Dynamic Programming Examples

Sam McCauley
April 1, 2024



Welcome Back!

Two weeks is surprisingly short!

Assignment 4 due Wednesday

e Individual assignment

e Only uses material from before Spring Break

Assignment 5 out Wednesday as well

e Group assignment; last assignment before midterm

e Probably I'll post a short, optional assignment the next week

Today: start with something familiar, then extend to new things

Questions?



Longest Increasing Subsequence



Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

(1[2]10]3]7]6[4]8]1][3]1]




Longest Increasing Subsequence

e Given: an arbitrary array A of length n

e Goal: find the length of the longest subsequence of elements that are in
sorted order

[1[2[10]3]7[6[4]8]11][3]1]

The longest increasing subsequence has length 6.



LISE Using Dynamic Programming

Subproblem: L[i] stores the longest increasing sequence ending at A[i]

Base Case: L[®] =1

How to Fill in L[7]: First, create a set M consisting of all entries in A that are:

e beforeiin A, and
o less than A[f]

L[i] =1+ maxmem L[m]

Running time: O(n?)

How to find the solution: LIS = max; L[j]



LIS Using Dynamic Programming

First set L[®] =1

Fill out each L[i] by finding previous elemements smaller than i and taking the

max

Take the max L[i] after we are done to find the LIS

Takes O(7) time to fill out L[f], giving ©(n?) time overall.

[1]2]we]3]7]6]4]8]11]3]1]




New Ideas for LIS



What did we leave unsolved?

e We gave a method to find the [ength of the LIS. What if I want the actual
elements?

« I promised that we can do better than O(n?). It’s possible to get to O(n logn)
using some clever bookkeeping.

e The recursion is the same! We just store extra information to allow us to use a
binary search rather than a linear scan to take the max

e We won't go over this in this class—I'd rather focus on key DP principles rather
than a nontrivial technique to speed it up in one particular cae



Recovering the LIS Solution

[1]2]0]3]7]6]|4]8]11]3]1]

e Recall: our solution cost was L[i] =1+ maxmem L[m]; M consists of entries L|j]
with j < iand L[j] < L[]
e What elements are in the LISE of A[i] (the longest increasing subsequence
that must include A[i]?
o Ali] is! And?
o All the elements in the LISE of A[m] (where m is the max above)
e What do we need to store to get the solution back?
e Store the “m” for each element! Can just store them in an array
o Doesn’'t matter how we break ties

e Store —1if there is no m (i.e. if M is empty)



Recovering the LIS Solution

Visually:

[2[1][w][3]7]6]4]8]11]5]

(1l1]2]2][3[3]3]4]5]4]

e A e




Recovering the LIS Solution

What we actually store:

Original array A:

(2[1][w][3]7]6]4]8]11]5]

Dynamic Programming array L:

[1l1]2]2]3[3]3]4]5]4]

Solution array B storing m values:

Alafr]1]3[s]3]6[7]6]




Recovering the LIS Solution

i= max value 1in L
S=0 // holds our solution
while i# —1:
add i to S
i = BJ[i]
o It took O(n?) time to fill out L and B

e How much time does it take to find the solution S using the above?

e O(n)

o Total time: O(n?) to find the LIS!



Finding DP Solutions

-

e Dynamic programming: use the solution to already-solved subproblems to find
solutions to a larger subproblem (a.k.a. recursion)

e To keep track of the solution: write down what subproblems we used to find
the new solution

e By backtracking through what subproblems were used for the optimal cost, we
can find the actual solution



Edit Distance




Knapsack




A familiar problem?




A familiar problem?




A familiar problem?




Packing is Hard

Sometimes: you pack a suitcase, dishwasher, backpack, etc.

Items don't fit

You take everything out and put it back in and suddenly it fits

Can we come up with an algorithm to pack items efficiently? Can we beat
brute force?



Today: Weight limit only




Knapsack

You are packing a bag, with a weight capacity C

You have a collection of items to put in your bag

Each item i has a weight w; and a value v; (both nonnegative integers)

Choose a subset of items with fotal weight at most C

Goal: maximize the total value of the items you pack



A

EXPERT ADVICE

Knapsack

Does greedy work? How could we greedily pack a bag?

Option 1: pick the highest-value item. Counterexample? [On Board #1]

Option 2: pick the lowest-weight item. Counterexample?

Option 3: pick the item maximizing value/weight. Counterexample?



Recursive Knapsack

e Goal for the next portion of class: come up with the dynamic program for
knapsack together [On Board #2]

e There are likely to be some false starts! I'm not writing the solution line by
line.

¢ (Also there are some ideas that don’t work that I specifically want to discuss :)
so we may circle back to some suggestions)



	Longest Increasing Subsequence
	New Ideas for LIS
	Edit Distance
	Knapsack

