Weighted Scheduling

Weighted Scheduling

Job scheduling. Suppose you have a machine that can run one
job at a time; n job requests, where each job 1 has a start time s;,

finish time f; and weight v; > 0.

100 e

T —
T T jobsdand g
Each job has a value Q — S are incompatible

Weighted Scheduling

 Input. Given n intervals labeled 1,..., n with starting and finishing
times (sy, /1), ---» (8,,, f,,) and each interval has a non-negative

value or weight v;

 Goal. We must select non-overlapping (compatible) intervals with
the maximum weight. That is, our goal isto find I C {1,...,n} that

are pairwise non-overlapping that maximize Z V;
icl

Remember Greedy?

* Greedy algorithm earliest-finish-time first

e Considers jobs in order of finish times

* Greedily picks jobs that are non-overlapping
 We proved greedy is optimal when all weights are one

 How about the weighted interval scheduling problem?

weight =999 ——> b
weight = 1
weight=1 ——> a //
h
>
0 1 2 3 4 5 6 7 8 9 10 11

Greedy fails spectacularly

time

Different Greedy?

* A different greedy algorithm: greedily select intervals with the
maximum weights, remove overlapping intervals

e Does that work?

weight=10 ——> b
weight =9 each —> a C d
» time
0 1 2 3 4) 6 7 8 9 10 11

Greedy fails spectacularly

Let’'s Think Recursively

The heart of dynamic programming is recursively thinking

Coming up with a smaller subproblem which has the same
optimal structure as the original problem

First, to make things easy, we will focus on the total value of the
optimal solution, rather than the actual optimal set, that is,

Optimal value.

Find the largest Z v; where intervals in I are compatible.

el

Opt-Schedule(n): the value of the optimal schedule of n intervals

Let’'s Think Recursively

Consider the last interval: either it is in the optimal solution or not

Whatever the overall optimal solution is, we can find it by
considering both cases and taking the maximum over them

Case 1. Last interval is not in the optimal solution
* Remove it, we now have a smaller subproblem!
Case 2. Last interval is in the optimal solution

* Means anything overlapping with this interval cannot be In
the solution, remove them

* We have a smaller subproblem!

Formalize the Subproblem

Opt-Schedule(i): value of the optimal schedule

that only uses intervals {1,...,i},forO <i <n

Intervals sorted by finishing time, so:

Opt-Schedule(i): value of the optimal schedule

that finishes by the time 1 finishes

Base Case & Final Answer

Opt-Schedule(?): value of the optimal schedule

that only uses intervals {1,...,i}, forO0 <i<n

Base Case. Opt-Schedule(0) = 0

Goal (Final answer.) Opt-Schedule(n)

Recurrence

How do we go from one subproblem to the next?

The recurrence says how we can compute Opt-Schedule(i)

by using values of Opt-Schedule(j) where j < i

Case 1. Say interval 1 is not in the optimal solution, can we

write the recurrence for this case”
« Opt-Schedule(i) = Opt-Schedule(i — 1)

Case 2. Say interval 1 is in the optimal solution, what is the

smaller subproblem we should recurse on in this case?

Recurrence

« The recurrence says how we can compute Opt-Schedule(i)

by using values of Opt-Schedule(j) where j < i
« Case 1. Say interval 1 is not in the optimal solution:
« Opt-Schedule(i) = Opt-Schedule(i — 1)
« Case 2. Say interval 1 is in the optimal solution:
« Nointerval J < I that overlaps with I can be in solution

* Need to remove all such intervals to get our smaller
subproblem

e How do we do that?

Helpful Information

e Suppose the intervals are sorted by finish times

« Let p(j) be the predecessor of j that is, largest index 1 < j such that
intervals [and j are not overlapping

« Define p(j) = O if all intervals i < j overlap with j

»> time

Helpful Information

« Let p(j) be the predecessor of j that is, largest index 1 < j such that

intervals [and j are not overlapping

» pB) =7, p()=7 pl)=7?

»> time

Helpful Information

« Let p(j) be the predecessor of j that is, largest index 1 < j such that

intervals [and j are not overlapping

+ p& =1, p(7)=3, p2)=0

»> time

Recurrence

« The recurrence says how we can compute Opt-Schedule(i)

by using values of Opt-Schedule(j) where j < i
« Case 1. Say interval 1 is not in the optimal solution:
« Opt-Schedule(i) = Opt-Schedule(i — 1)
« Case 2. Say interval 1 is in the optimal solution:

« Suppose | know p(i) predecessor of i, how can | write

the recurrence for this case”?

« Opt-Schedule(i) = Opt-Schedule(p(i)) + v;

DP Recurrence

Opt-Schedule(1) =
max{Opt-Schedule(i — 1), v; + Opt-Schedule(p(i)) }

Filling Out the DP Table

10 1

> time

Filling Out the DP Table

0 10
0 1 2 3 4
10 1
2 2
7 3

> time

Filling Out the DP Table

10

10

10

§ 10

> time

Filling Out the DP Table

10 10 10 18
1 2 3 4
10

§ 10

> time

Summary of DP

 Subproblem.

« For0 <1 < n, let Opt-Schedule(i) be the value of the optimal
schedule that only uses intervals {1,...,1}

* Notice the optimal substructure
 Recurrence. Going from one subproblem to the next

« Opt-Schedule(i) =
max | Opt-Schedule(i — 1), v; + Opt-Schedule(p(i)) }

e Base case.

« Opt-Scheduler(0) = 0 (no intervals to schedule)

Remaining Pieces

Final answer in terms of subproblem?

« Opt-Schedule(n)

Evaluation order (in what order can be fill the DP table)

« 1 =0 — n, start with base case and use that to fill the rest
Memoization data structure: 1-D array

Final piece:

* Running time and space

« Space: O(n)

 Time: preprocessing + time to fill array

Computing p|i]

« How quickly can we compute pli]?
« Can do a linear scan for each i: O(i) per interval
. Would be O(n?) overall

« We have intervals sorted by their finish time F[1,..., n]
* Can we use this”

« For each interval, we can binary search over F[1,...,n], to
need to find the firstj < i such that f; <'s;

« O(log n) for each interval

« Time O(nlogn) to compute the array p|]

Running Time

How many subproblems do we need to solve?
- O(n)

How long does it take to solve a subproblem?
. O(1) to take the max

Preprocessing time:

« Need to sort; O(nlogn)

« Need to find p(i) for all each i: O(nlogn)
Overall: O(nlogn)+ O(n) = O(nlog n)
Space: O(n)

Recreating Chosen Intervals

« Suppose we have M|] of optimal solutions
« How can we reconstruct the optimal set of intervals?
 When should an interval be included in the optimal?

* Depending on which of the two cases results in max tells us
whether or not interval 1 is include:

« Opt-Schedule(i) =
max { Opt-Schedule(i — 1), v; + Opt-Schedule(p(i)) }

This value is bigger: 1
This value is bigger: s in OPT

1 not in OPT

Recursive Solution?

Suppose for now that we do not memoize: just a divide and conquer
recursion approach to the problem.

Opt-Schedule(i):
e Ifj=20,return0
 Else

. Return max(Opt-Schedule(j — 1), v; + Opt-Schedule(p(j)))

« How many recursive calls in the worst case?
« Depends on p(i)

e (Can we create a bad instance?

Recursive Solution: Exponential

* For this example, asymptotically how many recursive calls?

 Grows like the Fibonacci sequence (exponential):
Tn)=Tnh—-1)+Tn—-2)+ 0(1)

e Lots of redundancy!

« How many distinct subproblems are there to solve?

e Opt-Schedule(i)forl <i<n+1

’ ONONONONBONO,
p(1) = 0, p() = j-2 @ @

recursion tree

Dynamic Programming Tips

* Recurrence/subproblem is the key!

 DP is alot like divide and conquer, while writing extra
things down

* \When coming to a new problem, ask yourselt what
subproblems may be useful? How can you break that
subproblem into smaller subproblems?

* Be clear while writing the subproblem and recurrence!

* In DP we usually keep track of the cost of a solution, rather
than the solution itself

Longest Increasing
Subsequence

Longest Increasing Subsequence

« Given a sequence of integers as an array A[1,...n], find the longest

subsequence whose elements are in increasing order

* Find the longest possible sequence of indices

12103 706 4 8 11

LIS: Length ©6

1210 3 7 6 4 8 11

A different increasing
subsequence that is length 4

Longest Increasing Subsequence

« Given a sequence of integers as an array A[1,...n], find the longest

subsequence whose elements are in increasing order

* Find the longest possible sequence of indices

12103 706 4 8 11

* Length of the longest increasing subsequence above is 6

e To simplify, we will only compute length of the LIS

Formalize the Subproblem

L|1]: length of the longest increasing subsequence
inAll,...,1] that ends at (and includes) Ali]l

ldentify the Base Case

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|l]| ="

ldentify the Final Answer

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|]l] =1

Final answer.

Base Case & Final Answer

L|1]: length of the longest increasing subsequence
in A that ends at (and includes) Ali]

Base Case. L|l] =1

Final answer. max L[]
1<i<n

Recurrence

* How do we go from one subproblem to the next?

« Thatis, how do we compute L[i] assuming | know the values of
L[1], ..., Lli —1]

12103 706 4 8 11

Length of the LIS Length of the LIS
ending at 2? ending at 107

Recurrence

Let’'s say we know the length of the longest subsequence
ending at A[1], A[2], ...A]i — 1]

What is the longest subsequence ending at A[1]?
Ali] could potential extend an earlier subsequence:

 (Can extend a longest subsequence ending at some
Alk], with A[k] < Ali], but which k?

. OK, let’s try all k to get the answer

Or it doesn’t extend any earlier increasing subseqguence

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T
1

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T

L 1]2

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 1 (2 |3

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 1 {2 |3 |3

How do we know 3
extends a past LIS?

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 1 {2 |3 |3

L[j] extends an LIS ending
at L[i] if A[j] > Ali]

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 112 (3] 3] 4

L[j] extends an LIS ending
at L[i] if A[j] > Ali]

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 6 4 8 11

T

L 1123 3]4]4

L[j] extends an LIS ending
at L[i] if A[j] > Ali]

Example: Building a Recurrence

L[1]: length of the longest increasing subsequence in
A that ends at (and includes) Ali]

A 1 2 10 3 7 o6 4 8 11

T

L 112 (3| 3]14]4]|4

L[]] extends an LIS ending
at L[i] if A[j] > Ali]

LIS: Recurrence

Lljl=1+max{L[i] | i <jandAli] < A[]]}
Assuming max @ = 0

Recursion — DP

e |f we used recursion (without memoization) we’ll be inefficient—we’ll
do a lot of repeated work

* Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

 Evaluation order. In what order should | evaluate my
subproblems so that everything | need is available to evaluate a

new subproblem?
e For LIS we just left-to-right on array indices

 Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

e For LIS, we just need a one dimensional array

* For others, we may need a table (two-dimensional array)

LIS Analysis

* Correctness
* Follows from the recurrence using induction

* Running time?

« Solve O(n) subproblems

« Each one requires O(n) time to take the min

. O(n?

« An Improved DP solution takes O(n log n)
e Space”?

« O(n) to store array L[]

