
Approximate Set Cover

Final
• Released Saturday, Dec 12 at 8:30am

• Must be turned in by 8:30pm Sunday, Dec 20 at 8:30pm

• 24 hours from download to turn it in

• Some logistics not finalized yet

• Probably a GLOW exam which has a pdf with
a link to overleaf

• Comprehensive, but focuses on the second half of the
semester

• Similar style and length to the midterm

• “Open book”: can use lecture slides/videos, your notes from
class—any course materials. Cannot google answers

Admin
• Office hours/Assignment 10 discussion:

• Today 1-3pm

• Thursday 3:30-5:30pm

• Friday. 3-5pm

• Questions?

Set Cover
• Set Cover (Optimization version). Given a set of

elements, a collection of subsets of , find the minimum
number of subsets from whose union covers .

U n
𝒮 U

𝒮 U

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 } Sd = { 5 }
Se = { 1 } Sf = { 1, 2, 6, 7 }

a set cover instance

Greedy Algorithm
• Greedily pick sets that maximize coverage until done

• Greedy Cover():

• Initially all elements of are marked uncovered

• (Initialize cover)

• While there is an uncovered element in

• Pick the set from that maximizes the
number of uncovered elements

•

• Mark elements of as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm

Greedy Algorithm
• Greedily pick sets that maximize coverage until done

• Greedy Cover():

• Initially all elements of are marked uncovered

• (Initialize cover)

• While there is an uncovered element in

• Pick the set from that maximizes the
number of uncovered elements

•

• Mark elements of as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
Sa = { 1, 2, 3} Sb = { 4, 5 }
Sc = { 3, 5, 7 } Sd = { 6 }
Se = { 1, 8 } Sf = { 2,4,6 }

Greedy Algorithm
• Greedily pick sets that maximize coverage until done

• Greedy Cover():

• Initially all elements of are marked uncovered

• (Initialize cover)

• While there is an uncovered element in

• Pick the set from that maximizes the
number of uncovered elements

•

• Mark elements of as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
Sa = { 1, 2, 3} Sb = { 4, 5 }
Sc = { 3, 5, 7 } Sd = { 6 }
Se = { 1, 8 } Sf = { 2,4,6 }

Analyzing Greedy
• Claim. Greedy set cover is a -approximation, that is, greedy

uses at most sets where is the size of the optimal set
cover.

Main observations behind proof:

• If there exists subsets whose union covers all elements, then
there exists a subset that covers fraction of elements

• Greedy always picks subsets that maximize remaining
uncovered elements

• In each iteration, greedy’s choice must cover at least
fraction of the remaining elements

• Such a subset must always exist since the remaining elements
can also be covered by at most subsets

ln n
k ln n k

k n
≥ 1/k

1/k

k

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
Sa = { 1, 2, 3} Sb = { 4, 5 }
Sc = { 3, 5, 7 } Sd = { 6 }
Se = { 1, 8 } Sf = { 2,4,6 }

• Claim. Greedy set cover is a -approximation—greedy
uses at most sets where is the size of the optimal set
cover.

• Proof.
• Let be the set of elements still uncovered after th iteration.

• The optimal solution covers with no more than sets

• Greedy always picks the subset that covers most of in step

• Selected subset must cover at least elements of

• Thus and as , inductively
we have

• When , we are done

ln n
k ln n k

Et t
Et k

Et
t + 1

|Et | /k Et

|Et+1 | ≤ |Et |(1 − 1/k) E0 = n
|Et | ≤ n(1 − 1/k)t

|Et | < 1

Analyzing Greedy

• Claim. Greedy set cover is a -approximation—greedy uses
at most sets where is the size of the optimal set cover.

• Proof. (Cont.)

•

• When , we are done

• Setting , we get

• Thus, greedy finishes in steps where is the optimal-set
cover size, so it uses at most sets.

• We can tighten the analysis by considering when there are at
most uncovered elements

ln n
k ln n k

|Et | ≤ n(1 − 1/k)t

|Et | < 1

t = k ln n |Et | =

n (1 −
1
k)

k ln n

< n ⋅
1
n

= 1

k ln n k
k ln n

k

 for (1 −
1
x)

x

<
1
e

x > 0

Analyzing Greedy

• Claim. If the optimal set cover has size then the greedy set
cover has size at most .

• Proof. (Cont.)

•

• When , we finish after selecting at most more sets

• Setting , we get

• Greedy uses at most sets in total.

k
k(1 + ln(n/k))

|Et | ≤ n(1 − 1/k)t

|Et | ≤ k k

t = k ln(n/k) |Et | = n (1 −
1
k)

k ln(n/k)

≤ n ⋅ k/n = k

k + k ln(n/k)

Analyzing Greedy

Special Case
• We can do slightly better for special input

• Claim. If the maximum size of any subset in is then the
greedy algorithm is -approximation

• Proof.

• If each subset has almost elements and the optimal set
cover has subsets then

• Substituting shows that greedy is
approximation

𝒮 B
(ln B + 1)

B
k k ≥ n/B

n/k ≤ B (ln B + 1)

Tight Approximation
• Is the greedy approximation tight?

• Essentially, yes

• Consider the following example with elements

• has 16 elements, but and each have 15, so greedy chooses

• Then, has 8 elements, but but and each have 7, so greedy chooses …

• This happens times, so the approximation ratio is

n = 25

s1 s7 s8 s1

s2 s7 s8 s2

log2(n/2) (log2
n
2

)/2

• We know that vertex cover reduces to set cover

• and = where

• Thus the greedy approximation algorithm for set cover also
gives an approximation algorithm for vertex cover

• Greedy picks vertices that cover maximum number of edges
(i.e., vertices with max degrees w.r.t. uncovered edges)

• Greedy vertex cover is thus a (+1) approximation where
 is maximum degree of any vertex

• The seemingly stupider algorithm on assignment 9 is better
than greedy— -approximation is best known

• Finding a -approximation of VC is a big open problem!

• Can’t be done under “unique games conjecture”

𝒰 = E 𝒮 {Sv |v ∈ V}
Sv = {e ∈ E | e incident to v}

ln Δ
Δ

2
(2 − ε)

Approximating Vertex Cover

This won’t work for all
reductions

Approximate Weighted
Set Cover

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• The goal is to find the a collection of subsets
 such that they cover and is

minimized

• We extend the greedy algorithm to the weighted case

• What should we be greedy about?

• What could happen if we pick the largest?

• What could happen if we pick the cheapest?

Si ∈ 𝒮 wi

C = {S1, …, Sk} 𝒰 ∑
Si∈C

w(Si)

Weighted Set Cover

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
$5 Sa = { 1, 2, 3} $4 Sb = { 4, 5 }
$13 Sc = { 3, 5, 7 } $3 Sd = { 6 }
$1 Se = { 1, 8 } $15 Sf = { 2,4,6 }
k = 2

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

• We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set —how much are we spending per new
item covered?

Si ∈ 𝒮 wi

Si

Weighted Case: Greedy

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
$5 Sa = { 1, 2, 3} $4 Sb = { 4, 5 }
$13 Sc = { 3, 5, 7 } $3 Sd = { 6 }
$1 Se = { 1, 8 } $15 Sf = { 2,4,6 }
k = 2

1.67
4.33
.50

2.00
3.00
5.00

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

• We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set

• Greedy algorithm.

• Begin with an empty cover and continue until all elements
covered

• In each iteration choose the set that minimizes amortized
cost , where is the # of new elements covered by

Si ∈ 𝒮 wi

Si

Si
wi/e e Si

Weighted Case: Greedy

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

• We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set

Si ∈ 𝒮 wi

Si

Weighted Case: Greedy

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
$5 Sa = { 1, 2, 3} $4 Sb = { 4, 5 }
$13 Sc = { 3, 5, 7 } $3 Sd = { 6 }
$1 Se = { 1, 8 } $15 Sf = { 2,4,6 }
k = 2

1.67
4.33
.50

2.00
3.00
5.00

• How good is the greedy strategy for the weighted case?

• Claim. Greedy is a -approximation for weighted set cover.

• We prove this by proving a different claim:

• Let be the “amortized" cost of covering element :

•
If greedy selects , with uncovered items then

•
Our claim: for any subset ,

• Let be the sets chosen by optimal, and by greedy. Then the total cost of greedy is

• This would complete the proof that greedy is a -approximation

(1 + ln n)

cℓ ℓ

Sj U* cℓ =
wj

|Sj ∩ U* |

Si ∈ 𝒮 ∑
ℓ∈Si

cℓ ≤ wi(1 + ln n)

𝒮O 𝒮G

∑
Sj∈𝒮G

wi = ∑
Sj∈𝒮G

∑
ℓ∈Sj

cℓ = ∑
ℓ∈U

cℓ = ∑
Si∈𝒮O

∑
ℓ∈Si

cℓ ≤ (1 + ln n) ∑
Si∈𝒮0

wi

O(log n)

Weighted Case: Greedy

• Claim. For any subset , the greedy algorithm covers
the elements of with a cost no greater than times

 (the cost of choosing itself)

• Proof. Order the elements of in the
order in which they were covered by the greedy algorithm (if
more than one are covered at the same time, break ties
arbitrarily)

• Consider the time the element is covered: the available sets
to cover include itself

• Covering with would incur an amortized cost of or less
(if is the only new element covered by or less otherwise)

• Greedy picks the set with least amortized cost so its cost is at
most to cover . Therefore

Si ∈ 𝒮
Si O(log n)

wi Si

Si = {a1, a2, …, ad}

ad
ad Si

ad Si wi
ad Si

wi ad cd ≤ wi

Weighted Greedy: Analysis

• Claim. For any subset , the greedy algorithm covers
the elements of with a cost no greater than times

 (the cost of choosing itself)

• Proof.
Now look at when is covered, at this time, it is possible to
select and cover both and incurring an amortized
cost of or less (if more elements are covered)

• Greedy picks the set with least amortized cost so its cost to
cover is at most , therefore

• Similarly is covered at amortized cost at most . Each
element incurs an amortized cost at most

 up until which is covered at amortized
cost

Si ∈ 𝒮
Si O(log n)

wi Si

ad−1
Si ad−1 ad
wi/2

ad−1 wi/2 cd−1 ≤ wi/2

ad−2 wi/3
aj

cj ≤ wi/(d − j + 1) a1
c1 ≤ wi/d

Weighted Greedy: Analysis

• Claim. For any subset , the greedy algorithm covers the
elements of with a cost no greater than times (the
cost of choosing itself)

• Proof.

• Each element incurs an amortized cost at most up
until which is covered at amortized cost

• Thus the total amortized cost of all elements in is

• This analysis can be shown to be essentially tight as well

Si ∈ 𝒮
Si O(log n) wi

Si

aj wi/(d − j + 1)
a1 wi/d

Si

∑
ℓ∈Si

cℓ ≤ wi

d

∑
j=1

1
n − j + 1

= wiHd ≤ wiHn ≤ wi(1 + ln n)

Weighted Set Cover

• Set Cover. Can we do better than ?

• [Raz & Safra 1997]. There exists a constant , there is no
polynomial-time -approximation algorithm, unless

.’

• [Dinur & Steurer 2014] No polynomial time
approximation for any constant unless

1 + ln n

c > 0
c ln n

𝖯 = 𝖭𝖯

(1 − ϵ)ln n
ϵ > 0 𝖯 = 𝖭𝖯

Wrapping Up Approximations

Other Models of
Computation

• Cost in this class was almost always number of operations

• Usually a pretty good idea to minimize this most importantly

• Modern computing has other costs. How can algorithmic
analysis reflect that?

Cost in this class

• Memory is more expensive than time in computing

• Generally have less of it

• Generally costs more to expand

• Computing on larger amounts of memory takes more time!

• Space analysis is crucial for effective algorithms

• Discussed occasionally in this class, but not emphasized

• The algorithms we go over are usually fairly space efficient

• (Or, difficult to improve)

Space

• Your computer stores information in various places

• Needs to transfer it to a location in order to compute

• Can transfer in large chunks of consecutive pieces

• Takes LOTS of time

• 1 RAM access ~ 100 computations

• Frequently bottleneck of an implementation

Cache Performance

• Algorithmic model to measure asymptotic cache performance

• Doesn’t capture everything

• Ignores computation cost! Only cost of moving information

• But can help indicate how cache-efficient an algorithm is

Cache-efficient algorithms for:

• Sorting (run generation/timsort, multi-way merge sort)

• Dictionaries (B trees)

• Matrix multiplication

• Dynamic programming

External Memory Model

• Addition and subtraction are fast, multiplication is fast

• Division and modulo are slow

• Integers are faster than floats

• Can we model this in theory?

• Not really. Asymptotics ignore this intentionally

• Occasionally something like: additions,
divisions

O(n log n) O(n)

Operations Aren’t the Same

• Modern computers almost always have multiple compute
cores

• If we have identical “processors” can we speed up our
algorithms?

• Maybe by a factor of ?

• Many models for algorithm analysis

• PRAM is as above, classical model

• MapReduce model: massive number of cores, want to
minimize communication rounds

• Many others

p

p

Parallelism

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

