Dynamic Programming
and Network Flows

Admin

TA evaluation form! https://forms.gle/nZSPcwbaP3WCWxgEA

* Please fill out by next Friday
TA hours 8-10 tonight cancelled
Video of knapsack DP example posted

 May be helpful for you to make the step from DP
formulation to algorithm

« We'll see a similar example today

Practice exam, network flow practice problem posted
Wednesday night

Assignment 5 due Wednesday; back to you Sunday

https://forms.gle/nZSPcwbaP3WCWxqEA

Midterm

* In-person during class a week from today
* Very strong focus on topics since last midterm:
* Divide and conquer/recurrences
* Dynamic programming
* Network flows, Dijkstra’s algorithm
* Closed book, but you can bring a 1-page (2-sided) cheat sheet

* | don't think it will be too helpful

Last Topic in Dynamic Programming:
Shortest Paths Revisited

Shortest Path Problem

Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w, on each
e € E and a a source node s, find the shortest path from s to to all
nodes in G.

Negative weights. The edge-weights w,in G can be negative.
(When we studied Dijkstra's, we assumed non-negative weights.)

Let P be a path from s to ¢, denoted s ~ t.

« The length of P is the number of edges in P

The cost or weight of P is w(P) = Z w,

ecP

Goal: cost of the shortest path from s to all nodes

Negative Weights & Dijkstra's

* Dijkstra’s Algorithm. Does the greedy approach work for graphs
with negative edge weights?

e Dijkstra’'s will explore s's neighbor and add #, with
d[t] = w,, = 2 to the shortest path tree

* Dikstra assumes that there cannot be a "longer path" that has
lower cost (relies on edge weights being non-negative)

O— . —6
e —8

Dijkstra's will find s — t as shortest path with cost 2
But the shortest path is s — v — w — ¢ with cost 1

Negative Cycles

« Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

 Question. How do negative cycles affect shortest path?

N

Q
=
M
«Q
Q
=
<
(¢°)
N
<
o
m
=
PN
—~~
=
|
N
Q)
A
-

Negative Cycles & Shortest Paths

« Claim. If a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

 Proof.

« Suppose there exists a shortest s ~ v path with cost d that
traverses the negative cycle t times for t > 0.

« Can construct a shorter path by traversing the cycle t + 1 times
=>< 1
« Assumption. G has no negative cycle.

« Later in the lecture: how can we detect whether the input graph G
contains a negative cycle”

Dynamic Programming Approach

* First step to a dynamic program? Recursive formulation
 What is the subproblem? What is the recurrence?

« Dijkstra’s algorithm: for each v the subproblem is the
shortest path from s to v

 Why doesn't this work?

 There may be a shorter path out of the cut (but it must
have more edges)

 Idea: subproblem (v, k) is the shortest path from s to v
consisting of at most k edges

« How big can k get?

No. of Edges in Shortest Path

« Claim. If G has no negative cycles, then exists a shortest path
from s to any node u that uses at most n — 1 edges.

« Proof. Suppose there exists a shortest path from s to u made
up of n or more edges

« A path of length at least n must visit at least n + 1 nodes

e Jhere exists a node x that is visited more than once
(pigeonhole principle). Let P denote the portion of the path
between the successive Visits.

« Can remove P without increasing cost of path. B

o) (x)

P

(W

w(P) = 0

Shortest Path Subproblem

« Subproblem. DJv,i]: (optimal) cost of shortest path from s
to v using <1 edges

 Base cases.
e Dls,i] =0foranyi
e Dv,0] =00 foranyv #s
« Final answer for shortest path cost to node v

« Dlv,n— 1]

Recurrence

* Suppose we have found shortest paths to all nodes of
length at most 7 — 1

« We are now considering shortest paths of length 1

« Cases to consider for the recurrence of D|v, i]

Case 1. Shortest path to v was already found (is same
as D[v,i — 1))

Case 2. Shortest path to v is "longer” than paths found
SO far:

« Look at all nodes u that have incoming edges to v

« [ake minimum over their distances and add w,,

Bellman-Ford-Moore Algorithm

« Recurrence. Forallnodesv # s,andforalll <i<n-1,

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE

Uu

)
e (Called the Bellman-Ford-Moore algorithm / ;

Bellman-Ford-Moore Algorithm

Subproblem. D]v,i]: (optimal) cost of shortest path from s to v
using < I edges

e Recurrence.

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eEr

 Memoization structure. Two-dimensional array
 Evaluation order.
e 1:1 — n—1 (column major order)

e Starting from s, the row of vertices can
be in any order

Running Time

Recurrence.
D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE
Naive analysis. O(n°>) time
. Each entry takes O(n) to compute, there are O(n?) entries

Improved analysis. For a giveni,v, d[v,i] looks at each incoming
edge of v

. Takes indegree(v) accesses to the table
For a given i, filling d[— , i] takes Z indegree(v) accesses
vevV

« Atmost O(n + m) = O(m) accesses for connected graphs
wherem > n — 1

Overall running time is O(nm)

* Shortest-Path Summary. Assuming there are no negative
cycles in G, we can compute the shortest path from s to all nodes
in G in O(nm) time using the Bellman-Ford-Moore algorithm

Dynamic Programming
Shortest Path:
Bellman-Ford-Moore Example

e« Dl|s,i] =0foranyi
e DIv,0] =00 foranyv # s

INf

INf

O O Q0 o

INf

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek
-3

0 2 3 S >
S 0 0 0 0 1

: 2] 1
a INf
b Inf = =

. b < C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf = =

. b <« C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf 2 = =

. b <« C
C inf | 1

. D[v,1] = min{D[v,0], min {D[u,0] +w,, }

u,vek

-3

0 2 3 \ > a
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 5 Y

. . b < C
C inf | inf 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3 -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3

0 2 3 \) >
S 0 0 0 0 1

: 2] 1
a INf -3 -3
b Inf 2 2 = =

. . b < C
C inf | inf 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

u,vek

-3
0 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 S >
S 0 0 0 0) 1
- 2] 1
a Inf -3 -3 -3
b Inf 2 2 -1 Y ¥
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

u,vek

-3
0 1 2 3 \) > a
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 -1 = =
C INf INf -2 -2 b < 1 ¢

Dynamic Programming
Shortest Path:
Detecting a Negative Cycle

Negative Cycle

Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C is less than zero

Claim. [f a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

N

Q
=
M
«Q
Q
=
<
(¢°)
N
<
o
m
=
PN
—~~
=
|
N
Q)
A
-

Detecting a Negative Cycle

Question. Given a directed graph G = (V, E) with edge-
weights w, (can be negative), determine if G contains a
negative cycle.

Now, we don't a specific source node given to us
Let's change this problem a little bit

Problem. Given G and source s, find if there is negative cycle
on as ~ v path for any node v.

Detecting a Negative Cycle

« Problem. Given G and source s, find if there is negative cycle on a

s ~ v path for any node v.

« Dlv,1] is the cost of the shortest path from s to v of length at most i
e Suppose there is a negative cycle onas ~ v path

., Then lim D[v,i] = — o©

1— 00

e If D[v,n] = D|v,n — 1] for every node v then
G has no negative cycles exists!

* Table values converge, no further improvements possible

Detecting a Negative Cycle

Lemma. If D|v, n] < D|[v, n — 1] then any shortest s ~ v
path contains a negative cycle.

Proof. [By contradiction] Suppose G does not contain a
negative cycle

Since D[v, n] < D|v, n — 1], the shortest s ~ v path that
caused this update has exactly n edges

By pigeonhole principle, path must contain a repeated node,
let the cycle between two successive visits to the node be P

If P has non-negative weight, removing it would give us a
shortest path with less than n edges =<

) (x)

P

O

Analysis: First Attempt

Now we know how to detect negative cycles on a shortest path
from § to some node V.

How do we detect a negative cycle anywhere in G7
Do the above foreach s € V

Running time”

. O(nm - n) = O(n’m)

 Can we improve this?

Problem Reduction

Now we know how to detect negative cycles on a shortest path
from § to some node V.

How do we detect a negative cycle anywhere in G7

Reduction. Given graph G, add a source s and connect it to
all vertices in G with edge weight 0. Let the new graph be G’

Claim. G has a negative cycle iff G’ has a negative cycle from
§ 10 some node v.

Proof. = If G has a negative cycle, then this cycle lies
on the shortest path from s to a node on the cycle in G’

< If G’ has a negative cycle on a shortest path from s
to some node, then that node is on a negative cycle in G

Problem Reduction

. Running time is now O(nm) rather than O(n*m)

e |dea: our original algorithm was for a slightly different problem
than what we wanted. Rather than running it over and over, we
changed the input and ran it once

* (Gave us the answer for the final problem

 We'll see many more reductions in part 3 of the course

Bellman-Ford Fun Facts

Can we improve on O(nm) for single source
shortest paths with negative edges”

Open problem since invention in 1956
[Fineman 2024]: O(n®”m) algorithm

 Uses a very clever and complicated reduction
to Dijkstra’'s algorithm

Single-Source Shortest Paths with
Negative Real Weights in O(mn®*?) Time

Jeremy T. Fineman
Georgetown University
jf474@georgetown.edu

Abstract

This paper presents a randomized algorithm for the problem of single-source shortest paths
on directed graphs with real (both positive and negative) edge weights. Given an input graph
with n vertices and m edges, the algorithm completes in O(mn®/?) time with high probability.

Introduction to
Network Flows

Story So Far

e Algorithmic design paradigms:

 Greedy: simplest to design but works only for certain limited
class of optimization problems

e A good starting point for most problems but rarely optimal
* Divide and Conquer

e Solving a problem by breaking it down into smaller
subproblems and recursing

 Dynamic programming
* Recursion with memoization: avoiding repeated work

e Trading off space for time

Network Flows

Graph-based problem; looks like a lot of what we learned in part 1

After midterm: we’ll use what we learn about network flows to solve
much more general problems

Problems where you revisit* (and improve) past solutions
Solve problems that even dynamic programming can’t* solve!

Restricted case of Linear/Convex Programming; “algorithmic
power tools”

What's a Flow Network?

« A flow network is a directed graph G = (V, E) with a
« A source is a vertex s with in degree O
« A sink is a vertex t with out degree O

« Each edge e € E has edge capacity c(e) > 0O

edge capacity C\ . i 1}

10

s 5 »é 8 >© 10 —(1) sink
< \ %

4 6 15 10 (

source \g‘)) \@/ | =

Visualize

Assumptions

Assume that each node v is on some s-f path, that is,

§ ~1y ~ t exists, for any vertexv € V

« Implies G is connectedandm >n — 1
Assume capacities are integers

e Will revisit this assumption and what happens if not
Directed edge (u, v) writtenas u — v

For simplitying expositions, we will sometimes write
c(u —>v)=0when(u,v) € E

What’s a Flow?

« Given a flow network, an (s, f)-flow or just flow (if source s
and sink ¢ are clear from context) f : E — Z7 satisfies the

following two constraints:

o [Flow conservation] f, (v) =f, (V) forv # s, where

flow capacity

ﬁn(v) — Zf(u — V) \6/ 0!15

Foud¥) = Y f0 = W) S G

w 0/15

« To simplify, f(u — v) = 0 if there is no edge from u to v

Feasible Flow

 And second, a feasible flow must satisty the capacity
constraints of the network, that is,

[Capacity constraint] foreache € E, 0 < f(e) < c(e)

flow capacity

10/16

Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

What is v(f) here!?

5/9

Q S, 0/15 S
oW 75 ‘0
N
°— 5/5 wm— 5/8 10/10
o
0 o\
75 N

10/16

v(f) =5+10+10 = 25

Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

« Lemma.f t(S) = f. () Intuitively, why do you think
ou n this is true?
5/9
\Q\»& 5/75 0/15 6‘/,0 \
°< 5/5 w— 5/8 — 10/10 —)@
Io/,o\ \Q\\Q

value = 5+ 10+ 10 = 25 10/16

Value of a Flow

« Lemma.f .(s)=/F (1)

. Proof. Letf(E)=) fle)

eckE

u %
———

L Then, Y /) = E) = Y fouw) /

veV veV

. Foreveryv # s,t flow conversation implies f, (v) = f, (V)

* Thus all terms cancel out on both sides except

Sin(8) + fin® = Foull$) + fou(D)
. Butf, () =f,0H=0 ®

Value of a Flow

« Lemma.f .(s)=/F (1)

« Corollary. v(f) =1, (7).

Q
°— 5/ é 11111
o, \

11111

Max-Flow Problem

« Problem. Given an s-f flow network, find a feasible s-f flow of

maximum value.

S
RN S, 0/15 L
‘ Of ’ \ l 0 \
| \ Q
o
. " 0, 0/15 o)

Minimum Cut Problem

Cuts are Back!

* Cuts in graphs played a lead role when we were designing

algorithms for MSTs

 \What is the definition of a cut?

Cuts in Flow Networks

« Recall. Acut (S, T)in a graph is a partition of vertices such
thatSuUT =V, SNT =g andSs, T are non-empty.

« Definition. An (s, f)-cutisacut(S,7)st.s€ Sandt e T

Cut Capacity

Recall. A cut (5, T) in a graph is a partition of vertices such
thatSUT =V, SNT =g and S, T are non-empty.

Definition. An (s, f)-cutisacut(S,7)st.s € Sandre T.

Capacity of a (s, 1)-cut (S, T') is the sum of the capacities of

edges leaving S

. c(S,T) = Z c(v - w)

veS.weT

Quick Quiz

Question. What is the capacity of the s-f given by grey and white
nodes?

20+25-8—11-9 - 6) c($.T)=) cv—w)

veS.weT

A. 11 (

B. 34 8+ 11 +9 + 06)

C. 45 (20 + 25)
(

D. 79 (20+25+8+ 11 +9+ 0)

|
®o—.

Min Cut Problem

e Problem. Given an s-f flow network, find an s-f cut of

minimum capacity.

Relationship between
Flows and Cuts

Flows and Cuts

e Cuts represent "bottlenecks’ in a flow network

* For any cut, our flow needs to “get out” of that cut on its

route from s to ¢

e | et us formalize this intuition

Flows and Cuts

« Claim. Let fbe any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see, which ones?

AN

Flows and Cuts

« Claim. Let fbe any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

e There are two s-f cuts for which this is easy to see, which ones?

AN

Flows and Cuts

To prove this for any cut, we first relate the flow value in a

network to the net flow leaving a cut

Lemma. For any feasible (s, #)-flow fon G = (V, E) and
any (s, t)-cut, v(f) =71,,.(S) —1..(S), where

. £,.AS) = Z f(v = w) (sum of flow ‘leaving’ §)

veS.weT

) Jin(S) = 2 f(w — v) (sum of flow ‘entering’ S)

veSweT

« Note: f,(S)=/f (T)andf (S)=f,A(T)

Flows and Cuts

Proof. £, (S)— £, (S)

— Z fv->w) — Z f(u — v) [by definition]

veS.weT veS,ueT
Adding zero terms

D fov-w= D flu-w|+ D fo->w— D fu—v)

i VWES V,UES] veS,weTl veS,ueT
These are the same sum: o O

they sum the flow of all edges
with both vertices in §

Flows and Cuts

Proof. [, (S)—/. (S) Rearranging terms

DY foosw= Y fu—-n|+ D fo-ow—) fu—v)

V,WES V,UES veS,weT veS,ueT

=Zf(v_>w)+ Z f(v—>w)—2f(u—>v)— Z flu - v)

V,2WES veS.weT V,UeS veS,.ueTl
=Y (Y fv—>w) =Y flu—v))

veS w u
= D fout) = fu¥) © ®

veS

= fouls) = v(f) Cancels out for all excepts @

Flows and Cuts

We use this result to prove that the value of a flow cannot exceed

the capacity of any cut in the network

Claim. Let f be any s-f flow and (S, T') be any s-f cut then
v(f) < c(S,T)

Proof. v(f) = foulS) = fin(S)

< £ (S) = Z v = w) Whenis v(f) = ¢(S,T)?

veSweT /

< Z clv,w)=1c(S,T)

veSweT £.(8) =0, f, (S) = c(S,T)

Max-Flow & Min-Cut

Suppose the ¢,,;,, IS the capacity of the minimum cut in a network
What can we say about the feasible flow we can send through it
e cannot be more than ¢;,

In fact, whenever we find any s-f flow f and any s-f cut (S, T') such
that, v(f) = ¢(S, T') we can conclude that:

« fisthe maximum flow, and,
e (S,7)isthe minimum cut
IS It

The question now is, given any flow network with min cut ¢,

always possible to route a feasible s-f flow f with v(f) = ¢,

Max-Flow Min-Cut Theorem

* A beautiful, powertul relationship between these two
problems in given by the following theorem

« Theorem. Given any flow network G, there exists a feasible
(s, t)-flow f and a (s, 1)-cut (S, T) such that,

v(f) =¢S5, T)
* Informally, in a flow network, the max-flow = min-cut
* This will guide our algorithm design for finding max flow

* (WIll prove this theorem by construction in a bit—our
algorithm will prove the theorem! (like with Gale-Shapley))

Network Flow History

* [n 1950s, US military researchers Harris and Ross wrote a
classitied report about the rail network linking Soviet Union
and Eastern Europe

* \ertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

 Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

 Cheapest way to disrupt the network by
removing rail links (min cut)

Network Flow History

11973
'SEGRET gy

Gronis]

Fig. 7 — Traffic patiern: entive
natwork available

Legend:
=— .+ —— |nterpational boundary

@ Railway operating division

«ng]-—— Capacity: 12 each way per day. .

Sequired flow of O per day toword
destinations (in direction of arrow;}
with equivalent number of returning
trains in opposite direction

. trai ‘
Al capacities in \/IE)%'C;\'SS of tonsf €GCh way per day

Origins: Divisions 2, 3W, 3E, 28, I3N, 138,
12,52 (USSR), and Roumania 4

‘Pestingtions: Divisions 3, 6,9 (Poland);)
B { Czechoslovavakial; and 2, 3 {Austrla}

aotae . : SR T
_Alternative destinations: Germany or East -
Germany '

" Note 11X at Division 9, Poland

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States
Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Towards a Max-Flow Algorithm

* Today: we will prove the max-flow min-cut theorem

constructively

« We will design a max-flow algorithm and show that there is a s-f

cut s.t. value of flow computed by algorithm = capacity of cut

* Let's start with a greedy approach
« Push as much flow as possible down a s-f path
* This won't actually work

* But gives us a sense of what we need to keep track
off to Improve upon it

Towards a Max-Flow Algorithm

* (Greedy strategy:
« Start with f(e) = 0 for each edge
« Findans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* [et's take an example

Towards a Max-Flow Algorithm

« Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O 0/2 ¢, 0/6 -

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O WS 2 8/2 s, 0/6 -

Jomo Q—z/g —)O—Lg/m —)@ 8 +2=10

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

N

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Is this the best we can do!?

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16
O @

N\ 2/2 e, 6/6 -

|
@—\: 6/10 —)O 8/9 @ 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Y4
@— 6/'10'—)0 8/9 Q 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

is— @D
A\
]
)
A\
A\

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

!

(o2}
N
-
o
(o)

~N

©

-
o
N
-
o
-
o
+

(@)
I

—_
(@)

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

Do

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

N\ 2/2 &,

!
@ 6/10 Q 8/9 Q v, 10/10 @ 10 +6=16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

SN

/|
@ 6/10 Q 8/9 Q 10/ 10 @ 10 +6 =16

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

L

@ 9/10 Q 9/9 Q 10/10 @ 19

Towards a Max-Flow Algorithm

« Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

OO

2 3
9/10 ©+ 9/9—)0 10/10 @ 19

Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network

Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

e (Consider the following flow network
« Unigue max flow has f(v - w) =0

« Greedy could choose s - v > w — tas first P

0. 2 O

() 2 ()

 Takeaway: Need a mechanism to “undo” bad tflow decisions

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea

 Want to make “forward progress” while letting ourselves
undo previous decisions if they're getting in our way

* |ldea: keep track of where we can push flow

* (Can push more flow along an edge with remaining
capacity

e (Can also push flow “back” along an edge that already
has flow down it

 Need a way to systematically track these decisions

Residual Graph

« Given flow network G = (V, E, ¢) and a feasible flow f on G, the
residual graph G, = (V, E, ¢) is defined as:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
c(e) — f(e) > 0, create e € E¢with capacity c(e) — f(e)

« (Backward edge) For e € E with f(e) > 0O, create
ereverse € E; with capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge

Flow Algorithm Idea

Now we have a residual graph that lets us make forward
progress or push back existing flow

We will look for § ~ ¢ paths in Gf rather than G

Once we have a path, we will "augment’ flow along it similar to
greedy

e find bottleneck capacity edge on the path and push that
much flow through it in Gy

When we translate this back to G, this means:
* We increment existing flow on a forward edge

 Or we decrement flow on a backward edge

Augmenting Path & Flow

« An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

« The bottleneck capacity b of an augmenting path P is the
minimum capacity of any edge in P.

The path Pis in G,
AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.
FOREACH edge e € P :
IF (e € E, that is, e is forward edge)
Updating flow in G Increase f(e) in G by b

ELSE
Decrease f{e) in G by b

RETURN f.

Ford-Fulkerson Algorithm

Start with f(e) = O for each edge e € E

Find a simple s ~ £ path P in the residual network Gf

Augment flow along path P by bottleneck capacity b

Repeat until you get stuck

FORD—-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

() 10

QO

0/2

O

flow

NS

0/4

0/9

capacity

@

0/6

O

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
Q\\ & 0 value of flow

l
@ 0/10 Q 0/9 Q 0/10 @ 0

P in residual network Gs

: O
AN

6 0

e N

O I~ ¢ W ()

Fora-Fulkerson Example

network G and flow f flow capacity

NS
0\0/4 ®
\Q/O/Z S, 0O/6 0/7
& e\ © value of flow
@/ O oo O—— @) ¢

residual network Gr

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 S 0O/6 =
%\\ ‘8 0 value of flow

l
@ 0/10 Q 0/9 Q 8/10 @ 8

P in residual network Gs

Fora-Fulkerson Example

network G and flow f

l

O 2/2
2O

o b

residual network Gr

&——O

capacity

v

Sl @

0
S, 0/6 -
S 0 value of flow

2/9)O— 10/10—)@ 8+2 =10

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q
N\ 2/9 S 0/6 <
\ ‘8 0 value of flow

l
@ 0/10 Q 2/9 Q 10/10 @ 10

P in residual network Gs

N

2 S 6 0

Fora-Fulkerson Example

network G and flow f

@

O 2/2
2O

SO

residual network Gr

)

capacity

v

‘ \value of flow

8/9)O 10/10 @ 10+6 =16

| Oc—nv—~0

Fora-Fulkerson Example

network G and flow f flow capacity

O -

Q ~
N 2/2 S 6/6
\ & 0 value of flow

l
@ 6/10 Q 8/9 Q 10/10 @ 16

fixes mistake from

P in residual network Gs second augmenting path

b >

Fora-Fulkerson Example

network G and flow f flow capacity

O 0/2 8, 6/6 S

O l \value of flow

@—8/10—)@ 8/9 Q 10/10 @ 18

residual network Gr 2
O 2 @
&
<3
2 (o4 6
O

Fora-Fulkerson Example

network G and flow f flow capacity

S I

Q
N 0/2 (< 6/6 -~
\ ‘8 0 value of flow

l
@ 8/10 Q 8/9 Q 10/10 @ 18

P in residual network Gs
’\Q \ \

(S —2>O0— ' —2>0—

Fora-Fulkerson Example

network G and flow f flow / capacity
3/4 >
Q 9
% 0/2 < 6/6 “7

O \ \value of flow

@—9/10—)@ 9/9)O 10/10 @ 19

residual network Gr 3

Ge—s—-0 9 O A1)

1 No s-t path left!

Fora-Fulkerson Example

network G and flow f

@

O 0/2
2O

Capacity of cut?

() O

residual network Gr

9/10

nodes reachable from s

flow

9/9

v

capacity

@

6/6

O

“
o value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Analysis: Ford-Fulkerson

Analysis Outline

Feasibility and value of flow:

* Show that each time we update the flow, we are routing a
feasible s-f tlow through the network

* And that value of this flow increases each time by that amount
Optimality:

* Final value of flow is the maximum possible
Running time:

 How long does it take for the algorithm to terminate”
Space:

* How much total space are we using

Feasibility of Flow

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

f' < AUGMENT(f, P), then f'is a feasible flow.

« Proof. Only need to verify constraints on the edges of P
(since f = ffor other edges). Lete = (u,v) € P

 Ifeisaforward edge: f'(e) =f(e)+ b
< fle) + (c(e) —f(e)) = c(e)
 If eis abackward edge: f'(e) =f(e) — b
> fle) — fle) =0
« Conservation constraint hold on any node in u € P:

o fi(u) =71, (u), therefore f; (u) = f (u) for both cases

Value of Flow: Making Progress

« Claim. Let f be a feasible flow in G and let P be an
augmenting path in waith bottleneck capacity b. Let

< AUGMENT(f, P), then v(f") = v(f) + b.
* Proof.

. First edge e € P must be out of § in Gf

« (P is simple so never visits s again)
« ¢ must be a forward edge (P is a path from § to 1)
« Thus f(e) increases by b, increasing v(f) by b I

 Note. Means the algorithm makes forward progress each time!

Optimality

Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T') is any s-f cut
thenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm terminates in

a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut (8, T%)
such that, v(f*) = c(8*, T*)

Proving this shows that it finds the maximum flow (and the

min cut)

This also proves the max-flow min-cut theorem

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof.
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
O w0
Q R
N 0/2 z 6/6 -
. \0\ & ‘0 value of flow
Capacity of cut? l
@ 9/10 Q 9/9 Q 10/10 @ 19
residual network Gs 3
| O
nodes reachable from s ©
> 7
2 6
O 7

Ge—+—-0 9 O A1)

1 No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s- flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(8*, T™).

Proof.

Let % = {v | visreachable from sin G¢}, T* = V — §*
s this an s-f cut?

e sESteT SUT=VandSNT =g

Consideranedge e = u — vwithu € S*,v € T*, then what
can we say about f(e)?

» fle) = c(e)

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — vwithv € S*, w € T%, then what
can we say about f(e)?

Recall: Ford-Fulkerson Example

network G and flow f flow\ / capacity
O w0
Q R
N 0/2 z 6/6 -
. \0\ & ‘0 value of flow
Capacity of cut? l
@ 9/10 Q 9/9 Q 10/10 @ 19
residual network Gs 3
| O
nodes reachable from s ©
> 7
2 6
O 7

Ge—+—-0 9 O A1)

1 No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

|s this an s-f cut?
e sES,tEeT, SUT=VandSNT =g

Consideranedge e = w — v withv € §*,w € T™, then what
can we say about f(e)?

» fle)=0

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there exists a cut

(§*, T*) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and all
edges entering $* have zero flow

V() = JoulS™) = Jin(S*) = Joud $*) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be thatv(f) < (n— 1)C

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Performance

FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

« (QOperations in each iteration”

. Find an augmenting path in G,

 Augment flow on path

. Update Gf

Ford-Fulkerson Running Time

Claim. Ford-Fulkerson can be implemented to run in time

O(nmC), wherem = |E| > n—1and C = maxc(s = u).

Proof. Time taken by each iteration:

Finding an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

Augmenting flow in P takes O(n) time
Given new flow, we can build new residual graph in O(m) time

Overall, O(m) time per iteration B

