Weighted Scheduling

Weighted Scheduling

Job scheduling. Suppose you have a machine that can run one job at a time; n job requests, where each job i has a start time s_{i}, finish time f_{i} and weight $v_{i} \geq 0$.

Weighted Scheduling

- Input. Given n intervals labeled $1, \ldots, n$ with starting and finishing times $\left(s_{1}, f_{1}\right), \ldots,\left(s_{n}, f_{n}\right)$ and each interval has a non-negative value or weight v_{i}
- Goal. We must select non-overlapping (compatible) intervals with the maximum weight. That is, our goal is to find $I \subseteq\{1, \ldots, n\}$ that are pairwise non-overlapping that maximize $\sum_{i \in I} v_{i}$

Remember Greedy?

- Greedy algorithm earliest-finish-time first
- Considers jobs in order of finish times
- Greedily picks jobs that are non-overlapping
- We proved greedy is optimal when all weights are one
- How about the weighted interval scheduling problem?

Different Greedy?

- A different greedy algorithm: greedily select intervals with the maximum weights, remove overlapping intervals
- Does that work?

Let's Think Recursively

- The heart of dynamic programming is recursively thinking
- Coming up with a smaller subproblem which has the same optimal structure as the original problem
- First, to make things easy, we will focus on the total value of the optimal solution, rather than the actual optimal set, that is,
- Optimal value. Find the largest $\sum_{i \in I} v_{i}$ where intervals in I are compatible.
- Opt-Schedule (n) : the value of the optimal schedule of n intervals

Let's Think Recursively

- Consider the last interval: either it is in the optimal solution or not
- Whatever the overall optimal solution is, we can find it by considering both cases and taking the maximum over them
- Case 1. Last interval is not in the optimal solution
- Remove it, we now have a smaller subproblem!
- Case 2. Last interval is in the optimal solution
- Means anything overlapping with this interval cannot be in the solution, remove them
- We have a smaller subproblem!

Formalize the Subproblem

Opt-Schedule (i) : value of the optimal schedule that only uses intervals $\{1, \ldots, i\}$, for $0 \leq i \leq n$

Intervals sorted by finishing time, so:
Opt-Schedule(i): value of the optimal schedule that finishes by the time i finishes

Base Case \& Final Answer

Opt-Schedule (i): value of the optimal schedule that only uses intervals $\{1, \ldots, i\}$, for $0 \leq i \leq n$

Base Case. Opt-Schedule $(0)=0$

Goal (Final answer.) Opt-Schedule(n)

Recurrence

- How do we go from one subproblem to the next?
- The recurrence says how we can compute Opt-Schedule(i) by using values of Opt-Schedule (j) where $j<i$
- Case 1. Say interval i is not in the optimal solution, can we write the recurrence for this case?
- Opt-Schedule $(i)=$ Opt-Schedule $(i-1)$
- Case 2. Say interval i is in the optimal solution, what is the smaller subproblem we should recurse on in this case?

Recurrence

- The recurrence says how we can compute Opt-Schedule(i) by using values of Opt-Schedule (j) where $j<i$
- Case 1. Say interval i is not in the optimal solution:
- Opt-Schedule $(i)=$ Opt-Schedule $(i-1)$
- Case 2. Say interval i is in the optimal solution:
- No interval $j<i$ that overlaps with i can be in solution
- Need to remove all such intervals to get our smaller subproblem
- How do we do that?

Helpful Information

- Suppose the intervals are sorted by finish times
- Let $p(j)$ be the predecessor of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- Define $p(j)=0$ if all intervals $i<j$ overlap with j

Helpful Information

- Let $p(j)$ be the predecessor of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- $p(8)=?, p(7)=?, p(2)=$?

Helpful Information

- Let $p(j)$ be the predecessor of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- $p(8)=1, p(7)=3, p(2)=0$

Recurrence

- The recurrence says how we can compute Opt-Schedule(i) by using values of Opt-Schedule (j) where $j<i$
- Case 1. Say interval i is not in the optimal solution:
- Opt-Schedule $(i)=$ Opt-Schedule $(i-1)$
- Case 2. Say interval i is in the optimal solution:
- Suppose I know $p(i)$ predecessor of i, how can I write the recurrence for this case?
- Opt-Schedule $(i)=$ Opt-Schedule $(p(i))+v_{i}$

DP Recurrence

Opt-Schedule $(i)=$ $\max \left\{\right.$ Opt-Schedule $\left.(i-1), v_{i}+\operatorname{Opt-Schedule}(p(i))\right\}$

Filling Out the DP Table

Filling Out the DP Table

Filling Out the DP Table

0	10	10		
0	1	2	3	4

Filling Out the DP Table

0	10	10	10	18
0	1	2	3	4

Summary of DP

- Subproblem.
- For $0 \leq i \leq n$, let Opt-Schedule(i) be the value of the optimal schedule that only uses intervals $\{1, \ldots, i\}$
- Notice the optimal substructure
- Recurrence. Going from one subproblem to the next
- Opt-Schedule $(i)=$ $\max \left\{\right.$ Opt-Schedule $(i-1), v_{i}+$ Opt-Schedule $\left.(p(i))\right\}$
- Base case.
- Opt-Scheduler $(0)=0$ (no intervals to schedule)

Remaining Pieces

- Final answer in terms of subproblem?
- Opt-Schedule(n)
- Evaluation order (in what order can be fill the DP table)
- $i=0 \rightarrow n$, start with base case and use that to fill the rest
- Memoization data structure: 1-D array
- Final piece:
- Running time and space
- Space: $O(n)$
- Time: preprocessing + time to fill array

Computing $p[i]$

- How quickly can we compute $p[i]$?
- Can do a linear scan for each i : $O(i)$ per interval
- Would be $O\left(n^{2}\right)$ overall
- We have intervals sorted by their finish time $F[1, \ldots, n]$
- Can we use this?
- For each interval, we can binary search over $F[1, \ldots, n]$, to need to find the first $j<i$ such that $f_{j} \leq s_{i}$
- $O(\log n)$ for each interval
- Time $O(n \log n)$ to compute the array $p[]$

Running Time

- How many subproblems do we need to solve?
- $O(n)$
- How long does it take to solve a subproblem?
- $O(1)$ to take the max
- Preprocessing time:
- Need to sort; $O(n \log n)$
- Need to find $p(i)$ for all each $i: O(n \log n)$
- Overall: $O(n \log n)+O(n)=O(n \log n)$
- Space: $O(n)$

Recreating Chosen Intervals

- Suppose we have $M[]$ of optimal solutions
- How can we reconstruct the optimal set of intervals?
-When should an interval be included in the optimal?
- Depending on which of the two cases results in max tells us whether or not interval i is include:
- Opt-Schedule $(i)=$ $\max \left\{\right.$ Opt-Schedule $(i-1), v_{i}+$ Opt-Schedule $\left.(p(i))\right\}$

This value is bigger: i not in OPT

This value is bigger: i is in OPT

Recursive Solution?

Suppose for now that we do not memoize: just a divide and conquer recursion approach to the problem.

Opt-Schedule(i):

- If $j=0$, return 0
- Else
- Return max(Opt-Schedule $\left.(j-1), v_{j}+\operatorname{Opt-Schedule~}(p(j))\right)$
- How many recursive calls in the worst case?
- Depends on $p(i)$
- Can we create a bad instance?

Recursive Solution: Exponential

- For this example, asymptotically how many recursive calls?
- Grows like the Fibonacci sequence (exponential):

$$
T(n)=T(n-1)+T(n-2)+O(1)
$$

- Lots of redundancy!
- How many distinct subproblems are there to solve?
- Opt-Schedule(i) for $1 \leq i \leq n+1$

recursion tree

Dynamic Programming Tips

- Recurrence/subproblem is the key!
- DP is a lot like divide and conquer, while writing extra things down
- When coming to a new problem, ask yourself what subproblems may be useful? How can you break that subproblem into smaller subproblems?
- Be clear while writing the subproblem and recurrence!
- In DP we usually keep track of the cost of a solution, rather than the solution itself

Longest Increasing Subsequence

Longest Increasing Subsequence

- Given a sequence of integers as an array $A[1, \ldots n]$, find the longest subsequence whose elements are in increasing order
- Find the longest possible sequence of indices $1 \leq i_{1}<i_{2}<\ldots<i_{\ell} \leq n$ such that $A\left[i_{k}\right]<A\left[i_{k+1}\right]$

12103764811

12103764811

LIS: Length 6

A different increasing
subsequence that is length 4

Longest Increasing Subsequence

- Given a sequence of integers as an array $A[1, \ldots n]$, find the longest subsequence whose elements are in increasing order
- Find the longest possible sequence of indices

$$
1 \leq i_{1}<i_{2}<\ldots<i_{\ell} \leq n \text { such that } A\left[i_{k}\right]<A\left[i_{k+1}\right]
$$

12103764811

- Length of the longest increasing subsequence above is 6
- To simplify, we will only compute length of the LIS

Formalize the Subproblem

$L[i]$: length of the longest increasing subsequence in $A[1, \ldots, i]$ that ends at (and includes) $A[i]$

Identify the Base Case

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=$?

Identify the Final Answer

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=1$

Final answer. ?

Base Case \& Final Answer

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Base Case. $L[1]=1$

Final answer. $\quad \max L[i]$
$1 \leq i \leq n$

Recurrence

- How do we go from one subproblem to the next?
- That is, how do we compute $L[i]$ assuming I know the values of $L[1], \ldots, L[i-1]$

12103764811

Length of the LIS ending at 2?

Length of the LIS ending at 10 ?

Recurrence

- Let's say we know the length of the longest subsequence ending at $A[1], A[2], \ldots A[i-1]$
- What is the longest subsequence ending at $A[i]$?
- $A[i]$ could potential extend an earlier subsequence:
- Can extend a longest subsequence ending at some $A[k]$, with $A[k]<A[i]$, but which k ?
- OK, let's try all k to get the answer
- Or it doesn't extend any earlier increasing subsequence

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

How do we know 3 extends a past LIS?

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

> A
> $L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

Example: Building a Recurrence

$L[i]$: length of the longest increasing subsequence in A that ends at (and includes) $A[i]$

$L[j]$ extends an LIS ending at $L[i]$ if $A[j]>A[i]$

LIS: Recurrence

$L[j]=1+\max \{L[i] \mid i<j$ and $A[i]<A[j]\}$ Assuming $\max \varnothing=0$

Recursion \rightarrow DP

- If we used recursion (without memoization) we'll be inefficient-we'll do a lot of repeated work
- Once you have your recurrence, the remaining pieces of the dynamic programming algorithm are
- Evaluation order. In what order should I evaluate my subproblems so that everything I need is available to evaluate a new subproblem?
- For LIS we just left-to-right on array indices
- Memoization structure. Need a table (array or multi-dimensional array) to store computed values
- For LIS, we just need a one dimensional array
- For others, we may need a table (two-dimensional array)

LIS Analysis

- Correctness
- Follows from the recurrence using induction
- Running time?
- Solve $O(n)$ subproblems
- Each one requires $O(n)$ time to take the min
- $O\left(n^{2}\right)$
- An Improved DP solution takes $O(n \log n)$
- Space?
- $O(n)$ to store array $L[]$

