
CS 256: Algorithm Design and Analysis

Assignment 3 (due 3/13/2024)

Instructor: Sam McCauley

Problem 1. Use any of the methods discussed in class (unfolding recurrences, recursion
trees, master theorem, guess and check etc.) to solve each of the following recurrences. Give
as tight a Big Oh bound as possible. You must justify (at a high level) your answer in
each case—e.g., if using the recursion-tree method, draw the first few levels of the tree and
describe which of the three categories does the recurrence lie in, and why that leads to the
time bound. You do not need to verify by induction (unless you are using the guess and
check method in which case you do need a proof). You may use a latex to draw figures (as
done below), or attach a photo/scan of a neatly hand-drawn figure. The first part is solved
to guide your approach.

(a) T (n) = 2T (n/2) + n2

Solution. The recursion tree for this recurrence is given in Figure 1. Notice that the
cost at each level is decreasing by at least a constant factor. The total cost at the root
is n2, one level down is n2/2, and two levels down is n4/4. In particular we get the
following series: T (n) = n2(1 + 1/2 + 1/4 + . . .) = Θ(n2). Summing, we obtain a total
cost of 2n2 = O(n2).

n2

n2

4

n2

16

...

n2

16

...

n2

4

n2

16

...

n2

16

...

Figure 1: Recursion Tree for Problem 1 (a)

(b) T (n) = 2T (n/4) +
√
n

(c) T (n) = 3T (n/3) + O(n2)

(d) T (n) = 2T (n/2) + n log n

Solution.

1



Assignment 3 2

Problem 2. You’re running an internet poll on a popular website. Each user on the website
is only allowed to vote once in the poll. Of course, there’s an obvious problem: some people
have multiple user accounts on the website.

You want to rule out the worst-case scenario: is there a single person who controls the
majority of the user accounts on the site?

You receive an array of usernames U [1 . . . n]. You want to determine if a single person
controls > dn/2e of the usernames. You don’t know which person controls a given username;
however you have access to two subroutines:

• samePerson(i,j) takes two integers i and j and returns whether or not U [i] and U [j]
are controlled by the same person, in O(1) time.1

• countOccurrences(i,`,r) returns the number of usernames in U [`, `+1, . . . , r] con-
trolled by the same person that controls U [i], in O(r − ` + 1) time.2

Notice that we can run countOccurrences(i,1,n) for all i = 1, . . . n and learn exactly
how many accounts each person controls, in O(n2) time.

Instead, you are to design an algorithm that determines if a single person controls > dn/2e
of the usernames, in O(n log n) time. To avoid edge cases, assume n has a nice form, e.g.,
a power of 2. You must prove that your algorithm is correct (under the assumption that
samePerson and countOccurrences are correct). State and solve the recurrence for
the running time of your algorithm.

Solution.

1Let’s say this runs some simple analytics on the metadata we’ve stored for the two users.
2This is easy to implement—just call samePerson(i,j) for j = `, . . . , r. Having this as a subroutine,

rather than a whole loop, may make your algorithm simpler.



Assignment 3 3

Problem 3. Suppose we are given two sorted arrays A[1 . . . n] and B[1 . . . n]. Assume that
the arrays do not contain duplicate elements. Describe an algorithm to find the median of
A ∪ B in O(log n) time. The median of sorted array A of size n is the middle element (at
index (n + 1)/2) if n is odd; and is the average of the two middle elements (at indices n/2
and (n+ 1)/2) if n is even. Remember to justify the correctness of your algorithm and state
and solve its running time recurrence.

Solution.



Assignment 3 4

Problem 4. Consider the following funky recursive sorting algorithm called funky-sort.

funky-sort(A[1, . . . , n):
if n = 2 and A[1] > A[2]:

swap A[1]↔ A[2]
else if n > 2:

m = d2n/3e
funky-sort(A[1, . . . ,m])
funky-sort(A[n−m + 1, . . . , n])
funky-sort(A[1, . . . ,m])

(a) Does funky-sort actually sort the array? Prove its correctness if you think it does,
otherwise give a counterexample.

(b) State and solve the recurrence for the running time of funky-sort.

Solution.



Assignment 3 5

Problem 5. (Extra Credit (10pts)) We have seen that the solution to the recurrence
T (n) = T (n/2) + 1, T (1) = 1 is T (n) = O(log n).

We have also seen that the solution to the recurrence T (n) = T (
√
n) + 1, T (1) = 1 is

T (n) = O(log log n).
Give a recurrence of the above form that solves to T (n) = O(log log log n). (That is to

say: your recurrence should be of the form T (n) = T (f(n)) + 1, T (1) = 1, for some f(n)).

Hint: The answer is not T (n) = T (log n) + 1. As we saw during our Union-Find
discussion, this solves to T (n) = O(log∗ n).

Solution.

Problem 6. (Extra Credit (10 pts)) The company UPS has noticed that left turns are
extremely costly—trucks must idle for a long time looking for an opportunity to turn left. In
fact, when determining routes for drivers, they eliminate almost all left turns from the route.
This saves the company over 300 million dollars per year. See this url for one article on this
policy: https://www.cnn.com/2017/02/16/world/ups-trucks-no-left-turns/index.html

Let’s apply the same logic to shortest path. Define two consecutive edges along a path
(v1, v2), (v2, v3) to be a left turn if:

• v3 is immediately before v1 in the adjacency list of v2, or
• v3 is the last vertex in the adjacency list of v2 and v1 is the first.
Given an undirected graph G where all edges have a positive weight, and two nodes s

and t, let the UPS shortest path be the shortest path from s to t that does not take a left
turn.

Design an efficient algorithm to compute the UPS shortest path. Analyze its running
time and briefly explain its correctness. (Note that this is a Dijkstra’s question—divide and
conquer is unlikely to be helpful here.)

Solution.

https://www.cnn.com/2017/02/16/world/ups-trucks-no-left-turns/index.html

