
Dynamic Programming Examples

Sam McCauley

April 1, 2024



Welcome Back!

• Two weeks is surprisingly short!

• Assignment 4 due Wednesday

• Individual assignment

• Only uses material from before Spring Break

• Assignment 5 out Wednesday as well

• Group assignment; last assignment before midterm

• Probably I’ll post a short, optional assignment the next week

• Today: start with something familiar, then extend to new things

• Questions?



Longest Increasing Subsequence



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1



Longest Increasing Subsequence

• Given: an arbitrary array A of length n

• Goal: find the length of the longest subsequence of elements that are in

sorted order

1 2 10 3 7 6 4 8 11 3 1

The longest increasing subsequence has length 6.



LISE Using Dynamic Programming

Subproblem: L[i] stores the longest increasing sequence ending at A[i]

• Base Case: L[0] = 1

• How to Fill in L[i]: First, create a set M consisting of all entries in A that are:

• before i in A, and
• less than A[i]

• L[i] = 1 + maxm∈M L[m]

• Running time: O(n2)

• How to find the solution: LIS = maxj L[j]



LIS Using Dynamic Programming

• First set L[0] = 1

• Fill out each L[i] by finding previous elemements smaller than i and taking the

max

• Take the max L[i] after we are done to find the LIS

• Takes Θ(i) time to fill out L[i], giving Θ(n2) time overall.

1 2 10 3 7 6 4 8 11 3 1



New Ideas for LIS



What did we leave unsolved?

• We gave a method to find the length of the LIS. What if I want the actual

elements?

• I promised that we can do better than O(n2). It’s possible to get to O(n log n)
using some clever bookkeeping.

• The recursion is the same! We just store extra information to allow us to use a
binary search rather than a linear scan to take the max

• We won’t go over this in this class—I’d rather focus on key DP principles rather
than a nontrivial technique to speed it up in one particular cae



Recovering the LIS Solution

1 2 10 3 7 6 4 8 11 3 1

• Recall: our solution cost was L[i] = 1 + maxm∈M L[m]; M consists of entries L[j]

with j < i and L[j] < L[i]

• What elements are in the LISE of A[i] (the longest increasing subsequence
that must include A[i]?

• A[i] is! And?

• All the elements in the LISE of A[m] (where m is the max above)

• What do we need to store to get the solution back?

• Store the “m” for each element! Can just store them in an array

• Doesn’t matter how we break ties

• Store −1 if there is no m (i.e. if M is empty)



Recovering the LIS Solution

Visually:

2 1 10 3 7 6 4 8 11 5

1 1 2 2 3 3 3 4 5 4



Recovering the LIS Solution

What we actually store:

Original array A:

2 1 10 3 7 6 4 8 11 5

Dynamic Programming array L:

1 1 2 2 3 3 3 4 5 4

Solution array B storing m values:

-1 -1 1 1 3 3 3 6 7 6



Recovering the LIS Solution

1 i = max value in L
2 S = ∅ // holds our solution
3 while i 6= −1:
4 add i to S
5 i = B[i]

• It took O(n2) time to fill out L and B

• How much time does it take to find the solution S using the above?

• O(n)

• Total time: O(n2) to find the LIS!



Finding DP Solutions

• Dynamic programming: use the solution to already-solved subproblems to find

solutions to a larger subproblem (a.k.a. recursion)

• To keep track of the solution: write down what subproblems we used to find

the new solution

• By backtracking through what subproblems were used for the optimal cost, we

can find the actual solution



Edit Distance



Knapsack



A familiar problem?



A familiar problem?



A familiar problem?



Packing is Hard

• Sometimes: you pack a suitcase, dishwasher, backpack, etc.

• Items don’t fit

• You take everything out and put it back in and suddenly it fits

• Can we come up with an algorithm to pack items efficiently? Can we beat

brute force?



Today: Weight limit only

We’ll come back to packing items so that they fit physically in a couple weeks.

Long story short: some of the same challenges; but even harder—DP may not work



Knapsack

• You are packing a bag, with a weight capacity C

• You have a collection of items to put in your bag

• Each item i has a weight wi and a value vi (both nonnegative integers)

• Choose a subset of items with total weight at most C

• Goal: maximize the total value of the items you pack



Knapsack

• Does greedy work? How could we greedily pack a bag?

• Option 1: pick the highest-value item. Counterexample? [On Board #1]

• Option 2: pick the lowest-weight item. Counterexample?

• Option 3: pick the item maximizing value/weight. Counterexample?



Recursive Knapsack

• Goal for the next portion of class: come up with the dynamic program for

knapsack together [On Board #2]

• There are likely to be some false starts! I’m not writing the solution line by

line.

• (Also there are some ideas that don’t work that I specifically want to discuss :)

so we may circle back to some suggestions)


	Longest Increasing Subsequence
	New Ideas for LIS
	Edit Distance
	Knapsack

