
Edit Distance

Name: Dynamic Programming
• Formalized by Richard Bellman in the 1950s 

 
 
 
 
 
 
 

• Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Motivation
• Edit distance: is a metric that captures the similarity

between two strings

DNA sequencing: finding similarities between two genome sequences

Motivation
• Edit distance: is a metric that captures the similarity

between two strings

Problem Defintion
• Problem. Given two strings and

 find the edit distance between them

• Edit distance between and is the smallest number of the
following operations that are needed to transform into

• Replace a character (substitution)

• Delete a character

• Insert a character

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B
A B

riddle ridle riple triple
delete substitute insert

Edit distance(riddle, triple): 3

Edit Distance
• Problem. Given two strings find the minimum number of edits

(letter insertions, deletions and substitutions) that transform one
string into the other

• Measure of similarity between strings

• For example, the edit distance between FOOD and MONEY is at
most four: 
 

• Can obverse and conclude that 3 edits don’t work

• Edit distance = 4 in this case

Structure of the Problem
• Problem. Given two strings and

 find the edit distance between them

• Notice that the process of getting from string to string by
doing substitutions, inserts and deletes is reversible

• Inserts in one string correspond to deletes in another

A = a1 ⋅ a2 ⋅ ⋅ ⋅ an
B = b1 ⋅ b2 ⋅ ⋅ ⋅ bm

A B

riddle ridle riple triple
insert substitute delete

Edit distance(riddle, triple): 3

riddle ridle riple triple
delete substitute insert

Sequence Alignment
• We can visualize the problem of finding the edit distance as an

the problem of finding the best alignment between two strings

• Gaps in alignment represent inserts/deletes

• Mismatches in alignment represent substitutes

• Cost of an alignment = number of gaps + mismatches

• Edit distance: minimum cost alignment

r i d d l e

 t r i p l e
cost = 7

r i d d l e

 t r i p l e
cost = 3

Sequence Alignment

https://www.cs.cmu.edu/~ckingsf/class/02713-s13

Sequence Alignment

Sequence Alignment
• These alignments are a way of visualizing the edit distance

between two strings

• For every sequence of edits between two strings, we can draw
a sequence alignment

riddle ridle riple triple
delete substitute insert

r i d d l e

 t r i p l e

Sequence Alignment Problem
• Find an alignment of the two strings where

• each character in is matched to a string in B or
unmatched

• each character in is matched to a string in or
unmatched

• cost() if , else cost()

• cost of an unmatched letter (gap)

•
Total cost =

• Goal. Compute edit distance by finding an alignment of the
minimum total cost

A, B
ai A bj

bj A ai A

ai, bj = 0 ai = bj ai, bj = 1

= 1

unmatched (gaps) + ∑
ai,bj

cost(ai, bj)

Sequence Alignment
• The problem of finding the smallest edit distance is the problem

of finding the best alignment

• It’s just drawn differently

• Any questions about this?

riddle ridle riple triple
delete substitute insert

r i d d l e

 t r i p l e

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

How to Come Up with a DP
Ask yourself two questions:

• What subproblem should I
use?

• How can I recursively find
the solution to a
subproblem (using the
solution to smaller
subproblems)?

Recursive Structure
• Imagine for a second that we have the mismatch/gap

representation of the shortest edit sequence of two strings

• How can I reduce this to a smaller subproblem?

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

Recursive Structure
• Suppose we have the mismatch/gap representation of the

shortest edit sequence of two strings

• How can I reduce this to a smaller subproblem?

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

r i d d l e

 t r i p l e

r i d d l

 t r i p l

e

e
= +

(cost 2) (cost 2) (cost 0)

Recursive Structure
• Suppose we have the mismatch/gap representation of the

shortest edit sequence of two strings

• How can I reduce this to a smaller subproblem?

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

r i d d l t

 t r i p l e

r i d d l

 t r i p l

t

e
= +

(cost 3) (cost 2) (cost 1)

Recursive Structure
• Suppose we have the mismatch/gap representation of the

shortest edit sequence of two strings

• How can I reduce this to a smaller subproblem?

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

d u c k i e

 t r u c k

e
= +

 t r u c k

d u c k i

(cost 4) (cost 3) (cost 1)

How to Come Up with a DP
Ask yourself two questions:

• What subproblem should I
use?

• How can I recursively find
the solution to a
subproblem (using the
solution to smaller
subproblems)?

Recursion: “cut off” last column, recurse on remaining strings.
Of course, we don’t know what the last column looks like.

What are the possibilities? [on board #1]

Recurrence
• Imagine the optimal alignment between the two strings

• What are the possibilities for the last column?

• It could be that both letters match: cost

• It could be that both letters do not match: cost

• It could be that there an unmatched character (gap):
either from or from : cost

0

1

A B 1

How to Come Up with a DP
Ask yourself two questions:

• What subproblem should I
use?

• How can I recursively find
the solution to a
subproblem

Recursion “cuts off” the last column. How should we define
the subproblem to allow us to do this?

How does “cutting off” the last column affect the strings?

Subproblem
• Subproblem  
 
 
 
 
 

• Final answer

: edit distance between  
the strings and ,

where and

Edit(i, j)
a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

0 ≤ i ≤ n 0 ≤ j ≤ m

Edit(n, m)

Base Cases
• We have to fill out a two-dimensional array to memoize

our recursive dynamic program

• Let us think about which rows/columns can we fill initially

• : Min number of edits to transform a string of
length to an empty string
Edit(i,0)

i

 for

Edit for

Edit(i, 0) = i 0 ≤ i ≤ n

(0, j) = j 0 ≤ j ≤ m

Recurrence
• Three possibilities for the last column in the optimal

alignment of and :

• Case 1. Only one row has a character:

• Case 1a. Letter is unmatched

• Case 1b. Letter is unmatched

• Case 2: Both rows have characters:

• Case 2a. Same characters: 

• Case 2b. Different characters: 

a1 ⋅ a2 ⋅ ⋅ ⋅ ai b1 ⋅ b2 ⋅ ⋅ ⋅ bj

ai
Edit(i, j) = Edit(i − 1,j) + 1

bj
Edit(i, j) = Edit(i, j − 1) + 1

Edit(i, j) = Edit(i − 1, j − 1)

Edit(i, j) = Edit(i − 1, j − 1) + 1

Final Recurrence
• For and , we have: 

 
 
 
 
 
 
 

• Uses the shorthand: which is 1 if it is true (and
they mismatch), and zero otherwise

1 ≤ i ≤ n 1 ≤ j ≤ m

(ai ≠ bj)

From Recurrence to DP
• We can now transform it into a dynamic program

• Memoization Structure: We can memoize all possible values of
 in a table/ two-dimensional array of size :

• Store in a 2D array; and

• Evaluation order:

• Is interesting for a 2D problem

• Based on dependencies between subproblems

• We want values required to be already computed

Edit(i, j) O(nm)

Edit[i, j] 0 ≤ i ≤ n 0 ≤ j ≤ m

From Recurrence to DP
• Evaluation order

• We can fill in row major order, which is row by row from top
down, each row from left to right: when we reach an entry in the
table, it depends only on filled-in entries

Space and Time
• The memoization uses space

• We can compute each in time

• Overall running time:

O(nm)
Edit[i, j] O(1)

O(nm)

Memoization Table: Example
• Memoization table for ALGORITHM and ALTRUISTIC

• Bold numbers indicate where characters are same

• Horizontal arrow: deletion in

• Vertical arrow: insertion in

• Diagonal: substitution

• Bold red: free substitution

• Only draw an arrow if used in DP

• Any directed path of arrows  
from top left to bottom right  
represents an optimal  
edit distance sequence

A
A

Reconstructing the Edits
• We don’t need to store the arrow!

• Can be reconstructed on the fly in
 time using the numerical values

• Once the table is built, we can 
construct the shortest edit 
distance sequence in time

O(1)

O(n + m)

Edit Distance Fun Facts
• Can we compute edit distance using less space?

• is huge for large genomic sequences

• If we only care cost cost, we only need
space (just keep row above current)

• But this doesn't let us recreate the path

• Hirschberg's algorithm: Can compute the actual path
(edits) in time using space

• Neat divide-and-conquer trick to save space

O(nm)

O(n + m)

O(nm) O(n + m)

Edit Distance Fun Facts
• Can we do better than if ?

• Yes; can get [Masek Paterson ’80]

• Uses “bit packing” trick called “Four Russians
Technique”)

• Can we get an algorithm for edit distance with runtime
, e.g. ?

• Probably not (unless a well-known conjecture breaks)

O(n2) n = m

O(n2/log2 n)

O(n2−ϵ) O(n1.9)

Edit Distance Fun Facts

Edit Distance Fun Facts
• Can approximate to any factor in time!

[Andoni Nosatski ’20]
1 + ϵ O(n)

A figure from [CDGKS’18], the first approximation algorithm for edit distance.
The idea: rule out large portions of the dynamic programming table

Edit Distance Fun Facts
• Still an extremely active area of research

• STOC 2024 (top theory conference) has a paper on edit
distance “sketching” announced last week

