
CS256: Algorithm Design and Analysis Spring 2021

Recurrences Handout

Instructor: Shikha Singh Source: Overleaf

In this handout, we will look at examples of how to solve different recurrences using the
recursion tree method. We look at three examples that each correspond to the three cases
we discussed in class: increasing series, decreasing series, and series with equal terms.

(a) T (n) = 2T (n/2) + n2

The recursion tree for this recurrence is given in Figure 1. Notice that the cost at each
level is decreasing by at least a constant factor. The total cost at the root is n2, one
level down is n2/2, and two levels down is n4/4. In particular we get the following
decaying geometric series T (n) = n2(1 + 1/2 + 1/4 + . . .) = Θ(n2). This falls into the
first category of the recursion-tree method and the cost is dominant at the root, that
is, T (n) = O(n2).
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Figure 1: Recursion Tree for (a)

(b) T (n) = 3T (n/2) + O(n)

The recursion tree for this recurrence is given in Figure 2.

The total cost at the root is cn, one level down is 3cn/2, and two levels down is 9cn/4.
We can conclude that the cost at each level is increasing by at least a constant factor,
and must be asymptotically denominated by the leaves of the trees. The number of
leaves is O(rL) where r is the branching factor and L is the height of the tree. The
height of this tree is L = log2 n (as problem size is going down by a factor 2 each time)
and the branching factor is r = 3. Thus, T (n) = O(3log2 n) = O(nlog2 3).
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Figure 2: Recursion Tree for (b)

(c) (Challenge) T (n) =
√
nT (
√
n) + n

Notice that this recurrence does not quite fit into our mold of T (n) = rT (n/c) + f(n),
but that is okay. We can still reason using a recursion tree and see what we get.

Actually, it is a bit hard to draw the recursion tree for this recurrence, but we can
visualize it using words. The root of the recursion tree does work n. The level below
the root has

√
n nodes, where each do work

√
n, with a total cost of n again. The

level below we have n1/4 · n1/2 nodes, where each do work n1/4, with a total work of n.
Thus, each level of the tree does exactly the same amount of work: n, so to figure out
the overall cost, we have to determine the number levels (the height) of the tree. Let
us look at how the problem size is going down. We have the following pattern

n→ n1/2 → n1/4 → n1/8 → . . . n1/2i . . .

We want to know when (at which level) this series gown down to a small number, say
2. Let us find that out by setting them equal and taking logs.

n1/2i = 2

1

2i
log2 n = 1

log2 n = 2i

log2(log2 n) = i

Thus, the height of the tree is log log n and the total cost is T (n) = O(n log log n).

(d) Finally, to draw the connection between recursive algorithms and recurrences, we ex-
plain in words what an example recursive algorithm does and write its recurrence.

Consider an algorithm that solves a problem of size n by recursively solving two sub-
problems of half the size and combining their solutions in constant time. The recurrence
of this algorithm would be T (n) = 2T (n/2) + O(1). What does this solve to?


