Approximate Set Cover

Final

 Released Saturday, Dec 12 at 8:30am

 Must be turned in by 8:30pm Sunday, Dec 20 at 8:30pm
* 24 hours from download to turn it in

 Some logistics not finalized yet

 Probably a GLOW exam which has a pdf with
a link to overleaf

 Comprehensive, but focuses on the second half of the
semester

e Similar style and length to the midterm

e “Open book™ can use lecture slides/videos, your notes from
class—any course materials. Cannot google answers

Admin

» Office hours/Assignment 10 discussion:
 Joday 1-3pm
 Thursday 3:30-5:30pm

 Friday. 3-5pm

e (Questions?

Set Cover

« Set Cover (Optimization version). Given a set U of n
elements, a collection & of subsets of U, find the minimum
number of subsets from & whose union covers U.

U={1,2,3,4,5,6,7}
- S5,={3,7} S,={2,4)
={3.456)) Si={5} |
= S.={1}

a set cover instance

Greedy Algorithm

* (Greedily pick sets that maximize coverage until done

e Greedy Cover(%, &)
. Initially all elements of % are marked uncovered
« C <« @ (Initialize cover)
« While there is an uncovered element in %

. Pick the set §,, from &'\ C that maximizes the
number of uncovered elements

« C<CUl{s,}

« Mark elements of S, as covered

Greedy Algorithm

U={1,2,3,4,5,6,7,.8}

« Greedy Cover(#%, &): Sa=11,2,5; H=14D g
SC={39597} Sd={6}

(S.={1,8} Sp= {246}

e C « @ (Initialize cover)

* (Greedily pick sets that maximize coverage until done

. Initially all elements of % are marked uncovered

« While there is an uncovered element in %

. Pick the set §,, from &'\ C that maximizes the
number of uncovered elements

« C<CUl{s,}

« Mark elements of S, as covered

Greedy Algorithm

U={1,2,3,4,5,6,7.8}
S—{123} S,={4,5}

(5.243.5.73) S.=1{6)
o Initially all elements of Z are marked uncovered { 1. 8) Sf— (24 6 1

e C «— @ (Initialize cover)

* (Greedily pick sets that maximize coverage until done

e Greedy Cover(%, &)

« While there is an uncovered element in %

. Pick the set §,, from &'\ C that maximizes the
number of uncovered elements

« C<CUl{s,}

« Mark elements of S, as covered

Analyzing Greedy e

U={1,2,3,4,5,6,7,8}
. Claim. Greedy set cover is a In n-approximation, that is, greedy S.=11,2,3} Sp=14,5}

uses at most k In n sets where k is the size of the optimal set S.={3,5,7) S;={6}
Cover. S,={1,8} (Sr= {246}

Main observations behind Proof:

o |If there exists k subsets whose union covers all n elements, then
there exists a subset that covers > 1/k fraction of elements

 (Greedy always picks subsets that maximize remaining
uncovered elements

 In each iteration, greedy’s choice must cover at least 1/k
fraction of the remaining elements

e Such a subset must always exist since the remaining elements
can also be covered by at most k subsets

Analyzing Greedy

« Claim. Greedy set cover is a In n-approximation—greedy
uses at most k In n sets where k is the size of the optimal set
cover.

* Proof.
« Let £, be the set of elements still uncovered after tth iteration.

« The optimal solution covers E, with no more than k sets

« Greedy always picks the subset that covers most of £, in step
t+ 1

« Selected subset must cover at least | E, | /k elements of E,

. Thus |E,_ | £ |E,] (1 — l/k) and as E, = n, inductively
we have | E,| < n(1 — 1/k)’

« When |E,| < 1, we are done

Analyzing Greedy

Claim. Greedy set cover is a In n-approximation—greedy uses
at most k In n sets where k is the size of the optimal set cover.

Proof. (Cont.)
. |E| <n(l-1/k)
« When |E,| < 1, we are done

o Settingt = klnn, we get |E,| =

(l)klnn 1
n{1—— <n-—=1
k n

« Thus, greedy finishes in k1In n steps where k is the optimal-set

cover size, so it uses at most kIn n sets. (1)x 1

]l ——] <—forx>0

* We can tighten the analysis by considering when there are at A €

most kK uncovered elements

Analyzing Greedy

« Claim. If the optimal set cover has size k then the greedy set
cover has size at most k(1 + In(n/k)).

 Proof. (Cont.)
. |E,| <n(l—=1/k)

» When | E,| < k, we finish after selecting at most k more sets

1 kIn(n/k)
Setting t = kIn(n/k), we get |E,| = n (1 _ Z)

<n-kin=%k

« Greedy uses at most k + k1In(n/k) sets in total.

Special Case

 We can do slightly better for special input

« Claim. If the maximum size of any subset in & is B then the
greedy algorithm is (In B + 1)-approximation

* Proof.

« |f each subset has almost B elements and the optimal set
cover has k subsets then kK > n/B

 Substituting n/k < B shows that greedyis (In B + 1)
approximation

Tight Approximation

* |sthe greedy approximation tight?
 Essentially, yes
o (Consider the following example with n = 2> elements

e §; has 16 elements, but 57 and sg each have 15, so greedy chooses §;

- Then, s, has 8 elements, but but s and sg each have /7, so greedy chooses §, ...

n
This happens log,(n/2) times, so the approximation ratio is (log, 5)/2

S5 S4 83 S9 S1

370000000000000000]

Sg| 1@ ||efjle e/l © © e|/|l6 6 © 6 6 o o o

Approximating Vertex Cover

(2) (b)
S/ N emeeeeseessecssesssssssesseessesssesssessesssesssesssesseesseens
e; e; o e U={1,2,3,4,5,6,7}
* We know that vertex cover reduces to set cover "~ S,=(3.7} S,={2.4}
O, e © S.={3,4,5,6} S,={5}
e U=FEand & ={S,|v € V} where (-2 s - s={1) §= {1267} |
SV T {e E E ‘ e InCIdent to V} vertex cover instance set cover instance
(k = 2) (k = 2)

* Thus the greedy approximation algorithm for set cover also
gives an approximation algorithm for vertex cover

. . | This won’t work for all
* (Greedy picks vertices that cover maximum number of edges reductions

(i.e., vertices with max degrees w.r.t. uncovered edges) —

« Greedy vertex cover is thus a (In A+1) approximation where
A is maximum degree of any vertex

* The seemingly stupider algorithm on assignment 9 is better
than greedy—2-approximation is best known

« Finding a (2 — €)-approximation of VC is a big open problem!

 (Can'’t be done under “unique games conjecture”

Approximate VVeighted
Set Cover

Weighted Set Cover

* |n the weighted-version of the set cover problem, each subset
S. € & has a weight w; associated with it

 The goal is to find the a collection of subsets
C={S,,...,3;,} such that they cover % and Z w(S;) is
S.eC
minimized
* We extend the greedy algorithm to the weighted case

* What should we be greedy about? s g
- U={1,2,3,4,5,6,7,8} :
$5 S,={1,2,3} 34 S,={4,5}

 What could happen if we pick the cheapest? —

$13SC={395,7} $35d={6}

$155;= {246}

 What could happen it we pick the largest?

Weighted Case: Greedy

* |n the weighted-version of the set cover problem, each subset
S, € & has a weight w; associated with it

 Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

 We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set §—how much are we spending per new

item covered?

 U={1,2,3,4,5,6,7,8} g
1.67 $5 S,={1,2,3) $45,={4,5} 2.00
433$135,={3,57} $35,={6} 3.00
50 $1S.={1,8) $155;= {246} 5.00
1 :

Weighted Case: Greedy

* |n the weighted-version of the set cover problem, each subset
S, € & has a weight w; associated with it

 Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

 We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set §;

e (Greedy algorithm.

 Begin with an empty cover and continue until all elements
covered

« In each iteration choose the set S; that minimizes amortized
cost w./e, where e is the # of new elements covered by ;

Weighted Case: Greedy

* |n the weighted-version of the set cover problem, each subset
S, € & has a weight w; associated with it

 Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

 We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set §;

 U={1,2,3,4,5,6,7,8} g
1.67 $5 S,={1,2,3) $45,={4,5} 2.00
433$135,={3,57} $35,={6} 3.00
50 $1S.={1,8) $155;= {246} 5.00
1 :

Weighted Case: Greedy

 How good is the greedy strategy for the weighted case?
« Claim. Greedy is a (1 + In n)-approximation for weighted set cover.
 We prove this by proving a different claim:

o Let ¢, be the “amortized" cost of covering element £

W;

|S; N U*|

It greedy selects S] with uncovered items U*then Cp =

Our claim: for any subset §; € &, Z c, < w(l+Inn)
ES;

« Let & be the sets chosen by optimal, and & ; by greedy. Then the total cost of greedy is

Z wW; = Z Zc,/ﬂ:Zcf: Z Zcf§(1+lnn) Zwl-

S,€S S,€S G CES; A S,ESHCES, S, €S,

« This would complete the proof that greedy is a O(log n)-approximation

Weighted Greedy: Analysis

o« Claim.

For any subset $; € &, the greedy algorithm covers

the elements of §; with a cost no greater than O(log n) times
w; (the cost of choosing 3; itself)

 Proof.
order |
more i
arbitra

Order the elements of §; = {ay, a,, ..., a,} in the

n which they were covered by the greedy algorithm (if
nan one are covered at the same time, break ties

ily)

« Consider the time the element a; is covered: the available sets
to cover a, include S; itself

e Coveri

ng a, with §; would incur an amortized cost of w; or less

(if a, is the only new element covered by S; or less otherwise)

 (Greedy picks the set with least amortized cost so its cost is at
most w; to cover a,. Therefore ¢; < W

Weighted Greedy: Analysis

 Claim. For any subset §; € &, the greedy algorithm covers
the elements of §; with a cost no greater than O(log n) times
w; (the cost of choosing 3; itself)

* Proof.
Now look at when a,_, is covered, at this time, it is possible to
select §; and cover both a,;_; and a, incurring an amortized
cost of wl-/2 or less (if more elements are covered)

 (Greedy picks the set with least amortized cost so its cost to
cover a,_q is at most w;/2, therefore ¢;,_; < w;/2

o Similarly a,_, is covered at amortized cost at most w,/3. Each

element aj INncurs an amortized cost at most

¢; < w./(d —j + 1) up until a; which is covered at amortized

costc; < w./ld

Weighted Set Cover

« Claim. For any subset §; € &, the greedy algorithm covers the
elements of S; with a cost no greater than O(log n) times w; (the
cost of choosing 3, itself)

 Proof.

. Each element a; incurs an amortized cost at most w;/(d — j + 1) up

until a; which is covered at amortized cost w,/d

« Thus the total amortized cost of all elements in S, is

d
1
Z C, S W, Z : =wH,<wH, <w(l+Inn)
CES, j=1 n—J+ l

* This analysis can be shown to be essentially tight as well

Wrapping Up Approximations

o Set Cover. Can we do better than 1 + Inn?

« [Raz & Safra 1997]. There exists a constant ¢ > 0, there is no

polynomial-time ¢ In n-approximation algorithm, unless
P=NP:

o [Dinur & Steurer 2014] No polynomial time (1 — ¢)lnn
approximation for any constant € > O unless P = NP

Other Models of
Computation

Cost in this class

Cost in this class was almost always number of operations
Usually a pretty good idea to minimize this most importantly

Modern computing has other costs. How can algorithmic
analysis reflect that”

Ss3

Ss7

40

20

21

" DRAG=10 Y F=

28| Lag#TF=15

,| Lag+TF=20

10

w3 = critical path TF = total float

D =drag

G

DRAG=10

Space

* Memory is more expensive than time in computing
 Generally have less of it
 (Generally costs more to expand

 Computing on larger amounts of memory takes more time!

e Space analysis is crucial for effective algorithms
* Discussed occasionally in this class, but not emphasized
* The algorithms we go over are usually fairly space etfticient

e (Or, difficult to improve)

Cache Performance

Your computer stores information in various places
Needs to transfer it to a location in order to compute
Can transfer in large chunks of consecutive pieces
Takes LOTS of time

1 RAM access ~ 100 computations

Frequently bottleneck of an implementation

|
ne
N
|
|
|
N
|
.

Y |

n
A F gE
: B _ and Northbridge
= :
"
] — r L 1

2

: '...‘.q?’-' I " Enhanced Direct
o HE ~ Connect Architecture
o

External Memory Model

* Algorithmic model to measure asymptotic cache performance
 Doesn't capture everything
* |gnores computation cost! Only cost of moving information

* But can help indicate how cache-efficient an algorithm is

— —B— —
Internal External
o | Memor Memory
Cache-efficient algorithms for: (M) ! (unbounded)

e Sorting (run generation/timsort, multi-way merge sort)
* Dictionaries (B trees)

* Matrix multiplication

 Dynamic programming

Operations Aren’t the Same

Addition and subtraction are fast, multiplication is fast
Division and modulo are slow
Integers are taster than floats
Can we model this in theory?

Not really. Asymptotics ignore this intentionally

Occasionally something like: O(n log n) additions, O(n)
divisions

Parallelism

* Modern computers almost always have multiple compute
cores

« If we have p identical "processors” can we speed up our
algorithms?

« Maybe by a factor of p?
 Many models for algorithm analysis
« PRAM is as above, classical model

« MapReduce model: massive number of cores, want to
minimize communication rounds

 Many others

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

