Divide and Conquer 2

Sam McCauley
March 11, 2024

Welcome Back!

e Assignment due Wednesday

e Any questions?

Geometric Sums

Geometric Sum

A geometric sum is of the form Z;(:@ r’. They come up frequently in computer
science (and elsewhere). We have that, for any r # 1,

VAL

rk+1

Proof: Here's a clever way to solve this sum. We'll see a similar technique when we
get to randomized algorithms later in the class.

Let S = YK o . Then:
K+1

k
e S_rZr —Zr = rk —1+Zri.
=0

In other words, rS = (rkt1 — 1) + S. Solving, S = (1 —rk*1) /(1 —r).

Divide and Conquer Multiplication

Divide and Conquer: Multiplication

a x b =18"(asb,) +18"%(asb, + bear) + a-by

e To multiply two n-digit numbers, we first perform four recursive
multiplications:

e a; X by,ay x by, by xa,,anda, x b,
e And then we add them together (and multiply by 18”) in O(n) time.
e If n = 1 just multiply the numbers
e Recurrence?
e T(n)=4T(n/2) +0O(n); T(1) =1

o Get ©(n?) time, same as before. Can we improve this?

Divide and Conquer: Karatsuba’s Algorithm MB;%SE!:E@Y@ER

a x b =18"(asby) + 18"?(asb, + bea,) + arb;

Consider the following three recursive multiplications

o (ag x by), (ar x by), and (ag + a,) x (be + by)

I claim this is enough! Why?

aebr + bear = (ag +ay) x (bg+by) —ag x by —ar X by

So after three recursive calls of size n/2 I can calculate a x b. I used O(n)
total time other than the recursive calls

T(n) =3T(n/2)+O(n); T(1) =1

Solving the Multiplication Recurrence

T(n) =3T(n/2) + O(n) T(1) =1

e Let’s solve this recurrence [On Board #1]

e We want to ask ourselves: What is the height of the tree? What is the cost of
each level?

e Solution: O(n'°823) = O(n'58) time
e Much better than n?!

e Reflect: why did changing a constant from 3 to 4 have such an impact on the
running time?

Multiplying Numbers Efficiently

 Kolmogorov conjectured that Q(n?) time is needed; stated this conjecture in a
seminar at Moscow State University in 1960

e Karatsuba, a student figured out this O(n'°823) time algorithm in the next week

e Kolmogorov cancelled the whole seminar and then published the result on
Karatsuba's behalf without telling him

e Can we do better?

e Best known: O(nlogn) [Harvey, van der Hoeven 2019]
e Are these speedups useful in practice?

e Sometimes! Karatsuba'’s is used in some libraries

More Recurrences

Divide and Conquer and Recurrences

e We analyze divide and conquer algorithms using recurrences

e Gives us a bird’s eye view of the cost of the algorithm
e Recurrence relations can also guide us in searching for algorithms

e “How can I sort in O(nlogn) time?”

o If my sorting method recurses on two halves, and does O(n) additional work, I
get T(n) = 2T(n/2) + O(n), which gives O(n logn)

e (Of course, this is just a starting point: many other recurrences solve to
O(nlogn).)

e Let's look at some other recurrences

Three practice recurrences

Let’s do the following recurrences [On Board #2]

For all of these assume T(1) = 1.

T(n) =4T(n/2) + O(1)

T(n) =2T(n/2) + O(nlogn)

T(n) =3T(n/3) + O(n)

On Floors and Ceilings in Recurrences

Most input sizes are not (say) powers of 2

Merge sort’s actual recurrence is:

T(n) = T([n/21]) + T(|n/2]) + O(n)

Does this change the solution?

e No. We will ignore all floors and ceilings in this class. See Erikson 1.7 for some
formal justification

Tree Height and Recurrences that Don’t Branch

Let’s do the following recurrences [On Board #3]

T(n) =T(n/2)+ 0(1)

Three kinds of recurrences

Recurrences often fit into one of three types:

e Cost at the root dominates

e Cost at the leaves dominate

e Cost at each level is the same

Ways to Solve Recurrences

e Recursion tree (recommended)

e Guess and check
o If we have the solution for T(n), we can substitute it into the recurrence to check
that it is satisfied
e Can formalize using induction
e “Unroll” recurrence a few steps to get intuition before guessing

e Master theorem (next slide) gives the solution for many common recurrences

Master Theorem (Simple Version)

For constants a and b and a function f(n), to solve

T(n) =aT(n/b) +f(n), T(1)=1

o If f(n) = O(n®) for ¢ < log, a then T(n) = ©(n'°&»?)
e So T(n) = 4T(n/2) + O(n) solves to T(n) = ©(n?)
o If f(n) = ©(n'°&+?) then T(n) = ©(n'°& 2 log n)
e So T(n) =2T(n/2) 4 O(n) solves to T(n) = ©(nlogn)
e A fast way to solve simpler recurrences. But a pain to memorize and only
works situationally.

Binary Search

Binary Search

binary_search(key, A, start, end):
mid = (start + end)/2
if key == A[mid]:
return mid
else if key < A[mid]:
return binary_search(key, A, start, mid-1)
else:
return binary_search(key, A, mid+1l, end)

e Correctness intuition: we recurse on the half of A that must contain key.
e How would we prove correctness formally?

e Running time? T(n) = T(n/2) + O(1) We've seen: T(n) = O(logn)

Binary Search on a Linked List?

This is not a good algorithm. But I've seen people implement it many times.
Today: how efficient is it?
We can binary search by:

e Find the middle item of the linked list
e By iterating through the linked list

Compare to query item

Recurse on first or second half of the linked list

Recurrence?
T(n) =T(n/2) + ©(n)

Solution: ©(n) time

(Could have just scanned!)

Selection

Median finding

Goal: given an unsorted array A of length n, find the median of A

Can someone give an O(n log n) time algorithm to solve this?

Sort A using Merge Sort. Return A[[n/2]]

Can we do better?

Linear-Time Median Finding

Goal: an O(n) algorithm to find the median of any unsorted array A

Can’t sort! Is it really possible to find the median of an array without sorting
it?

We'll solve a more general problem: find the kth largest element in the array

Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan
1973

Partition (Selection Subroutine)

Partition(A, p):
Create empty arrays Ao, and As,
for i = 0 to |Al—1:
if Al] <p:
add A[i] to A,
if A[i] >p:
add A[i] to A,
return |A.,|,Acp,Asp

Returns two arrays, one with elements < p and one with elements > p

The rank of p is the number of elements in A smaller than p; also returns the rank
of p.

Selection (First Attempt)

Select(A, k):
if |A|=1:
return A[Q]
else:
choose a pivot p # we’ll define how later
r,Acp,Asp, = Partition(A, p)
if k == r:
return p
else:
if k<r:
return Select (A, k)
else:
return Select(Asp k—r—1)

The main question is: How do we select our pivot? (And how does that impact
performance?)

How good does our pivot selection need to be?

Let’s say our pivot is not in the first or last 3n/10 items of A (where n = |A|)

What is our recurrence?

T(n) < T(7n/18) + O(n)

Finding the Pivot: Goal

Find a pivot that has rank between 3n/18 and 7n/18 in time O(n)""

The array is unsorted

Want to always be successful

Note: Can verify in O(n) time!

Finding an Approximate Median

e Divide the array into [n/5] groups of 5 elements (ignore leftovers)

e Find median of each group

@0POPOOPPOHOOGG
@OEOLOHAIGCEFO®OHO®
©@00POOPOOOOGO
@P00O0POOPOOOO
WEE@®EWOOEO

n=>54

Finding an Approximate Median

« Divide the array into [n/5] groups of 5 elements (ignore leftovers)

e Find median of each group

5w @ w

A AT A VaN AT

(22) (44) (s2) (1) (83) (12) (13

< J N4 X J N4 < J N4 <

0 00

. @ (- (44)

medians

/

(47) (32) (51) (2
(17) (22) (7

Finding an Approximate Median

o Divide the array into [n/5] groups of 5 elements (ignore leftovers)
e Find median of each group
e Find the median of these [n/5] medians; this is our pivot

medians

median of .) P p / .
medians (29 (10 @ 37 2 55 @ [24 4 @ 36
13 e 2) (4 27

22) (44) (52) (1) (s3) (12

00 00 “ @«

14) (o) (5) (3 54) (30) (48) (a7) (32) (51) (21

45) (39) (50 e ‘25) (16) (41) (17) (22) (7

n =54

Finding an Approximate Median

Divide the array into [n/5] groups of 5 elements (ignore leftovers)

Find median of each group

Find the median of these [n/5] medians; this is our pivot (call it M)
e How can we find the median of these medians? Recursively!

e This is a median-finding algorithm! We call Select to find the median of these
medians to get our pivot

Rank of the Median of Medians

medians

median of ’)) i ’ ‘ /
medians (29) (10 @ 37) (2) (s5 @ (24 4 @ 36
22) (44) (52) (11) (s3) (12) (13 @ 20) (4) (27

(o>}
N
()]

0 - 00 -0 - -

14 9 5 3 54 30 48 (47 32) (51 21

(45) (39 50 @ 25 16 41 (17 2) (7
n=>54

e What elements are smaller than the median of medians M?
o Half the medians (n/10 elements)
e Also: for each such median, two elements the median’s list (2n/10 elements)

Rank of the Median of Medians

medians

median of /)) i ' ‘ /
medans (29) (10 @ a7) (2) (s5 @ (24) (A4 e 36
) (s3) (12) (13 @ 20) (4) (27)

22) (44) (52) (11

00 00 O -

14) (9) (5 3 54) (30) (48) (47) (82) (51) (21

(45) (39) (50 @ 25) (16) (41) (17) (22) (7
n=>54

e > 3n/10 are less than M
e Similarly: > 3n/10 are greater than M
e So M is a good pivot!

Linear-Time Selection

Select(A, k):
if |A|<5:
return kth largest element of A
else:
divide A into [n/5] groups of 5 elements
Create array A, containing the median of each group
p = Select(Am,[|Am|/2])
r,Acp,Asp, = Partition(A, p)
if k == r:
return p
else:
if k<r:
return Select(A.p, k)
else:
return Select(Asp,k—r—1)

Recurrence: T(n) = T(n/5) + T(7n/18) + O(n); T(5) = O(1) [On Board #4]

Median Finding

e An advanced Divide and Conquer application

e Uses a nontrivial recurrence

e Can find median of an unsorted array in O(n) time—strictly faster than sorting

How fast can we sort?

& %

A comparison-based sorting algorithm has no assumptions on the elements
we are sorting

I don’t know whether a given element is likely to be “big” or “small”
All I can do is compare two elements: is A[i] < A[j]?

Insertion sort, selection sort, merge sort, quicksort, etc., are all
comparison-based

(Can do better than comparison-based for some special cases, e.g. if all
numbers in the array are from {1,2,...,n}. But comparison-based sort is how
we sort items in general.)

Lower Bound

Theorem
Any comparison-based sorting algorithm makes (n logn) comparisons in the

worst case.

Proof: Consider a comparison-based sorting algorithm that makes k comparisons.
There are 2 outcomes to every comparison (A[i] < A[j] is true or false); so there are
2k possible outcomes to this sorting algorithm.

Any sorting algorithm needs to correctly sort any permutation of the n items. There
are n! permuations of the items. So we need 2€ > nl.

First, we lower bound (assume n is even for simplicity):
n'=nn—-1)((n-2)...(n/24+1)(n/2)(n/2—1)...1n! > (n/2)(n/2)(n/2)...(n/2)(n/2)

So 2K > n! > (n/2)"/2. Taking logs of both sides, k > 2 log, 3 = Q(n logn).

	Geometric Sums
	Divide and Conquer Multiplication
	More Recurrences
	Binary Search
	Selection

