## Divide and Conquer

Sam McCauley

March 7, 2024

## Welcome Back!

- Assignment released
- Group assignment
- main D\&C practice so be sure you participate
- Can solve any problems after today; we'll get more practice Monday so it will be easier after that
- Midterm handed back; discussion next slide
- Back on gradescope
- Median and mean $\approx 87$; standard deviation 8
- Final grades are usually a little higher due to assignments
- Midterms are short; having 2 (plus a final) helps things average out in the long run
- Let's look very quickly at a few common sticking points; I'm always happy to have a longer conversation in office hours

Divide and Conquer Algorithms

## Algorithmic Design Paradigms

- Greedy Algorithms
- Gas-filling; maximum interval scheduling
- Prim's, Kruskal's, Dijkstra's
- Idea: we choose an item to add permanently to the solution
- Proof that each item we have is correct
- Divide and Conquer $\Leftarrow$ we are here!
- Divide problem into multiple parts
- Combine solutions into a new correct solution
- Dynamic Programming
- Network Flow


## Sorting



- Selection sort: take largest item; place it in last slot; repeat
- Can be viewed as "greedy:" once we place an item, we have proven that it stays there irrevocably
- $\Theta\left(n^{2}\right)$ time (requires $\Omega(i)$ time to find largest of $i$ items)
- Can we do better with divide and conquer?
- Let's revisit Merge Sort, and talk about how to analyze it


## Merge Sort [von Neumann 1945]



- If $|A| \leq 1$ then return $A$

Goal: sort an array $A$ of size $n$ (Assume $|A|$ is a power of 2 for simplicity)

- Otherwise, sort the left half of $A$ and the right half of $A$ using Merge Sort
- "Merge" the two halves together to create a sorted array

Let's look at how to merge efficiently [On Board \#1]. Can we prove that the merge is correct by induction?

Running time of a merge? $O(n)$

## Merge Sort

```
MergeSort(A, n):
    A}=A[1,\ldots,n/2
    A =A[n/2+1,\ldots,n]
    MergeSort(A
    MergeSort(A}\mp@subsup{A}{2}{,n/2)
    A=Merge(A
```

- Let's do a simple example [On Board \#2]
- How can we prove correctness?
- Strong induction (why?)


## Divide and Conquer Running Time

- Analyzing D \& C algorithms can be initially confusing
- Challenge: the algorithm "jumps" all over the place due to the recursive structure
- Today: group/categorize costs to allow us to analyze divide and conquer more effectively


## Merge Sort Running Time

What is the running time of Merge Sort on an array of size $n$ ?

One answer:

- running time of Merge Sort on an array of size $n / 2$, plus
- running time of Merge Sort on a second array of size $n / 2$, plus
- $O(n)$ to merge.
- Or, if $n=1$, then the cost is 1 .

Let $T(n)$ be the exact number of operations of Merge Sort on an array of size $n$.
Then:

$$
T(n)=2 \cdot T(n / 2)+O(n), \quad T(1)=1
$$

## Recurrences

## Recurrences

- To find the running time of a divide and conquer algorithm, we write a recurrence
- Let $T(n)$ be the cost of the algorithm on a problem of size $n$. Can write $T(n)$ as:
- A base case for small $n$ (oftentimes $T(1)=1$ )
- A sum of the "divide" recursive calls which can be written in terms of $T$ (e.g. $T(n / 2)$ ), plus the cost to "conquer"
- A solution to this recurrence gives our total running time!

First example: merge sort



- First: set constants
- For some $c, T(n) \leq 2 T(n / 2)+c n ; T(1) \leq c$
- How can we solve this?


## Recurrence Tree Technique

- Let's draw the recurrence as a tree [On Board \#3]
- Idea: this drawing will help us group together the costs of the algorithm
- How does Merge Sort actually run?
- But: can we bound the cost of a given level of the tree?
- Yes: each level costs $c n$ in total
- Specifically: level $i$ has $2^{i}$ subproblems, each with cost $\leq \mathrm{cn} / 2^{i}$
- How many levels are there?
- What is the total cost of Merge Sort?


## Recurrence Tree Analysis: Merge Sort

- What is this level-by-level analysis saying about Merge Sort?
- Look at all work we do across all subproblems of size $n / 2^{i}$
- Answer: cn total work
- So we do $c n$ total work on the subproblem of size $n ; c n$ total work on the 2 subproblems of size $n / 2$; $c$ n on the four subproblems of size $n / 4, \ldots, n$ on the $n$ subproblems of size 1
- That's $\leq c n\left(\log _{2} n+1\right)$ total work!



## Double-Checking our Work

- We wanted a solution to:

$$
T(n)=2 \cdot T(n / 2)+c n, \quad T(1)=c
$$

- Does $c n\left(\log _{2} n+1\right)$ satisfy this?
- Yes.

$$
\begin{aligned}
c n\left(\log _{2} n+1\right) & \leq 2\left(\frac{c n}{2}\left(\log _{2} \frac{n}{2}+1\right)\right)+c n \\
& =c n\left(\log _{2} \frac{n}{2}+1\right)+c n \\
& =c n\left(\log _{2} n-\log _{2} 2+1\right)+c n \\
& =c n\left(\log _{2} n\right)+c n
\end{aligned}
$$

## Stepping Back

- Merge Sort divides the array into halves, sorts each half, and then recombines them in $O(n)$ time
- Running time is initially difficult to see
- We wrote the running time as a recurrence
- To solve the recurrence, we drew a tree, which helped us group the costs
- $\log _{2} n$ levels, each of cost $O(n)$, means $O(n \log n)$ total cost!


## Sorting Algorithm Comparison (Just for Fun)

- Insertion sort is $O\left(n^{2}\right)$, with good constants. Usually best for arrays of $\leq \approx 64$ elements
- Merge sort is $O(n \log n)$; used in Java and Python libraries
- An optimized version switches to Insertion sort when recursing on at most 64 elements
- Heapsort (sorting using repeated ExtractMin from a binary heap), Quicksort (we'll see in a bit) are also fast but less used


## Merge Sort

- Classic divide and conquer algorithm; need:
- A base case
- A way to divide into smaller instances
- A way to combine the solution for smaller instances into an overall solution
- What do we need for correctness?
- Combining smaller solutions must give correct solution for overall instance
- Base case must be correct
- Must reach the base case!


## Divide and Conquer: Multiplication

| $\times 144$ |
| ---: |
| 2700 |
| 27000 |
| +67500 |
| 97200 |

- Let's say we want to multiply two $n$-digit numbers $a \times b$ (assume they're in base 10; can extend to binary numbers)
- Let's say $n$ is too big for our CPU: $n \gg 64$
- What is the running time of the algorithm you learned in school?
- For each digit of $b$, multiply with each digit of $a$; carry as necessary
- $O(n)$ time for each digit of $b$
- $O\left(n^{2}\right)$ time overall
- Addition is only $O(n)$ however
- Can we do multiplication more efficiently? In 1960 , Kolmogorov conjectured no: any algorithm takes $\Omega\left(n^{2}\right)$ worst-case time


## Divide and Conquer: Multiplication

Assume $n$ is a power of 2 for the moment for simplicity.

- Let's write $a$ as the sum of two $n / 2$-bit numbers: $a=1 \otimes^{n / 2} a_{\ell}+a_{r}$
- E.g.: $123456=123000+456$
- Let's write $b$ as the sum of two $n / 2$-bit numbers: $b=18^{n / 2} b_{\ell}+b_{r}$
- Then $a \times b=\left(1 \otimes^{n / 2} a_{\ell}+a_{r}\right)\left(1 \otimes^{n / 2} b_{\ell}+b_{r}\right)$
- Using algebra, $a \times b=1 \otimes^{n}\left(a_{\ell}+b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}$.


## Divide and Conquer: Multiplication

$$
a \times b=1 \otimes^{n}\left(a_{\ell} b_{\ell}\right)+1 \otimes^{n / 2}\left(a_{\ell} b_{r}+b_{\ell} a_{r}\right)+a_{r} b_{r}
$$

- So we can use divide and conquer! To multiply two n-digit numbers, we first perform four recursive multiplications:
- $a_{\ell} \times b_{\ell}, a_{\ell} \times b_{r}, b_{\ell} \times a_{r}$, and $a_{r} \times b_{r}$
- And then we add them together in $O(n)$ time.
- If $n=1$ just multiply the numbers
- Recurrence?
- $T(n)=4 T(n / 2)+O(n) ; T(1)=1$
- Let's solve this recurrence together [On Board \#4]
- Get $\Theta\left(n^{2}\right)$ time, same as before. Can we improve this?

