Divide and Conquer 2

Sam McCauley

March 11, 2024

Welcome Back!

- Assignment due Wednesday
- Any questions?

Geometric Sums

Geometric Sum

A geometric sum is of the form $\sum_{j=\otimes}^{k} r^{i}$. They come up frequently in computer science (and elsewhere). We have that, for any $r \neq 1$,

$$
\sum_{i=0}^{k} r^{i}=\frac{1-r^{k+1}}{1-r}
$$

Proof: Here's a clever way to solve this sum. We'll see a similar technique when we get to randomized algorithms later in the class.

Let $S=\sum_{i=\otimes}^{k} r^{i}$. Then:

$$
r \cdot \mathrm{~S}=r \sum_{i=0}^{k} r^{i}=\sum_{i=1}^{k+1} r^{i}=r^{k+1}-1+\sum_{i=\theta}^{k} r^{i} .
$$

In other words, $r S=\left(r^{k+1}-1\right)+\mathrm{S}$. Solving, $\mathrm{S}=\left(1-r^{k+1}\right) /(1-r)$.

Divide and Conquer Multiplication

Divide and Conquer: Multiplication

$$
a \times b=1 \otimes^{n}\left(a_{\ell} b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}
$$

- To multiply two n-digit numbers, we first perform four recursive multiplications:
- $a_{\ell} \times b_{\ell}, a_{\ell} \times b_{r}, b_{\ell} \times a_{r}$, and $a_{r} \times b_{r}$
- And then we add them together (and multiply by 10^{n}) in $O(n)$ time.
- If $n=1$ just multiply the numbers
- Recurrence?
- $T(n)=4 T(n / 2)+O(n) ; T(1)=1$
- Get $\Theta\left(n^{2}\right)$ time, same as before. Can we improve this?

Divide and Conquer: Karatsuba’s Algorithm

$$
a \times b=1 \otimes^{n}\left(a_{\ell} b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}
$$

- Consider the following three recursive multiplications
- $\left(a_{\ell} \times b_{\ell}\right),\left(a_{r} \times b_{r}\right)$, and $\left(a_{\ell}+a_{r}\right) \times\left(b_{\ell}+b_{r}\right)$
- I claim this is enough! Why?
- $a_{\ell} b_{r}+b_{\ell} a_{r}=\left(a_{\ell}+a_{r}\right) \times\left(b_{\ell}+b_{r}\right)-a_{\ell} \times b_{\ell}-a_{r} \times b_{r}$
- So after three recursive calls of size $n / 2$ I can calculate $a \times b$. I used $O(n)$ total time other than the recursive calls
- $T(n)=3 T(n / 2)+O(n) ; T(1)=1$

Solving the Multiplication Recurrence

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=1
$$

- Let's solve this recurrence [On Board \#1]
- We want to ask ourselves: What is the height of the tree? What is the cost of each level?
- Solution: $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.58}\right)$ time
- Much better than n^{2} !
- Reflect: why did changing a constant from 3 to 4 have such an impact on the running time?

Multiplying Numbers Efficiently

- Kolmogorov conjectured that $\Omega\left(n^{2}\right)$ time is needed; stated this conjecture in a seminar at Moscow State University in 1960
- Karatsuba, a student figured out this $O\left(n^{\log _{2} 3}\right)$ time algorithm in the next week
- Kolmogorov cancelled the whole seminar and then published the result on Karatsuba's behalf without telling him
- Can we do better?
- Best known: $O(n \log n)$ [Harvey, van der Hoeven 2019]
- Are these speedups useful in practice?
- Sometimes! Karatsuba's is used in some libraries

More Recurrences

Divide and Conquer and Recurrences

- We analyze divide and conquer algorithms using recurrences
- Gives us a bird's eye view of the cost of the algorithm
- Recurrence relations can also guide us in searching for algorithms
- "How can I sort in $O(n \log n)$ time?"
- If my sorting method recurses on two halves, and does $O(n)$ additional work, I get $T(n)=2 T(n / 2)+O(n)$, which gives $O(n \log n)$
- (Of course, this is just a starting point: many other recurrences solve to $O(n \log n)$.
- Let's look at some other recurrences

Three practice recurrences

Let's do the following recurrences [On Board \#2]
For all of these assume $T(1)=1$.

$$
T(n)=4 T(n / 2)+O(1)
$$

$$
T(n)=2 T(n / 2)+O(n \log n)
$$

$$
T(n)=3 T(n / 3)+O(n)
$$

On Floors and Ceilings in Recurrences

- Most input sizes are not (say) powers of 2
- Merge sort's actual recurrence is:

$$
T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+O(n)
$$

- Does this change the solution?
- No. We will ignore all floors and ceilings in this class. See Erikson 1.7 for some formal justification

Tree Height and Recurrences that Don't Branch

Let's do the following recurrences [On Board \#3]

$$
T(n)=T(n / 2)+O(1)
$$

$$
T(n)=T(\sqrt{n})+O(1)
$$

$$
T(n)=T(n / 2)+O(n)
$$

Three kinds of recurrences

Recurrences often fit into one of three types:

- Cost at the root dominates
- Cost at the leaves dominate
- Cost at each level is the same

Ways to Solve Recurrences

- Recursion tree (recommended)
- Guess and check
- If we have the solution for $T(n)$, we can substitute it into the recurrence to check that it is satisfied
- Can formalize using induction
- "Unroll" recurrence a few steps to get intuition before guessing
- Master theorem (next slide) gives the solution for many common recurrences

Master Theorem (Simple Version)

For constants a and b and a function $f(n)$, to solve

$$
T(n)=a T(n / b)+f(n) ; \quad T(1)=1
$$

- If $f(n)=O\left(n^{c}\right)$ for $c<\log _{b} a$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- So $T(n)=4 T(n / 2)+O(n)$ solves to $T(n)=\Theta\left(n^{2}\right)$
- If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
- So $T(n)=2 T(n / 2)+O(n)$ solves to $T(n)=\Theta(n \log n)$
- A fast way to solve simpler recurrences. But a pain to memorize and only works situationally.

Binary Search

Binary Search

```
binary_search(key, A, start, end):
    mid = (start + end)/2
    if key == A[mid]:
        return mid
    else if key < A[mid]:
        return binary_search(key, A, start, mid-1)
    else:
        return binary_search(key, A, mid+1, end)
```

- Correctness intuition: we recurse on the half of A that must contain key.
- How would we prove correctness formally?
- Running time? $T(n)=T(n / 2)+O(1)$ We've seen: $T(n)=O(\log n)$

Binary Search on a Linked List?

This is not a good algorithm. But I've seen people implement it many times.
Today: how efficient is it?
We can binary search by:

- Find the middle item of the linked list
- By iterating through the linked list
- Compare to query item
- Recurse on first or second half of the linked list
- Recurrence?
- $T(n)=T(n / 2)+\Theta(n)$
- Solution: $\Theta(n)$ time
- (Could have just scanned!)

Selection

Median finding

- Goal: given an unsorted array A of length n, find the median of A
- Can someone give an $O(n \log n)$ time algorithm to solve this?
- Sort A using Merge Sort. Return $A[[n / 2\rceil]$
- Can we do better?

Linear-Time Median Finding

- Goal: an $O(n)$ algorithm to find the median of any unsorted array A
- Can't sort! Is it really possible to find the median of an array without sorting it?
- We'll solve a more general problem: find the k th largest element in the array
- Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan 1973

Partition (Selection Subroutine)

```
Partition(A, p):
    Create empty arrays }\mp@subsup{A}{<p}{}\mathrm{ and }\mp@subsup{A}{>p}{
    for i = 0 to |A|-1:
        if A[i]<p:
            add A[i] to }\mp@subsup{A}{<p}{
        if A[i]>p:
            add A[i] to }\mp@subsup{A}{>p}{
    return |A App},\mp@subsup{A}{<p}{},\mp@subsup{A}{>p}{
```

Returns two arrays, one with elements $<p$ and one with elements $>p$
The rank of p is the number of elements in A smaller than p; also returns the rank of p.

Selection (First Attempt)

```
Select(A, k):
    if }|A|=1
        return A[Q]
    else:
        choose a pivot p # we'll define how later
        r,A}\mp@subsup{A}{<p}{},\mp@subsup{A}{>p}{}= Partition(A, p
        if k == r:
            return p
        else:
            if k<r:
                return Select(A}\mp@subsup{A}{<p}{},k
            else:
                return Select( }\mp@subsup{A}{>p}{},k-r-1
```

The main question is: How do we select our pivot? (And how does that impact performance?)

How good does our pivot selection need to be?

- Let's say our pivot is not in the first or last $3 n / 10$ items of A (where $n=|A|$)
- What is our recurrence?
- $T(n) \leq T(7 n / 1 \theta)+O(n)$
- $T(n)=O(n)$

Finding the Pivot: Goal

- Find a pivot that has rank between $3 n / 10$ and $7 n / 10$ in time $O(n)$
- The array is unsorted
- Want to always be successful
- Note: Can verify in $O(n)$ time!

Finding an Approximate Median

- Divide the array into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find the median of these $\lceil n / 5\rceil$ medians; this is our pivot

Finding an Approximate Median

- Divide the array into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find the median of these $\lceil n / 5\rceil$ medians; this is our pivot (call it M)
- How can we find the median of these medians? Recursively!
- This is a median-finding algorithm! We call Select to find the median of these medians to get our pivot

Rank of the Median of Medians

- What elements are smaller than the median of medians M ?
- Half the medians ($n / 10$ elements)
- Also: for each such median, two elements the median's list ($2 n / 10$ elements)

Rank of the Median of Medians

- $\geq 3 n / 10$ are less than M
- Similarly: $\geq 3 n / 10$ are greater than M
- So M is a good pivot!

Linear-Time Selection

```
Select(A, k):
    if |A| 5 5:
        return kth largest element of A
    else:
        divide A into [n/5\rceil groups of 5 elements
        Create array }\mp@subsup{A}{m}{}\mathrm{ containing the median of each group
        p = Select(Am, \lceil|A⿱m
        r, A<p,\mp@subsup{A}{>p}{}}=\operatorname{Partition(A, p)
        if k == r:
            return p
        else:
            if k<r:
            return Select( (A<p,k)
        else:
            return Select( (A>p},k-r-1
```

Recurrence: $T(n)=T(n / 5)+T(7 n / 18)+O(n) ; T(5)=O(1) \quad$ [On Board \#4]

Median Finding

- An advanced Divide and Conquer application
- Uses a nontrivial recurrence
- Can find median of an unsorted array in $O(n)$ time-strictly faster than sorting

How fast can we sort?

- A comparison-based sorting algorithm has no assumptions on the elements we are sorting
- I don't know whether a given element is likely to be "big" or "small"
- All I can do is compare two elements: is $A[i] \leq A[j]$?
- Insertion sort, selection sort, merge sort, quicksort, etc., are all comparison-based
- (Can do better than comparison-based for some special cases, e.g. if all numbers in the array are from $\{1,2, \ldots, n\}$. But comparison-based sort is how we sort items in general.)

Lower Bound

Theorem

Any comparison-based sorting algorithm makes $\Omega(n \log n)$ comparisons in the worst case.

Proof: Consider a comparison-based sorting algorithm that makes k comparisons. There are 2 outcomes to every comparison ($A[i] \leq A[j]$ is true or false); so there are 2^{k} possible outcomes to this sorting algorithm.

Any sorting algorithm needs to correctly sort any permutation of the n items. There are $n!$ permuations of the items. So we need $2^{k}>n!$.

First, we lower bound (assume n is even for simplicity):
$n!=n(n-1)(n-2) \ldots(n / 2+1)(n / 2)(n / 2-1) \ldots 1 n!\geq(n / 2)(n / 2)(n / 2) \ldots(n / 2)(n / 2)$
So $2^{k}>n!>(n / 2)^{n / 2}$. Taking logs of both sides, $k>\frac{n}{2} \log _{2} \frac{n}{2}=\Omega(n \log n)$.

