
Lecture 1: Introduction and
Proofs of Correctness

Sam McCauley

January 31, 2024

Welcome!

• I’m Sam

• This is algorithms (CS 256)

• Dialogue is encouraged! Please let me know if you have questions or

comments.

What is This Course?

Day to day of Algorithms

• No coding in this class

• Focus is on high-level strategies (a.k.a. algorithms)

• English descriptions, pseudocode, proofs

Two Broad Questions about Algorithms

• Correctness: does this algorithm work?

• Running time: how fast is this algorithm?

Why Algorithms?

1. Given a piece of code, or high-level strategy, does it work?

2. Does it always work?

3. Or: what does it do?

4. Is it fast?

5. If we move to another domain, will it still be fast?

Why Algorithms?

• It’s a different way of thinking about computer science

• Some of you may use it a lot

• All of you (in my opinion) will benefit from having seen it

Proofs

• You and I will largely communicate via proofs

• Proofs: structure on top of intuition

• Remove ambiguity

• Strengthens intuition

Course Resources and Overview

Tools We’ll Use

• Course website

• Overleaf/latex

• Gradescope

Questions about course resources?

Plan for Rest of Today

• Intro/review: reading pseudocode, expectations for proofs, etc.

• Use some likely-familiar algorithms as examples

• And some algorithms that, probably, none of you have seen before

• Goal: Good foundation to get you started

• On Monday we’ll move to the “Stable Matching” problem

Pseudocode

Pseudocode

• We will give algorithms in two ways in this course:

• English descriptions, and

• Pseudocode

• Code is a way for humans to unambiguously give computers instructions

• Pseudocode is a way for humans to communicate with each other

• Keeps the structure of code

• Does not rely on language-specific knowledge

Writing Pseudocode

• Looks very much like simple Python

• Basic keywords: if, else, while, etc.

• Basic arithmetic operations + - * / %, use superscripts for exponents, write

log

• Assume 0-indexed arrays, inclusive for loops

• Explain any non-trivial steps in English

• Idea: make it as clear as possible!

Pseudocode Example 1

1 function findElement(A):
2 minSoFar = A[0]
3 for i = 1 to n-1:
4 if A[i] < minSoFar:
5 minSoFar = A[i] # we found a new smallest
6 return minSoFar

Pseudocode Example 2

It’s OK to use sets in pseudocode if that’s what you’re comfortable with. Instead of

library functions, write in English (if unambiguous!).

1 function findEven(A):
2 B = ∅
3 for x ∈ A:
4 if x % 2 == 0:
5 B = B ∪ {x}.
6 Sort B using Merge Sort // O(n log n) time
7 return B

This can be invaluable, but use carefully. Math notation is powerful, and some

statements can be ambiguous or costly.

(Recall:) Two Questions about Algorithms

• Correctness: does this algorithm work?

• Running time: how fast is this algorithm?

Let’s start with correctness!

Algorithm Correctness

Correctness today

• We’ll prove, in detail, that some algorithms are correct

• Some (but not all) review

• Correctness can be obvious, and is often omitted

• We’ll do some obvious proofs as practice

• We’ll talk about how short English explanations can be an effective alternative to
formal proofs

• We’ll also do some non-obvious proofs

Algorithmic Invariants

Definition (Invariant)

If we stop an algorithm in the middle of its execution, what can we guarantee

about its state?

• I love Invariants.

• Heart of all algorithms

• When looking at an algorithm for the first time, ask yourself what invariants it

satisfies

• A proof by induction is a formal way of analyzing an invariant

Example 1: Selection Sort

1 selectionSort(A):
2 for i = |A|-1 to 0:
3 for j = 0 to i:
4 if A[i] > A[j]:
5 swap(A, i, j)
6
7 swap(A, i, j): // swaps A[i] and A[j]
8 temp = A[i]
9 A[i] = A[j]

10 A[j] = temp

• What does the inner loop of selection sort do?

• Intuitively, in 1-2 sentences, why is this algorithm correct?

• How can we turn this into an inductive proof? [On Board #0]

Proofs in CS 256

• Proofs are a language for you to communicate with me

• Level of detail: judgment call

• Rule of thumb: imagine you’re explaining to a skeptical classmate

• They are trying to understand you; are willing to fill in details

• But they are always asking questions

• Skeptical rubber duck explanation

Example 2: Insertion Sort

1 insertionSort(A):
2 for i = 0 to |A| - 1:
3 j = i
4 while j > 0 and A[j-1] > A[j]:
5 swap(A[j-1], A[j]) # swaps A[j-1] and A[j]
6 j = j - 1

• What invariant can we guarantee after the outer loop executes i times?

• Intuitively, in 1-2 sentences, why is this algorithm correct?

• How can we turn this into an inductive proof? [On Board #1]

Insertion Sort Inductive Proof of Correctness

Theorem

After k iterations of the outer loop, the items in A[0] through A[k − 1] are in sorted

order.

Proof: By induction. Base case: for k = 1, A[0] is always in sorted order.

Inductive step: Assume true for some k ≥ 1. During the k + 1st iteration of the

outer loop, the inner loop maintains that for any j: all items from A[j] to A[k] are in

sorted order.

After the inner loop completes, all items from A[0] to A[j − 1] are in sorted order,

and are less than A[j]. Thus, when the k + 1st iteration of the outer loop completes,

all items from A[0] through A[k] are in sorted order.

Insertion Sort 2-sentence Explanation of Correctness

The algorithm maintains the invariant that after k iterations of the outer loop, items

in A[0] through A[k] are in sorted order. This is maintained because on the k + 1st

iteration, the inner loop swaps A[k + 1] with any larger element among the first k

elements.

	What is This Course?
	Course Resources and Overview
	Pseudocode
	Algorithm Correctness

