Dynamic Programming Examples

Sam McCauley

April 5, 2824

Welcome Back!

- Assignment 4 in last night
- Assignment 5 out tonight
- Group assignment
- Last assignment before midterm-make sure you get good practice
- Last question might rely on material from Monday depending on how far we get
- Should mostly finish with DP today; start Network Flows Monday
- Questions?

Knapsack

Today: Weight limit only

Knapsack

- You are packing a bag, with a weight capacity C
- You have a collection of items to put in your bag
- Each item i has a weight w_{i} and a value v_{i} (both nonnegative integers)
- Choose a subset of items with total weight at most C
- Goal: maximize the total value of the items you pack

Knapsack

From Last Class:

- Does greedy work? How could we greedily pack a bag?
- Option 1: pick the highest-value item. Counterexample?
- Option 2: pick the lowest-weight item. Counterexample?
- Option 3: pick the item maximizing value/weight. Counterexample?

Recursive Knapsack

- Goal for the next portion of class: come up with the dynamic program for knapsack together [On Board \#1]
- There are likely to be some false starts! I'm not writing the solution line by line.
- (Also there are some ideas that don't work that I specifically want to discuss :) so we may circle back to some suggestions)

Recursive Knapsack Solution

- Subproblem: (i, c) : what is the largest-value solution among the first i items with total weight at most c ?
- Memoization structure: $n \times(C+1)$ matrix (storing $\operatorname{OPT}(i, c)$ for $i \in\{1, \ldots, n\}$ and $c \in\{\boldsymbol{\theta}, \ldots, C\}$.
- Recurrence: $\operatorname{OPT}(i, c)=\max \left\{O P T(i-1, c), v_{i}+O P T\left(i-1, c-w_{i}\right)\right\}$ if $w_{i} \leq c$

$$
O P T(i, c)=O P T(i-1, c) \text { otherwise. }
$$

- Final answer: OPT (n, C)
- Before moving forward: what subproblems do we need to solve in order to fill in OPT (i, c) ?
- In what order should we fill out the table?
- Base cases?
- Answer: we need all entries in OPT(i-1,c) to fill out any entry in OPT(i, c). So go item by item. Our base case must fill out all entries in $\operatorname{OPT}(1, c)$.

Recursive Knapsack Solution

- (recall) Memoization structure: $n \times(C+1)$ matrix (storing $\operatorname{OPT}(i, c)$ for $i \in\{1, \ldots, n\}$ and $c \in\{\boldsymbol{\theta}, \ldots, C\})$.
- Evaluation order: Row-major order (row by row: fill in OPT (i, c) for $c \in\{\theta, \ldots, C\}$ before filling in $\operatorname{OPT}(i+1, c)$ for $c \in\{1, \ldots, C\})$.
- Base cases: $\operatorname{OPT}(1, c)=v_{1}$ if $c \geq w_{1}, \operatorname{OPT}(1, c)=\theta$ if $c<w_{1}$.
- Space: $O(n C)$ Time: $O(n C)$

A Comment on Running Time

- Running time is $O(n C)$
- In algorithms we generally want a "polynomial" running time (i.e. a polynomial in the size of the input). All running times we've seen so far in this class were polynomial.
- Is this polynomial in the size of the input?
- No! The size of the input is $O\left(n+\log _{2} C\right)$ (it takes $\log _{2} C$ bits to write C down)
- C is exponential in $\log _{2} C$. So this running time is not polynomial
- This knapsack DP is pseudopolynomial: the running time is polynomial in the value of the input, not the size

Pseudopolynomial Running Time Comments

- When is pseudopolynomial running time a big downside?
- Is this a practical problem?
- What happens when the weights of the items are not integers? Does our DP work? Can we make it work?

Knapsack: Recent Developments

- STOC 2024 papers announced last week (top theory conference)
- FIVE papers on Knapsack:
- Two that parameterize by the size of the largest item (if largest item has size w can get $O\left(n+w^{2} \log ^{4} w\right)$ time
- Two that give an arbitrarily good approximations for knapsack
- One approximation algorithm for "partition": the special case where $C=\frac{1}{2} \sum w_{i}$

