
Weighted Scheduling

Weighted Scheduling
Job scheduling. Suppose you have a machine that can run one
job at a time; job requests, where each job has a start time
finish time and weight .

n i si,
fi vi ≥ 0

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatibleEach job has a value

10
5

7
2

4
8

1
3

Weighted Scheduling
• Input. Given intervals labeled with starting and finishing

times and each interval has a non-negative
value or weight  

• Goal. We must select non-overlapping (compatible) intervals with
the maximum weight. That is, our goal is to find that
are pairwise non-overlapping that maximize

n 1,…, n
(s1, f1), …, (sn, fn)

vi

I ⊆ {1,…, n}

∑
i∈I

vi

Remember Greedy?
• Greedy algorithm earliest-finish-time first

• Considers jobs in order of finish times

• Greedily picks jobs that are non-overlapping

• We proved greedy is optimal when all weights are one

• How about the weighted interval scheduling problem?

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1

Greedy fails spectacularly

Different Greedy?
• A different greedy algorithm: greedily select intervals with the

maximum weights, remove overlapping intervals

• Does that work?

weight = 10

weight = 9 each

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a c d

Greedy fails spectacularly

Let’s Think Recursively
• The heart of dynamic programming is recursively thinking

• Coming up with a smaller subproblem which has the same
optimal structure as the original problem

• First, to make things easy, we will focus on the total value of the
optimal solution, rather than the actual optimal set, that is,

• Optimal value.  
Find the largest where intervals in are compatible.

• : the value of the optimal schedule of intervals

∑
i∈I

vi I

Opt-Schedule(n) n

Let’s Think Recursively
• Consider the last interval: either it is in the optimal solution or not

• Whatever the overall optimal solution is, we can find it by
considering both cases and taking the maximum over them

• Case 1. Last interval is not in the optimal solution

• Remove it, we now have a smaller subproblem!

• Case 2. Last interval is in the optimal solution

• Means anything overlapping with this interval cannot be in
the solution, remove them

• We have a smaller subproblem!

Formalize the Subproblem

: value of the optimal schedule
that only uses intervals , for
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Intervals sorted by finishing time, so:

: value of the optimal schedule
that finishes by the time finishes
Opt-Schedule(i)

i

Base Case & Final Answer

: value of the optimal schedule
that only uses intervals , for
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Base Case. Opt-Schedule(0) = 0

Goal (Final answer.) Opt-Schedule(n)

Recurrence
• How do we go from one subproblem to the next?

• The recurrence says how we can compute
by using values of where

• Case 1. Say interval is not in the optimal solution, can we
write the recurrence for this case?

•

• Case 2. Say interval is in the optimal solution, what is the
smaller subproblem we should recurse on in this case?

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i

Recurrence
• The recurrence says how we can compute

by using values of where

• Case 1. Say interval is not in the optimal solution:

•

• Case 2. Say interval is in the optimal solution:

• No interval that overlaps with can be in solution

• Need to remove all such intervals to get our smaller
subproblem

• How do we do that?

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i

j < i i

Helpful Information
• Suppose the intervals are sorted by finish times

• Let be the predecessor of that is, largest index such that
intervals and are not overlapping

• Define if all intervals overlap with

p(j) j i < j
i j

p(j) = 0 i < j j

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
• Let be the predecessor of that is, largest index such that

intervals and are not overlapping

• , ,

p(j) j i < j
i j

p(8) = ? p(7) = ? p(2) = ?

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
• Let be the predecessor of that is, largest index such that

intervals and are not overlapping

• , ,

p(j) j i < j
i j

p(8) = 1 p(7) = 3 p(2) = 0

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Recurrence
• The recurrence says how we can compute

by using values of where

• Case 1. Say interval is not in the optimal solution:

•

• Case 2. Say interval is in the optimal solution:

• Suppose I know predecessor of , how can I write
the recurrence for this case?

• +

Opt-Schedule(i)
Opt-Schedule(j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i

p(i) i

Opt-Schedule(i) = Opt-Schedule(p(i)) vi

DP Recurrence

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

10

2

7

8

0 1 2 3 4

0

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

10

2

7

8

0 1 2 3 4

0 10

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

10

2

7

8

0 1 2 3 4

0 10 10

Filling Out the DP Table

time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

2

10

2

7

8

0 1 2 3 4

0 10 10 10 18

• Subproblem.

• For let be the value of the optimal
schedule that only uses intervals

• Notice the optimal substructure

• Recurrence. Going from one subproblem to the next

•

• Base case.

• (no intervals to schedule)

0 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Opt-Scheduler(0) = 0

Summary of DP

Remaining Pieces
• Final answer in terms of subproblem?

•

• Evaluation order (in what order can be fill the DP table)

• , start with base case and use that to fill the rest

• Memoization data structure: 1-D array

• Final piece:

• Running time and space

• Space:

• Time: preprocessing + time to fill array

Opt-Schedule(n)

i = 0 → n

O(n)

Computing p[i]
• How quickly can we compute

• Can do a linear scan for each : per interval

• Would be overall

• We have intervals sorted by their finish time

• Can we use this?

• For each interval, we can binary search over , to
need to find the first such that

• for each interval

• Time to compute the array

p[i]?

i O(i)

O(n2)

F[1,…, n]

F[1,…, n]
j < i fj ≤ si

O(log n)

O(n log n) p[]

Running Time
• How many subproblems do we need to solve?

•

• How long does it take to solve a subproblem?

• to take the max

• Preprocessing time:

• Need to sort;

• Need to find for all each :

• Overall:

• Space:

O(n)

O(1)

O(n log n)

p(i) i O(n log n)

O(n log n) + O(n) = O(n log n)

O(n)

Recreating Chosen Intervals
• Suppose we have of optimal solutions

• How can we reconstruct the optimal set of intervals?

• When should an interval be included in the optimal?

• Depending on which of the two cases results in max tells us
whether or not interval is include:

•

M[]

i

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

This value is bigger: 
 not in OPTi

This value is bigger:
is in OPT

i

Recursive Solution?
Suppose for now that we do not memoize: just a divide and conquer
recursion approach to the problem. 

:

• If , return

• Else

• Return  

• How many recursive calls in the worst case?

• Depends on

• Can we create a bad instance?

Opt-Schedule(i)
j = 0 0

max(Opt-Schedule(j − 1), vj + Opt-Schedule(p(j)))

p(i)

Recursive Solution: Exponential
• For this example, asymptotically how many recursive calls?

• Grows like the Fibonacci sequence (exponential):

• Lots of redundancy!

• How many distinct subproblems are there to solve?

• for

T(n) = T(n − 1) + T(n − 2) + O(1)

Opt-Schedule(i) 1 ≤ i ≤ n + 1

3

4

5

1

2

p(1) = 0, p(j) = j-2

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

5

Dynamic Programming Tips
• Recurrence/subproblem is the key!

• DP is a lot like divide and conquer, while writing extra
things down

• When coming to a new problem, ask yourself what
subproblems may be useful? How can you break that
subproblem into smaller subproblems?

• Be clear while writing the subproblem and recurrence!

• In DP we usually keep track of the cost of a solution, rather
than the solution itself

Longest Increasing
Subsequence

Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest

subsequence whose elements are in increasing order

• Find the longest possible sequence of indices
 such that  

 
 

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1 2 10 3 7 6 4 8 11

1 2 10 3 7 6 4 8 11
LIS: Length 6

A different increasing
subsequence that is length 4

Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest

subsequence whose elements are in increasing order

• Find the longest possible sequence of indices
 such that  

 
 
 

• Length of the longest increasing subsequence above is 6

• To simplify, we will only compute length of the LIS

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1 2 10 3 7 6 4 8 11

Formalize the Subproblem

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A[1,…, i] A[i]

Identify the Base Case

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Base Case. L[1] = ?

Identify the Final Answer

Base Case. L[1] = 1

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Final answer. ?

Base Case & Final Answer

Base Case. L[1] = 1

: length of the longest increasing subsequence
in that ends at (and includes)
L[i]

A A[i]

Final answer. max
1≤i≤n

L[i]

Recurrence
• How do we go from one subproblem to the next?

• That is, how do we compute assuming I know the values of L[i]
L[1], …, L[i − 1]

1 2 10 3 7 6 4 8 11

Length of the LIS
ending at 2?

Length of the LIS
ending at 10?

Recurrence
• Let’s say we know the length of the longest subsequence

ending at

• What is the longest subsequence ending at ?

• could potential extend an earlier subsequence:

• Can extend a longest subsequence ending at some
, with , but which

• OK, let’s try all to get the answer

• Or it doesn’t extend any earlier increasing subsequence

A[1], A[2], …A[i − 1]

A[i]

A[i]

A[k] A[k] < A[i] k?

k

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3

How do we know
extends a past LIS?

3

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 33

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

Example: Building a Recurrence

1 2 10 3 7 6 4 8 11A

L 1 2 3 4

 extends an LIS ending
at if

L[j]
L[i] A[j] > A[i]

4 4

: length of the longest increasing subsequence in
 that ends at (and includes)

L[i]
A A[i]

3

LIS: Recurrence

Assuming
L[j] = 1 + max{L[i] | i < j and A[i] < A[j]}

max ∅ = 0

Recursion DP→
• If we used recursion (without memoization) we’ll be inefficient—we’ll

do a lot of repeated work

• Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

• Evaluation order. In what order should I evaluate my
subproblems so that everything I need is available to evaluate a
new subproblem?

• For LIS we just left-to-right on array indices

• Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

• For LIS, we just need a one dimensional array

• For others, we may need a table (two-dimensional array)

LIS Analysis
• Correctness

• Follows from the recurrence using induction

• Running time?

• Solve subproblems

• Each one requires time to take the min

•

• An Improved DP solution takes

• Space?

• to store array

O(n)
O(n)

O(n2)
O(n log n)

O(n) L[]

