
CS256: Algorithm Design and Analysis Spring 2024

Assignment 4 (due 04/03/2024 9:59pm)

Instructor: Sam McCauley

Problem 1. The following word problem is related to divide and conquer, but the final
solution is not necessarily a divide and conquer algorithm like the ones we’ve seen. This
question is more about divide and conquer intuition.

One of your Amazon packages has been lost. You suspect that it’s in a specific warehouse,
so you take your tracking number and drive over to the warehouse to find your package.

Unfortunately, on arrival, you find that there are no people at the warehouse, only a
fairly unhelpful robot. The robot will only answer questions of the form: “what is the ith
largest tracking number in the warehouse?” The robot will either give you the ith largest
tracking number, or answer that there are fewer than i packages in the warehouse (despite
its limited capabilities, the robot always answers these questions correctly).

(a) Assume for a second that you know that there are n packages in the warehouse.
Describe in 1-2 sentences how to determine if your package is in the warehouse (in other
words, if one of the packages in the warehouse has your tracking number) by asking the
robot O(log n) questions.

Solution.

(b) In reality, you have no bound on the number of packages in the warehouse n.1 Describe
how you can, nonetheless, determine if your package is in the warehouse by asking the robot
O(log n) questions.

Hint: If you obtain a bound on n via your questions, you can essentially use your answer
from part (a).

Solution.

1To be clear, due to the efficiency of Amazon, assume you have no upper bound on the number of packages
in the warehouse; it could potentially be larger than any number you come up with. The only way you can
bound the number is via questions to the robot.

1



Spring 2024 2

Problem 2. (Erickson 3.3) Suppose you are given a 1-indexed array A[1, . . . , n] of numbers,
which may be positive, negative, or zero, and which are not necessarily integers.

Describe and analyze an algorithm that finds the largest sum of elements in a contiguous
subarray A[i . . . j]. So if the array consists of only positive numbers, then the largest sum of
contiguous elements would just be the sum of all the elements. If the array is only made up
of negative numbers, then the largest subarray is made up of the number closest to 0. (To
simplify things, we are not allowing empty subarrays).

As an example consider an array A = [−6, 12,−7, 0, 14,−7, 5], then the contiguous subar-
ray with the largest sum is [12,−7, 0, 14] with the sum of 19. If the subarray is B = [−4,−1],
then the contiguous subarray with the largest sum is [−1] with the sum of −1.

Note. This problem has been a standard computer science interview question since at
least the mid-1980s and can be solved via a variety of approaches. We will use a dynamic-
programming approach for this question.

This dynamic programming problem is similar to the longest increasing subsequence
problem we discussed in class.

• Subproblem definition: Let M(i) denote the optimal (largest) subarray sum ending
at index i of the array (and including A[i]).

• Recurrence:

Solution. Students, fill in the recurrence

• Base Case:

Solution. Students, fill in the base case

• Final solution: given by taking the maximum over all the M(j)’s that is, max1≤j≤n M(j).

Solution. Students, fill in the final solution

• Memoization structure: We can store the values of M [1, . . . , n] in a linear size array.

• Evaluation order: the evaluation of the dynamic program proceeds left to right,
starting from j = 1 and going up to j = n.

• Time and space analysis:

Solution. Students, fill in the time and space analysis



Spring 2024 3

Problem 3. (Kleinberg Tardos 6.1) Let G = (V,E) be an undirected graph with n nodes.
A subset of the nodes is called an independent set if no two of them are joined by an edge.
Finding large independent sets is difficult in general; but here we’ll see that it can be done
efficiently if the graph is simple enough.

Call a graph G = (V,E) a path if its nodes can be written as v1, v2, ..., vn, with an edge
between vi and vi+1, for i ∈ {1, 2, . . . , n − 1}. With each node vi, we associate a positive
integer weight wi. The problem we want to solve is the following: Find an independent set
in a path G whose total weight is as large as possible.

For example, the maximum weight of an independent set in the path in Figure 1 is 14.

1 8 6 3 6

Figure 1: The maximum weight of an independent set is 14 in this example.

(a) Give a counterexample (a simple counterexample suffices!) to show that the following
“pick the heaviest weight” greedy algorithm does not always work. You should say
what the greedy algorithm returns, and what the correct answer is.

• Start with S = ∅
• While some node remains in G

– Pick a node vi of maximum weight and vi to S

– Delete vi and its neighbors from G

• Return S

Solution. Students, give your counterexample here

(b) Give a dynamic-programming algorithm that takes an n-node path G with weights and
returns the value of the independent set of maximum total weight.

• Subproblem definition:

Solution. Students, fill in the subproblem definition

• Recurrence:

Solution. Students, fill in the recurrence

• Base Case:

Solution. Students, fill in the base case

• Final solution:

Solution. Students, fill in the final solution

• Memoization structure: We can store the values in a linear size array.



Spring 2024 4

• Evaluation order: the evaluation of the dynamic program proceeds left to right,
starting from j = 1 and going up to j = n.

• Time and space analysis:

Solution. Students, fill in the time and space analysis



Spring 2024 5

Problem 4. (Kleinberg Tardos 6.3) Let G = (V,E) be a directed acyclic graph where the
topological ordering of nodes is v1, . . . , vn. A reminder that a topological ordering of a DAG
has the following property: each edge goes from a node with a lower index to a node with a
higher index. That is, every directed edge has the form vi, vj with i < j. Thus, the source
node v1 has no incoming edges.

We further assume that in graph G each node except vn has at least one outgoing edge.
See Figure 2 for an example.

Given G and its topological ordering, we want to find the length of the longest path that
begins at v1 and ends at vn. (The length of a path is the number of edges in it.)

Figure 2: The correct answer for this ordered graph is 3: the longest path from v1 to vn uses
the three edges (v1, v2), (v2, v4), and (v4, v5).

(a) Show that the following algorithm does not correctly solve this problem, by giving a
counterexample (again, a simple counterexample is fine). In your example, you should
say what the correct answer is and what the above algorithm finds.

• Set w = v1 and L = 0
• While there is an edge out of node w:

– Choose the edge (w, vj) for which j is as small as possible

– Set w = vj and increment L by 1

• Return L as the length of the longest path

Solution. Students, give your counterexample here

(b) Give an efficient dynamic programming algorithm that returns the length of the longest
path that begins at v1 and ends at vn.

• Subproblem definition:

Solution. Students, fill in the subproblem definition

• Recurrence:

Solution. Students, fill in the recurrence



Spring 2024 6

• Base Case:

Solution. Students, fill in the base case

• Final solution:

Solution. Students, fill in the final solution

• Memoization structure: We can store the values in a linear size array.

• Evaluation order: the evaluation of the dynamic program proceeds left to right,
starting from j = 1 and going up to j = n.

• Time and space analysis:

Solution. Students, fill in the time and space analysis


