
Weighted Scheduling



Weighted Scheduling
Job scheduling.   Suppose you have a machine that can run one 
job at a time;  job requests, where each job  has a start time  
finish time  and weight .  
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Weighted Scheduling
• Input. Given  intervals labeled  with starting and finishing 

times   and each interval has a non-negative 
value or weight   

• Goal. We must select non-overlapping (compatible) intervals with 
the maximum weight.  That is, our goal is to find  that 
are pairwise non-overlapping that maximize 

n 1,…, n
(s1, f1), …, (sn, fn)

vi

I ⊆ {1,…, n}

∑
i∈I

vi



Remember Greedy?
• Greedy algorithm earliest-finish-time first


• Considers jobs in order of finish times


• Greedily picks jobs that are non-overlapping


• We proved greedy is optimal when all weights are one


• How about the weighted interval scheduling problem?
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Different Greedy?
• A different greedy algorithm: greedily select intervals with the 

maximum weights, remove overlapping intervals


• Does that work?

weight = 10

weight = 9 each
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Let’s Think Recursively 
• The heart of dynamic programming is recursively thinking


• Coming up with a smaller subproblem which has the same 
optimal structure as the original problem


• First, to make things easy, we will focus on the total value of the 
optimal solution, rather than the actual optimal set, that is,


• Optimal value.  
Find the largest  where intervals in  are compatible.


•  : the value of the optimal schedule of  intervals

∑
i∈I

vi I

Opt-Schedule(n) n



Let’s Think Recursively 
• Consider the last interval:  either it is in the optimal solution or not 


• Whatever the overall optimal solution is, we can find it by 
considering both cases and taking the maximum over them


• Case 1.  Last interval is not in the optimal solution


• Remove it, we now have a smaller subproblem!


• Case 2.  Last interval is in the optimal solution


• Means anything overlapping with this interval cannot be in 
the solution, remove them


• We have a smaller subproblem! 



Formalize the Subproblem

: value of the optimal schedule 
that only uses intervals , for 
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Intervals sorted by finishing time, so:


: value of the optimal schedule 
that finishes by the time  finishes
Opt-Schedule(i)

i



Base Case & Final Answer

: value of the optimal schedule 
that only uses intervals , for 
Opt-Schedule(i)

{1,…, i} 0 ≤ i ≤ n

Base Case.  Opt-Schedule(0) = 0

Goal (Final answer.)   Opt-Schedule(n)



Recurrence
• How do we go from one subproblem to the next?


• The recurrence says how we can compute  
by using values of  where 


• Case 1.  Say interval  is not in the optimal solution, can we 
write the recurrence for this case?


•   


• Case 2.  Say interval  is in the optimal solution, what is the 
smaller subproblem we should recurse on in this case?

Opt-Schedule(i)
Opt-Schedule( j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i



Recurrence
• The recurrence says how we can compute  

by using values of  where 


• Case 1.  Say interval  is not in the optimal solution:


•   


• Case 2.  Say interval  is in the optimal solution:


• No interval   that overlaps with  can be in solution


• Need to remove all such intervals to get our smaller 
subproblem


• How do we do that?

Opt-Schedule(i)
Opt-Schedule( j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i

j < i i



Helpful Information
• Suppose the intervals are sorted by finish times


• Let  be the predecessor of  that is, largest index  such that 
intervals  and  are not overlapping 


• Define  if all intervals  overlap with 

p( j) j i < j
i j

p( j) = 0 i < j j
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Helpful Information
• Let  be the predecessor of  that is, largest index  such that 

intervals  and  are not overlapping


• ,   ,   

p( j) j i < j
i j

p(8) = ? p(7) = ? p(2) = ?
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Helpful Information
• Let  be the predecessor of  that is, largest index  such that 

intervals  and  are not overlapping


• ,   ,   

p( j) j i < j
i j

p(8) = 1 p(7) = 3 p(2) = 0
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Recurrence
• The recurrence says how we can compute  

by using values of  where 


• Case 1.  Say interval  is not in the optimal solution:


•   


• Case 2.  Say interval  is in the optimal solution:


• Suppose I know  predecessor of , how can I write 
the recurrence for this case? 


•    +  

Opt-Schedule(i)
Opt-Schedule( j) j < i

i

Opt-Schedule(i) = Opt-Schedule(i − 1)

i

p(i) i

Opt-Schedule(i) = Opt-Schedule(p(i)) vi



DP Recurrence

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}



Filling Out the DP Table
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Filling Out the DP Table
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Filling Out the DP Table
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Filling Out the DP Table
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• Subproblem.


• For  let  be the value of the optimal 
schedule that only uses intervals 


• Notice the optimal substructure


• Recurrence.  Going from one subproblem to the next


•




• Base case.


•  (no intervals to schedule)

0 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Opt-Scheduler(0) = 0

Summary of DP 



Remaining Pieces
• Final answer in terms of subproblem?


• 


• Evaluation order (in what order can be fill the DP table)


• , start with base case and use that to fill the rest


• Memoization data structure:  1-D array 


• Final piece:


• Running time and space


• Space:  


• Time:  preprocessing + time to fill array

Opt-Schedule(n)

i = 0 → n

O(n)



Computing p[i]
• How quickly can we compute 


• Can do a linear scan for each :   per interval


• Would be  overall


• We have intervals sorted by their finish time 


• Can we use this?


• For each interval, we can binary search over , to 
need to find the first  such that  


•  for each interval


• Time  to compute the array 

p[i]?

i O(i)

O(n2)

F[1,…, n]

F[1,…, n]
j < i fj ≤ si

O(log n)

O(n log n) p[]



Running Time
• How many subproblems do we need to solve?


• 


• How long does it take to solve a subproblem?


•  to take the max


• Preprocessing time:


• Need to sort; 


• Need to find  for all each :  


• Overall:  


• Space:  

O(n)

O(1)

O(n log n)

p(i) i O(n log n)

O(n log n) + O(n) = O(n log n)

O(n)



Recreating Chosen Intervals
• Suppose we have  of optimal solutions


• How can we reconstruct the optimal set of intervals?


• When should an interval be included in the optimal?


• Depending on which of the two cases results in max tells us 
whether or not interval  is include:


•

M[]

i

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

This value is bigger: 
  not in OPTi

This value is bigger:  
is in OPT

i



Recursive Solution?
Suppose for now that we do not memoize:  just a divide and conquer 
recursion approach to the problem. 

:


• If , return 


• Else


• Return  

• How many recursive calls in the worst case?


• Depends on 


• Can we create a bad instance?

Opt-Schedule(i)
j = 0 0

max(Opt-Schedule( j − 1), vj + Opt-Schedule(p( j)))

p(i)



Recursive Solution: Exponential
• For this example, asymptotically how many recursive calls?


• Grows like the Fibonacci sequence (exponential): 



• Lots of redundancy!


• How many distinct subproblems are there to solve?


•  for 

T(n) = T(n − 1) + T(n − 2) + O(1)

Opt-Schedule(i) 1 ≤ i ≤ n + 1
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Dynamic Programming Tips
• Recurrence/subproblem is the key!


• DP is a lot like divide and conquer, while writing extra 
things down


• When coming to a new problem, ask yourself what 
subproblems may be useful?  How can you break that 
subproblem into smaller subproblems?


• Be clear while writing the subproblem and recurrence!


• In DP we usually keep track of the cost of a solution, rather 
than the solution itself



Longest Increasing 
Subsequence



Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest 

subsequence whose elements are in increasing order


• Find the longest possible sequence of indices 
 such that  

 
 

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1  2  10  3  7  6  4  8  11

1  2  10  3  7  6  4  8  11
LIS:  Length 6

A different increasing 
subsequence that is length 4



Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest 

subsequence whose elements are in increasing order


• Find the longest possible sequence of indices 
 such that  

 
 
 

• Length of the longest increasing subsequence above is 6


• To simplify, we will only compute length of the LIS

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

1  2  10  3  7  6  4  8  11



Formalize the Subproblem

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A[1,…, i] A[i]



Identify the Base Case

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Base Case.   L[1] = ?



Identify the Final Answer

Base Case.   L[1] = 1

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Final answer.  ?



Base Case & Final Answer

Base Case.   L[1] = 1

: length of the longest increasing subsequence 
in  that ends at (and includes)  
L[i]

A A[i]

Final answer.   max
1≤i≤n

L[i]



Recurrence
• How do we go from one subproblem to the next?


• That is, how do we compute  assuming I know the values of L[i]
L[1], …, L[i − 1]

1  2  10  3  7  6  4  8  11

Length of the LIS 
ending at 2?

Length of the LIS 
ending at 10?



Recurrence
• Let’s say we know the length of the longest subsequence 

ending at 


• What is the longest subsequence ending at ?


•  could potential extend an earlier subsequence:


• Can extend a longest subsequence ending at some 
, with , but which 


• OK, let’s try all  to get the answer


• Or it doesn’t extend any earlier increasing subsequence

A[1], A[2], …A[i − 1]

A[i]

A[i]

A[k] A[k] < A[i] k?

k



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3

How do we know  
extends a past LIS?

3

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 33

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

1    2    10    3    7    6     4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



Example: Building a Recurrence

1    2    10    3    7    6    4     8   11A

L 1 2 3 4

 extends an LIS ending 
at  if 

L[ j]
L[i] A[ j] > A[i]

4 4

: length of the longest increasing subsequence in 
 that ends at (and includes)  

L[i]
A A[i]

3



LIS:  Recurrence



Assuming 
L[ j] = 1 + max{L[i] | i < j and A[i] < A[ j]}

max ∅ = 0



Recursion  DP→
• If we used recursion (without memoization) we’ll be inefficient—we’ll 

do a lot of repeated work


• Once you have your recurrence, the remaining pieces of the 
dynamic programming algorithm are


• Evaluation order. In what order should I evaluate my 
subproblems so that everything I need is available to evaluate a 
new subproblem?


• For LIS we just left-to-right on array indices


• Memoization structure. Need a table (array or multi-dimensional 
array) to store computed values


• For LIS, we just need a one dimensional array


• For others, we may need a table (two-dimensional array)



LIS Analysis
• Correctness


• Follows from the recurrence using induction

• Running time?


• Solve  subproblems


• Each one requires  time to take the min


• 


• An Improved DP solution takes  


• Space?


•  to store array 

O(n)
O(n)

O(n2)
O(n log n)

O(n) L[]


