Edit Distance

Name: Dynamic Programming

 Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense,
and he actually had a pathological fear and hatred of the word “research”. I'm not using the term
lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term “research” in his presence. You can imagine how he felt, then, about the
term “mathematical’. ... | felt | had to do something to shield Wilson and the Air Force from the fact

that | was really doing mathematics inside the RAND Corporation. What title, what name, could |
choose?

* Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Motivation

 Edit distance: is a metric that captures the similarity
between two strings

B-globin gene

Healthy person ...G T G C{T\G GCCCAT...

Person with GTG ClCGGCCCAT,_,

p-thalassaemia

point mutation

DNA sequencing: finding similarities between two genome sequences

Motivation

 Edit distance: is a metric that captures the similarity
between two strings

GO g|e edite ditstance X S Q

Q Al [] Videos [JImages ([E News < Shopping : More Settings Tools

About 949,000,000 results (0.69 seconds)

Showing results for edit distance
Search instead for edite ditstance

Problem Defintion

« Problem. Giventwo stringsA =a, - a, - - - a, and
B=b,-b,---b, findthe edit distance between them

« Edit distance between A and B is the smallest number of the
following operations that are needed to transform A into B

 Replace a character (substitution)

e Delete a character

e |nsert a character

delete substitute insert

riddle > ridle > riple > triple

Edit distance(riddle, triple): 3

Edit Distance

Problem. Given two strings find the minimum number of edits
(letter insertions, deletions and substitutions) that transform one
string into the other

Measure of similarity between strings

For example, the edit distance between FOOD and MONEY is at
most four:

FOOD — MOOD — MOND — MONED — MONEY

Can obverse and conclude that 3 edits don’t work

Edit distance = 4 in this case

Structure of the Problem

« Problem. Giventwo stringsA =a, - a, - - - a, and
B=b,-b,---b, findthe edit distance between them

« Notice that the process of getting from string A to string B by
doing substitutions, inserts and deletes is reversible

* Inserts in one string correspond to deletes in another

. delete . substrtute . insert .
riddle > ridle > riple > triple
. insert . substrtute . delete .
riddle < ridle < riple < triple

Edit distance(riddle, triple): 3

Sequence Alignment

* We can visualize the problem of finding the edit distance as an
the problem of finding the best alignment between two strings

 Gaps in alignment represent inserts/deletes
* Mismatches in alignment represent substitutes
* Cost of an alignment = number of gaps + mismatches

 Edit distance: minimum cost alignment

Sequence Alignment

>gb|AC115706.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

Query 1650 gtgtgtgtgggtgcacatttgtgtgtgtgtgegectgtgtgtgtgggtgectgtgtgtgt 1709
ARRRRRRR N N e reerrreer F o rrrrrer LEE L TEE
Sbjct 56838 GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT 56895

Query 1710 gtg-gggcacatttgtgtgtgtgtgtgtgectgtgtgtgggtgecacatttgtgtgtgtge 1768
AR RN R L U I M M
Sbjct 56896 GTCCGGGCA------ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC 56947

Query 1769 ctgtgtgtgtgtgectgtgtgtgggggtgecacatttigtgtgtgtgtgtgectgtgtgtgg 1828
N DI I

Sbjct 56948 CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT 57007

Color key for alignment scores

[0 wso [NESSNBa00N 200 | .
= BLAST: Basic Local
—...Alighment Search Tool
. : ‘ "]"\ \ -

Sequence Alignment

prin-ciple
[T %X
prinncipal
(1 gap, 2 mm)

misspell

mis-pell
(1 gap)

aa-bb-ccaabb

(X [

ababbbc-a-b-
(5 gaps, 1 mm)

prin-cip-1le

prinncipal-
(3 gaps, 0 mm)

prehistoric

—-—=-historic
(3 gaps)

al-go-rithm-
[xx [[x |
alKhwariz-mi
(4 gaps, 3 mm)

https://www.cs.cmu.edu/~ckingsf/class/02713-s13

Sequence Alignment

* These alignments are a way of visualizing the edit distance
between two strings

* For every sequence of edits between two strings, we can draw
a sequence alignment

delete substitute insert

riddle > ridle > riple > triple

riddle
NN
tri ple

Sequence Alignment Problem

« Find an alignment of the two strings A, B where

. each character a; in A is matched to a string b; in B or
unmatched

. each character b; in A is matched to a string g; in A or
unmatched

. cost(a;, b) =0ifa; = b, else cost(a;, b;) =1
« cost of an unmatched letter (gap) = 1

Total cost = # unmatched (gaps) + Z cost(a;, b))

a;,b;

 Goal. Compute edit distance by finding an alignment of the
minimum total cost

Sequence Alignment

* The problem of finding the smallest edit distance is the problem
of finding the best alignment

* [t's just drawn differently

* Any gquestions about this?

delete substitute insert

riddle > ridle > riple > triple

riddle
NN
tri ple

Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

e Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

 Analyze space and running time. As always!

How to Come Up with a DP

Ask yourself two questions:

 What subproblem should |
use’

 How can | recursively find
the solution to a
subproblem (using the
solution to smaller
subproblems)?

Recursive Structure

Imagine for a second that we have the mismatch/gap
representation of the shortest edit sequence of two strings

How can | reduce this to a smaller subproblem?

It we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

> >
—
U
e B |
— —
-

O X

Recursive Structure

* Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

* How can | reduce this to a smaller subproblem?

* |f we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

(cost 2) (cost 2) (cost O)
riddle ridd]l e
I N
tri ple tri pl e

Recursive Structure

* Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

* How can | reduce this to a smaller subproblem?

* |f we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

(cost 3) (cost 2) (cost 1)
riddlt ridd]l t
I N
ri ple tri pl e

Recursive Structure

* Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

* How can | reduce this to a smaller subproblem?

* |f we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

(cost 4) (cost 3) (cost 1)
duckie d uck. e
I (A A S

truck truck

How to Come Up with a DP

Ask yourself two questions:

 How can | recursively find
the solution to a
subproblem (using the
solution to smaller
subproblems)?

Recursion: “cut oft” last column, recurse on remaining strings.
Of course, we don’t know what the last column looks like.
What are the possibilities”? [on board #1]

Recurrence

* |magine the optimal alignment between the two strings
 What are the possibilities for the last column?

. It could be that both letters match: cost

. It could be that both letters do not match: cost 1

* |t could be that there an unmatched character (gap):

either from A or from B: cost 1

ALT IR ALTR g U ALTRU ALTR

ALGO | R| [ALGO I R| [ALGO | R ALGOR ‘
U

How to Come Up with a DP

Ask yourself two questions:

 What subproblem should |
use’

 How can | recursively find
the solution to a
subproblem

Recursion “cuts oft” the last column. How should we define
the subproblem to allow us to do this?
How does “cutting off” the last column affect the strings?

Subproblem

 Subproblem

Edit(Z, 7): edit distance between

where)0 <i<nand0<;j<m

the strings a; - a, - - -a;and by - b, - - -

* Final answer

Edit(n, m)

Base Cases

We have to till out a two-dimensional array to memoize
our recursive dynamic program

Let us think about which rows/columns can we fill initially

Edit(z,0): Min number of edits to transform a string of
length 1 to an empty string

Edit(i, 0) =1 for0 <i < n

Edit(0, j) =jfor0<j<m

Recurrence

Three possibilities for the last column in the optimal
alignmen’[of al . 612 c e ai and bl . bz © e b]
Case 1. Only one row has a character:

- Case 1a. Letter a; is unmatched
Edit(7, j) = Edit(i — 1,j) + 1

« Case 1b. Letter bj is unmatched
Edit(7, j) = Edit(i,j — 1) + 1

Case 2: Both rows have characters:

e (Case 2a. Same characters:
Edit(z, j) = Editt—1, j — 1)

e (Case 2b. Different characters:
Edit(z, j) = EditG—1, j— 1)+ 1

ALGO
ALTRU

\R

ALGOR
ALTR

.

ALGO
ALT

R
R

ALTR

ALGO I

R
U

Final Recurrence

e« Forl <i<mandl < j < m wehave:

Edit(s,§ — 1) + 1
Edit(z, j) = min Edit(s — 1,7) + 1
Edit(s — 1,5 — 1) + (a; # bj)

. Uses the shorthand: (a; # bj) which is 1 if it is true (and
they mismatch), and zero otherwise

From Recurrence to DP

We can now transform it into a dynamic program

Memoization Structure: We can memoize all possible values of

Edit(Z, j) in a table/ two-dimensional array of size O(nm):
Store Edit[i, j]ina2D array; 0 <i<nand0<j<m
Evaluation order:
* |sinteresting for a 2D problem
 Based on dependencies between subproblems

 We want values required to be already computed

From Recurrence to DP

Evaluation order

* We can fill in row major order, which is row by row from top
down, each row from left to right: when we reach an entry in the
table, it depends only on filled-in entries

Space and Time

« The memoization uses O(nm) space

« We can compute each Edit[i, j]in O(1) time

« Overall running time: O(nm)

Memoization Table: Example

e Memoization table for ALGORITHM and ALTRUISTIC

e Bold numbers indicate where characters are same

« Horizontal arrow: deletion in A ALGORTITHM
01 23456 789
« Vertical arrow: insertion in A All1 0123 456 .78
» Diagonal: substitution L2 101234567
. T|[3 2 1 1234 456

* Bold red: free substitution
RI4 3 2 2 2 23456
 Only draw an arrow if used in DP uls 2 37333 3. 456
* Any directed path of arrows 1|16 5 4 4 4 4 3 456
from top left to bottom right s|l7 6 555 5 4 4 5 6
repregents an optimal s 7 6666 5 s e

edit distance sequence

119 8 7 7 7 7 6 5 56
cl10 9 8 8 8 8 7 6 6 6

Reconstructing the Edits

e We don'’t need to store the arrow!

e (Can be reconstructed on the fly in

O(1) time using the numerical values AL GORTITHM
0123456 789
* Once the table is built, we can All 0123 45678
construct the shortest edit L|2 1 01234567
distance sequence in O(n + m)time T|3 2 1 1234 4 56
R[4 3 2 2 2 23456
Ul|5 4 3 3 3 3 3456
I|6 5 4 4 4 4 3 456
S|7 6 55 5 5 4 4 5 6
T|8 7 6 6 6 6 5 456
1/19 8 7 7 7 7 6 5 56
c|]10 9 8 8 8 8 7 6 6 6

Edit Distance Fun Facts

 (Can we compute edit distance using less space”?
« O(nm) is huge for large genomic sequences

. If we only care cost cost, we only need O(n + m)
space (just keep row above current)

e But this doesn't let us recreate the path

* Hirschberg's algorithm: Can compute the actual path
(edits) in O(nm) time using O(n + m) space

 Neat divide-and-conqguer trick to save space

Edit Distance Fun Facts

Can we do better than O(n?) if n = m?

Yes: can get O(n?/ log2 n) [Masek Paterson '80]

* Uses “bit packing” trick called “Four Russians
Technigue”)

Can we get an algorithm for edit distance with runtime

O(n*79), e.qg. O(n'?)?

* Probably not (unless a well-known conjecture breaks)

Edit Distance Fun Facts

Edit Distance Cannot Be Computed
in Strongly Subquadratic Time
(unless SETH is false)

Arturs Backurs
MIT

backurs@mit.edu

ABSTRACT

The edit distance (a.k.a. the Levenshtein distance) between
two strings is defined as the minimum number of insertions,
deletions or substitutions of symbols needed to transform
one string into another. The problem of computing the
edit distance between two strings is a classical computa-
tional task, with a well-known algorithm based on dynamic
programming. Unfortunately, all known algorithms for this
problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic
running time bounds known for the problem of computing
edit distance might be tight. Specifically, we show that, if
the edit distance can be computed in time O(n*~°%) for some
constant § > 0, then the satisfiability of conjunctive normal
form formulas with NV variables and M clauses can be solved
in time MPM20=9N for a constant € > 0. The latter re-
sult would violate the Strong Exponential Time Hypothesis,
which postulates that such algorithms do not exist.

Piotr Indyk
MIT
indyk@mit.edu

with many applications in computational biology, natural
language processing and information theory. The problem of
computing the edit distance between two strings is a classical
computational task, with a well-known algorithm based on
dynamic programming. Unfortunately, that algorithm runs
in quadratic time, which is prohibitive for long sequences
(e.g., the human genome consists of roughly 3 billions base
pairs). A considerable effort has been invested into designing
faster algorithms, either by assuming that the edit distance
is bounded, by considering the average case or by resorting
to approximation'. However, the fastest known exact algo-
rithm, due to [MP80], has a running time of O(n?/log® n)
for sequences of length n, which is still nearly quadratic.

In this paper we provide evidence that the (near)-quadratic
running time bounds known for this problem might, in fact,
be tight. Specifically, we show that if the edit distance can
be computed in time O(n*~%) for some constant § > 0, then
the satisfiability of conjunctive normal form (CNF) formu-
las with N variables and M clauses can be solved in time

Edit Distance Fun Facts

« Can approximate to any 1 + € factor in O(n) time!
[Andoni Nosatski '20]

A figure from [CDGKS'18], the first approximation algorithm for edit distance.
The idea: rule out large portions of the dynamic programming table

Edit Distance Fun Facts

o Still an extremely active area of research

« STOC 2024 (top theory conference) has a paper on edit
distance "sketching” announced last week

index o 1 2 3 4 5 6 7 8 9 10

i

