown University
jf474@georgetown.edu

Abstract

This paper presents a randomized algorithm for the problem of single-source shortest paths
on directed graphs with real (both positive and negative) edge weights. Given an input graph
with n vertices and m edges, the algorithm completes in O(mn®/?) time with high probability.




Introduction to
Network Flows



Story So Far

e Algorithmic design paradigms:

 Greedy: simplest to design but works only for certain limited
class of optimization problems

e A good starting point for most problems but rarely optimal
* Divide and Conquer

e Solving a problem by breaking it down into smaller
subproblems and recursing

 Dynamic programming
* Recursion with memoization: avoiding repeated work

e Trading off space for time



Network Flows

Graph-based problem; looks like a lot of what we learned in part 1

After midterm: we’ll use what we learn about network flows to solve
much more general problems

Problems where you revisit* (and improve) past solutions
Solve problems that even dynamic programming can’t* solve!

Restricted case of Linear/Convex Programming; “algorithmic
power tools”




What's a Flow Network?

« A flow network is a directed graph G = (V, E) with a
« A source is a vertex s with in degree O
« A sink is a vertex t with out degree O

« Each edge e € E has edge capacity c(e) > 0O

edge capacity C\ . i 1}

10

s 5 »é 8 >© 10 —(1 ) sink
< \ %

4 6 15 10 (

source \g‘) ) \@/ | =




Visualize




Assumptions

Assume that each node v is on some s-f path, that is,

§ ~1y ~ t exists, for any vertexv € V

« Implies G is connectedandm >n — 1
Assume capacities are integers

e Will revisit this assumption and what happens if not
Directed edge (u, v) writtenas u — v

For simplitying expositions, we will sometimes write
c(u —>v)=0when(u,v) € E



What’s a Flow?

« Given a flow network, an (s, f)-flow or just flow (if source s
and sink ¢ are clear from context) f : E — Z7 satisfies the

following two constraints:

o [Flow conservation] f, (v) =f, (V) forv # s, where

flow capacity

ﬁn(v) — Zf(u — V) \6/ 0!15

Foud¥) = Y f0 = W) S G

w 0/15

« To simplify, f(u — v) = 0 if there is no edge from u to v



Feasible Flow

 And second, a feasible flow must satisty the capacity
constraints of the network, that is,

[Capacity constraint] foreache € E, 0 < f(e) < c(e)

flow capacity

10/16



Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

What is v(f) here!?

5/9

Q S, 0/15 S
oW 75 ‘0
N
°— 5/5 wm— 5/8 10/10
o
0 o\
75 N

10/16

v(f) =5+10+10 = 25



Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

« Lemma.f t(S) = f. () Intuitively, why do you think
ou n this is true?
5/9
\Q\»& 5/75 0/15 6‘/,0 \
°< 5/5 w— 5/8 — 10/10 —)@
Io/,o\ \Q\\Q

value = 5+ 10+ 10 = 25 10/16



Value of a Flow

« Lemma.f .(s)=/F (1)

. Proof. Letf(E)= ) fle)

eckE

u %
———

L Then, Y /) = E) = Y fouw) /

veV veV

. Foreveryv # s,t flow conversation implies f, (v) = f, (V)

* Thus all terms cancel out on both sides except

Sin(8) + fin® = Foull$) + fou(D)
. Butf, () =f,0H=0 ®



Value of a Flow

« Lemma.f .(s)=/F (1)

« Corollary. v(f) =1, (7).

Q
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Max-Flow Problem

« Problem. Given an s-f flow network, find a feasible s-f flow of

maximum value.

S
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Minimum Cut Problem



Cuts are Back!

* Cuts in graphs played a lead role when we were designing

algorithms for MSTs

 \What is the definition of a cut?




Cuts in Flow Networks

« Recall. Acut (S, T)in a graph is a partition of vertices such
thatSuUT =V, SNT =g andSs, T are non-empty.

« Definition. An (s, f)-cutisacut(S,7)st.s€ Sandt e T




Cut Capacity

Recall. A cut (5, T) in a graph is a partition of vertices such
thatSUT =V, SNT =g and S, T are non-empty.

Definition. An (s, f)-cutisacut(S,7)st.s € Sandre T.

Capacity of a (s, 1)-cut (S, T') is the sum of the capacities of

edges leaving S

. c(S,T) = Z c(v - w)

veS.weT



Quick Quiz

Question. What is the capacity of the s-f given by grey and white
nodes?

20+25-8—11-9 - 6) c($.T)= ) cv—w)

veS.weT

A. 11 (

B. 34 8+ 11 +9 + 06)

C. 45 (20 + 25)
(

D. 79 (20+25+8+ 11 +9+ 0)

|
®o—.




Min Cut Problem

e Problem. Given an s-f flow network, find an s-f cut of

minimum capacity.




Relationship between
Flows and Cuts



Flows and Cuts

e Cuts represent "bottlenecks’ in a flow network

* For any cut, our flow needs to “get out” of that cut on its

route from s to ¢

e | et us formalize this intuition




Flows and Cuts

« Claim. Let fbe any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see, which ones?

AN




Flows and Cuts

« Claim. Let fbe any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see, which ones?

AN




Flows and Cuts

To prove this for any cut, we first relate the flow value in a

network to the net flow leaving a cut

Lemma. For any feasible (s, #)-flow fon G = (V, E) and
any (s, t)-cut, v(f) =71,,.(S) —1..(S), where

. £,.AS) = Z f(v = w) (sum of flow ‘leaving’ §)

veS.weT

) Jin(S) = 2 f(w — v) (sum of flow ‘entering’ S)

veSweT

« Note: f,(S)=/f (T)andf (S)=f,A(T)



Flows and Cuts

Proof. £, (S)— £, (S)

— Z fv->w) — Z f(u — v) [by definition]

veS.weT veS,ueT
Adding zero terms

D fov-w= D flu-w|+ D fo->w— D fu—v)

i VWES V,UES ] veS,weTl veS,ueT
These are the same sum: o O

they sum the flow of all edges
with both vertices in §




Flows and Cuts

Proof. [, (S)—/. (S) Rearranging terms

DY foosw= Y fu—-n|+ D fo-ow— ) fu—v)

V,WES V,UES veS,weT veS,ueT

=Zf(v_>w)+ Z f(v—>w)—2f(u—>v)— Z flu - v)

V,2WES veS.weT V,UeS veS,.ueTl
=Y (Y fv—>w) =Y flu—v))

veS w u
= D fout) = fu¥) © ®

veS

= fouls) = v(f) Cancels out for all excepts @



Flows and Cuts

We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

Proof. v(f) = foulS) = fin(S)

< £ (S) = Z v = w) Whenis v(f) = ¢(S,T)?

veSweT /

< Z clv,w)=1c(S,T)

veSweT £.(8) =0, f, (S) = c(S,T)




Max-Flow & Min-Cut

Suppose the ¢,,;,, IS the capacity of the minimum cut in a network
What can we say about the feasible flow we can send through it
e cannot be more than ¢;,

In fact, whenever we find any s-f flow f and any s-f cut (S, T') such
that, v(f) = ¢(S, T') we can conclude that:

« fisthe maximum flow, and,
e (S,7)isthe minimum cut
IS It

The question now is, given any flow network with min cut ¢,

always possible to route a feasible s-f flow f with v(f) = ¢,



Max-Flow Min-Cut Theorem

* A beautiful, powertul relationship between these two
problems in given by the following theorem

« Theorem. Given any flow network G, there exists a feasible
(s, t)-flow f and a (s, 1)-cut (S, T) such that,

v(f) =¢S5, T)
* Informally, in a flow network, the max-flow = min-cut
* This will guide our algorithm design for finding max flow

* (WIll prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley))



Network Flow History

* [n 1950s, US military researchers Harris and Ross wrote a
classitied report about the rail network linking Soviet Union
and Eastern Europe

* \ertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

 Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

 Cheapest way to disrupt the network by
removing rail links (min cut)



Network Flow History
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Towards a Max-Flow Algorithm

* Today: we will prove the max-flow min-cut theorem

constructively

« We will design a max-flow algorithm and show that there is a s-f

cut s.t. value of flow computed by algorithm = capacity of cut

* Let's start with a greedy approach
« Push as much flow as possible down a s-f path
* This won't actually work

* But gives us a sense of what we need to keep track
off to Improve upon it



Towards a Max-Flow Algorithm

* (Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* [et's take an example



Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O WS 2 8/2 s, 0/6 -

Jomo Q—z/g —)O—Lg/m —)@ 8 +2=10



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
O @
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Do



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
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Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

SN

/|
@ 6/10 Q 8/9 Q 10/ 10 @ 10 +6 =16



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

L

@ 9/10 Q 9/9 Q 10/10 @ 19



Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19
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Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network



Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network
« Unigue max flow has f(v - w) =0

« Greedy could choose s - v > w — tas first P

0. 2 O

() 2 ()

 Takeaway: Need a mechanism to “undo” bad tflow decisions



Ford-Fulkerson
Algorithm



Ford Fulkerson: Idea

 Want to make “forward progress” while letting ourselves
undo previous decisions if they're getting in our way

* |ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

e (Can also push flow “back” along an edge that already
has flow down it

 Need a way to systematically track these decisions



Residual Graph

« Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, ¢) is defined as:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge




Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge



Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

The path Pis in G,
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.
FOREACH edge e € P :
IF (e € E, that is, e is forward edge )
Updating flow in G Increase f(e) in G by b

ELSE
Decrease f{e) in G by b

RETURN f.



Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.



Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
Q\\ & 0 value of flow

l
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P in residual network Gs
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Fora-Fulkerson Example

network G and flow f flow capacity

NS
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residual network Gr



Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 S 0O/6 =
%\\ ‘8 0 value of flow

l
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P in residual network Gs



Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f
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Fora-Fulkerson Example

network G and flow f flow capacity

O -
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\ & 0 value of flow

l
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow capacity
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Fora-Fulkerson Example

network G and flow f flow / capacity
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1 No s-t path left!



Fora-Fulkerson Example

network G and flow f
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Analysis: Ford-Fulkerson



Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

* How much total space are we using



Feasibility of Flow

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

f' < AUGMENT(f, P), then f'is a feasible flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases



Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!



Optimality



Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T') is any s-f cut
thenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm terminates in

a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut (8, T%)
such that, v(f*) = c(8*, T*)

Proving this shows that it finds the maximum flow (and the

min cut)

This also proves the max-flow min-cut theorem



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof.
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?



Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
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Ford-Fulkerson Optimality

Lemma. Let f be a s- flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(8*, T™).

Proof.

Let % = {v | visreachable from sin G¢}, T* = V — §*
s this an s-f cut?

e sESteT SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

» fle) = c(e)



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — vwithv € S*, w € T%, then what
can we say about f(e)?



Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — v withv € §*,w € T™, then what
can we say about f(e)?

» fle)=0



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and all
edges entering $* have zero flow

V() = JoulS™) = Jin(S*) = Joud $*) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?



Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be thatv(f) < (n— 1)C

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.



Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

« (QOperations in each iteration”

. Find an augmenting path in G,

 Augment flow on path

. Update Gf



Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B



