
Dynamic Programming Examples

Sam McCauley

April 5, 2024



Welcome Back!

• Assignment 4 in last night

• Assignment 5 out tonight

• Group assignment
• Last assignment before midterm—make sure you get good practice
• Last question might rely on material from Monday depending on how far we get

• Should mostly finish with DP today; start Network Flows Monday

• Questions?



Knapsack



Today: Weight limit only

We’ll come back to packing items so that they fit physically in a couple weeks.

Long story short: some of the same challenges; but even harder—DP may not work



Knapsack

• You are packing a bag, with a weight capacity C

• You have a collection of items to put in your bag

• Each item i has a weight wi and a value vi (both nonnegative integers)

• Choose a subset of items with total weight at most C

• Goal: maximize the total value of the items you pack



Knapsack

From Last Class:

• Does greedy work? How could we greedily pack a bag?

• Option 1: pick the highest-value item. Counterexample?

• Option 2: pick the lowest-weight item. Counterexample?

• Option 3: pick the item maximizing value/weight. Counterexample?



Recursive Knapsack

• Goal for the next portion of class: come up with the dynamic program for

knapsack together [On Board #1]

• There are likely to be some false starts! I’m not writing the solution line by

line.

• (Also there are some ideas that don’t work that I specifically want to discuss :)

so we may circle back to some suggestions)



Recursive Knapsack Solution

• Subproblem: (i, c): what is the largest-value solution among the first i items

with total weight at most c?

• Memoization structure: n× (C+ 1) matrix (storing OPT(i, c) for i ∈ {1, . . . , n}
and c ∈ {0, . . . ,C}.

• Recurrence: OPT(i, c) = max{OPT(i − 1, c), vi + OPT(i − 1, c− wi)} if wi ≤ c

OPT(i, c) = OPT(i − 1, c) otherwise.

• Final answer: OPT(n,C)

• Before moving forward: what subproblems do we need to solve in order to fill
in OPT(i, c)?

• In what order should we fill out the table?
• Base cases?
• Answer: we need all entries in OPT(i − 1, c) to fill out any entry in OPT(i, c). So

go item by item. Our base case must fill out all entries in OPT(1, c).



Recursive Knapsack Solution

• (recall) Memoization structure: n× (C+ 1) matrix (storing OPT(i, c) for

i ∈ {1, . . . , n} and c ∈ {0, . . . ,C}).

• Evaluation order: Row-major order (row by row: fill in OPT(i, c) for

c ∈ {0, . . . ,C} before filling in OPT(i + 1, c) for c ∈ {1, . . . ,C}).

• Base cases: OPT(1, c) = v1 if c ≥ w1, OPT(1, c) = 0 if c < w1.

• Space: O(nC) Time: O(nC)



A Comment on Running Time

• Running time is O(nC)

• In algorithms we generally want a “polynomial” running time (i.e. a polynomial

in the size of the input). All running times we’ve seen so far in this class were

polynomial.

• Is this polynomial in the size of the input?

• No! The size of the input is O(n+ log2 C) (it takes log2 C bits to write C down)

• C is exponential in log2 C. So this running time is not polynomial

• This knapsack DP is pseudopolynomial: the running time is polynomial in the

value of the input, not the size



Pseudopolynomial Running Time Comments

• When is pseudopolynomial running time a big downside?

• Is this a practical problem?

• What happens when the weights of the items are not integers? Does our DP

work? Can we make it work?



Knapsack: Recent Developments

• STOC 2024 papers announced last week (top theory conference)

• FIVE papers on Knapsack:

• Two that parameterize by the size of the largest item (if largest item has size w
can get O(n+ w2 log4 w) time

• Two that give an arbitrarily good approximations for knapsack
• One approximation algorithm for “partition”: the special case where C = 1

2

∑
wi


	Knapsack

