
CS 256: Algorithm Design and Analysis

Greedy Algorithms Practice (Optional!)

Instructor: Sam McCauley

Greedy Stays Ahead and Exchange Argument

Problem 1. Let X be a set of n intervals on the real line. We say that a set P of points
stabs X (or is the stabbing set) if every interval in X contains at least one point in P . See
Figure 1. In this and the next question, we will design and analyze an efficient algorithm to
compute minimum set of points that stabs X. Assume that your input consists of pairs (`i,
ri), representing the left and right endpoints of ith interval in X, for 1 ≤ i ≤ n.

Figure 1: A set of intervals stabbed by four points. From Jeff Erickson’s Algorithms book.

(a) Structure of optimal. If we were to choose stabbing points anywhere on the intervals,
the possibilities would be endless. So first, we prove a structural property about any
optimal solution to the problem, as this will guide our algorithm design. Show that
for any set of intervals, there exists an optimal solution (a stabbing set of minimum
size) where every stabbing point is the right endpoint ri of some interval. This means
that without loss of generality (WLOG), we can restrict ourselves to stabbing sets that
satisfy this property.

Consider the following greedy strategy: sort the intervals in increasing order of their right
endpoints. Take the first interval from this list, and add its right endpoint to the stabbing
set. Remove all intervals that contain this point. Repeat until no intervals remain. Clearly,
this produces a valid stabbing set, but is it optimal?

(b) Greedy is optimal. Prove that the above greedy strategy is optimal, i.e., it produces a
stabbing set of minimum size. (Hint. Use (a) and compare to an optimal solution where
every stabbing point is a right endpoint of some interval.)

(c) Running time of greedy. Analyze the running time of the greedy strategy and show that
it can be implemented in O(n log n) time.

Solution.

1

www.algorithms.wtf


Greedy Algorithms Practice 2

Problem 2 (K-T 4.9). One of the basic motivations behind the Minimum Spanning Tree
problem is the goal of designing a spanning network for a set of nodes with minimum total
cost. Here we explore another type of objective: designing a spanning network for which the
most expensive edge is as cheap as possible.

Specifically, let G = (V,E) be a connected graph with n vertices, m edges, and positive
edge costs that you may assume are all distinct. Let T = (V,E ′) be a spanning tree of G;
we define the bottleneck edge of T to be the edge of T with the greatest cost.

A spanning tree T of G is a minimum-bottleneck spanning tree if there is no spanning
tree T ′ of G with a cheaper bottleneck edge.

• Is every minimum-bottleneck tree of G a minimum spanning tree of G? Prove or give
a counterexample.

Solution.

• Is every minimum spanning tree of G a minimum-bottleneck tree of G? Prove or give
a counterexample.

Solution.


