
Divide and Conquer 2

Sam McCauley

March 11, 2024

Welcome Back!

• Assignment due Wednesday

• Any questions?

Geometric Sums

Geometric Sum

A geometric sum is of the form
∑k

i=0 r
i . They come up frequently in computer

science (and elsewhere). We have that, for any r 6= 1,

k∑
i=0

ri =
1− rk+1

1− r

Proof: Here’s a clever way to solve this sum. We’ll see a similar technique when we

get to randomized algorithms later in the class.

Let S =
∑k

i=0 r
i . Then:

r · S = r
k∑

i=0

ri =
k+1∑
i=1

ri = rk+1 − 1 +
k∑

i=0

ri.

In other words, rS = (rk+1 − 1) + S. Solving, S = (1− rk+1)/(1− r).

Divide and Conquer Multiplication

Divide and Conquer: Multiplication

a× b = 10n(a`b`) + 10n/2(a`br + b`ar) + arbr

• To multiply two n-digit numbers, we first perform four recursive
multiplications:

• a` × b`, a` × br , b` × ar , and ar × br

• And then we add them together (and multiply by 10n) in O(n) time.

• If n = 1 just multiply the numbers

• Recurrence?

• T(n) = 4T(n/2) + O(n); T(1) = 1

• Get Θ(n2) time, same as before. Can we improve this?

Divide and Conquer: Karatsuba’s Algorithm

a× b = 10n(a`b`) + 10n/2(a`br + b`ar) + arbr

• Consider the following three recursive multiplications

• (a` × b`), (ar × br), and (a` + ar)× (b` + br)

• I claim this is enough! Why?

• a`br + b`ar = (a` + ar)× (b` + br)− a` × b` − ar × br

• So after three recursive calls of size n/2 I can calculate a× b. I used O(n)

total time other than the recursive calls

• T(n) = 3T(n/2) + O(n); T(1) = 1

Solving the Multiplication Recurrence

T(n) = 3T(n/2) + O(n) T(1) = 1

• Let’s solve this recurrence [On Board #1]

• We want to ask ourselves: What is the height of the tree? What is the cost of

each level?

• Solution: O(nlog2 3) = O(n1.58) time

• Much better than n2!

• Reflect: why did changing a constant from 3 to 4 have such an impact on the

running time?

Multiplying Numbers Efficiently

• Kolmogorov conjectured that Ω(n2) time is needed; stated this conjecture in a

seminar at Moscow State University in 1960

• Karatsuba, a student figured out this O(nlog2 3) time algorithm in the next week

• Kolmogorov cancelled the whole seminar and then published the result on

Karatsuba’s behalf without telling him

• Can we do better?

• Best known: O(n log n) [Harvey, van der Hoeven 2019]

• Are these speedups useful in practice?

• Sometimes! Karatsuba’s is used in some libraries

More Recurrences

Divide and Conquer and Recurrences

• We analyze divide and conquer algorithms using recurrences

• Gives us a bird’s eye view of the cost of the algorithm

• Recurrence relations can also guide us in searching for algorithms

• “How can I sort in O(n log n) time?”

• If my sorting method recurses on two halves, and does O(n) additional work, I
get T(n) = 2T(n/2) + O(n), which gives O(n log n)

• (Of course, this is just a starting point: many other recurrences solve to
O(n log n).)

• Let’s look at some other recurrences

Three practice recurrences

Let’s do the following recurrences [On Board #2]

For all of these assume T(1) = 1.

T(n) = 4T(n/2) + O(1)

T(n) = 2T(n/2) + O(n log n)

T(n) = 3T(n/3) + O(n)

On Floors and Ceilings in Recurrences

• Most input sizes are not (say) powers of 2

• Merge sort’s actual recurrence is:

T(n) = T(dn/2e) + T(bn/2c) + O(n)

• Does this change the solution?

• No. We will ignore all floors and ceilings in this class. See Erikson 1.7 for some

formal justification

Tree Height and Recurrences that Don’t Branch

Let’s do the following recurrences [On Board #3]

T(n) = T(n/2) + O(1)

T(n) = T(
√
n) + O(1)

T(n) = T(n/2) + O(n)

Three kinds of recurrences

Recurrences often fit into one of three types:

• Cost at the root dominates

• Cost at the leaves dominate

• Cost at each level is the same

Ways to Solve Recurrences

• Recursion tree (recommended)

• Guess and check

• If we have the solution for T(n), we can substitute it into the recurrence to check
that it is satisfied

• Can formalize using induction
• “Unroll” recurrence a few steps to get intuition before guessing

• Master theorem (next slide) gives the solution for many common recurrences

Master Theorem (Simple Version)

For constants a and b and a function f(n), to solve

T(n) = aT(n/b) + f(n); T(1) = 1

• If f(n) = O(nc) for c < logb a then T(n) = Θ(nlogb a)

• So T(n) = 4T(n/2) + O(n) solves to T(n) = Θ(n2)

• If f(n) = Θ(nlogb a) then T(n) = Θ(nlogb a log n)

• So T(n) = 2T(n/2) + O(n) solves to T(n) = Θ(n log n)

• A fast way to solve simpler recurrences. But a pain to memorize and only

works situationally.

Binary Search

Binary Search

1 binary_search(key, A, start, end):
2 mid = (start + end)/2
3 if key == A[mid]:
4 return mid
5 else if key < A[mid]:
6 return binary_search(key, A, start, mid-1)
7 else:
8 return binary_search(key, A, mid+1, end)

• Correctness intuition: we recurse on the half of A that must contain key.

• How would we prove correctness formally?

• Running time? T(n) = T(n/2) + O(1) We’ve seen: T(n) = O(log n)

Binary Search on a Linked List?

This is not a good algorithm. But I’ve seen people implement it many times.

Today: how efficient is it?

We can binary search by:

• Find the middle item of the linked list

• By iterating through the linked list

• Compare to query item

• Recurse on first or second half of the linked list

• Recurrence?

• T(n) = T(n/2) + Θ(n)

• Solution: Θ(n) time

• (Could have just scanned!)

Selection

Median finding

• Goal: given an unsorted array A of length n, find the median of A

• Can someone give an O(n log n) time algorithm to solve this?

• Sort A using Merge Sort. Return A[dn/2e]

• Can we do better?

Linear-Time Median Finding

• Goal: an O(n) algorithm to find the median of any unsorted array A

• Can’t sort! Is it really possible to find the median of an array without sorting

it?

• We’ll solve a more general problem: find the kth largest element in the array

• Divide and conquer algorithm; invested by Blum, Floyd, Pratt, Rivest, Tarjan

1973

Partition (Selection Subroutine)

1 Partition(A, p):
2 Create empty arrays A<p and A>p

3 for i = 0 to |A| − 1:
4 if A[i] < p:
5 add A[i] to A<p

6 if A[i] > p:
7 add A[i] to A>p

8 return |A<p|,A<p,A>p

Returns two arrays, one with elements < p and one with elements > p

The rank of p is the number of elements in A smaller than p; also returns the rank

of p.

Selection (First Attempt)

1 Select(A, k):
2 if |A| = 1:
3 return A[0]
4 else:
5 choose a pivot p # we’ll define how later
6 r,A<p,A>p = Partition(A, p)
7 if k == r:
8 return p
9 else:

10 if k < r:
11 return Select(A<p, k)
12 else:
13 return Select(A>p, k − r − 1)

The main question is: How do we select our pivot? (And how does that impact

performance?)

How good does our pivot selection need to be?

• Let’s say our pivot is not in the first or last 3n/10 items of A (where n = |A|)

• What is our recurrence?

• T(n) ≤ T(7n/10) + O(n)

• T(n) = O(n)

Finding the Pivot: Goal

• Find a pivot that has rank between 3n/10 and 7n/10 in time O(n)

• The array is unsorted

• Want to always be successful

• Note: Can verify in O(n) time!

Finding an Approximate Median

• Divide the array into dn/5e groups of 5 elements (ignore leftovers)

• Find median of each group

Finding an Approximate Median

• Divide the array into dn/5e groups of 5 elements (ignore leftovers)

• Find median of each group

Finding an Approximate Median

• Divide the array into dn/5e groups of 5 elements (ignore leftovers)

• Find median of each group

• Find the median of these dn/5e medians; this is our pivot

Finding an Approximate Median

• Divide the array into dn/5e groups of 5 elements (ignore leftovers)

• Find median of each group

• Find the median of these dn/5e medians; this is our pivot (call it M)

• How can we find the median of these medians? Recursively!

• This is a median-finding algorithm! We call Select to find the median of these
medians to get our pivot

Rank of the Median of Medians

• What elements are smaller than the median of medians M?

• Half the medians (n/10 elements)

• Also: for each such median, two elements the median’s list (2n/10 elements)

Rank of the Median of Medians

• ≥ 3n/10 are less than M

• Similarly: ≥ 3n/10 are greater than M

• So M is a good pivot!

Linear-Time Selection

1 Select(A, k):
2 if |A| ≤ 5:
3 return kth largest element of A
4 else:
5 divide A into dn/5e groups of 5 elements
6 Create array Am containing the median of each group
7 p = Select(Am, d|Am|/2e)
8 r,A<p,A>p = Partition(A, p)
9 if k == r:

10 return p
11 else:
12 if k < r:
13 return Select(A<p, k)
14 else:
15 return Select(A>p, k − r − 1)

Recurrence: T(n) = T(n/5) + T(7n/10) + O(n); T(5) = O(1) [On Board #4]

Median Finding

• An advanced Divide and Conquer application

• Uses a nontrivial recurrence

• Can find median of an unsorted array in O(n) time—strictly faster than sorting

How fast can we sort?

• A comparison-based sorting algorithm has no assumptions on the elements

we are sorting

• I don’t know whether a given element is likely to be “big” or “small”

• All I can do is compare two elements: is A[i] ≤ A[j]?

• Insertion sort, selection sort, merge sort, quicksort, etc., are all

comparison-based

• (Can do better than comparison-based for some special cases, e.g. if all

numbers in the array are from {1, 2, . . . , n}. But comparison-based sort is how

we sort items in general.)

Lower Bound

Theorem

Any comparison-based sorting algorithm makes Ω(n log n) comparisons in the

worst case.

Proof: Consider a comparison-based sorting algorithm that makes k comparisons.

There are 2 outcomes to every comparison (A[i] ≤ A[j] is true or false); so there are

2k possible outcomes to this sorting algorithm.

Any sorting algorithm needs to correctly sort any permutation of the n items. There

are n! permuations of the items. So we need 2k > n!.

First, we lower bound (assume n is even for simplicity):

n! = n(n− 1)(n− 2) . . . (n/2 + 1)(n/2)(n/2− 1) . . . 1n! ≥ (n/2)(n/2)(n/2) . . . (n/2)(n/2)(1)(1) . . . 1n! ≥ (n/2)n/2

So 2k > n! > (n/2)n/2. Taking logs of both sides, k > n
2 log2

n
2 = Ω(n log n).

	Geometric Sums
	Divide and Conquer Multiplication
	More Recurrences
	Binary Search
	Selection

