Approximate Set Cover

Final

- Released Saturday, Dec 12 at 8:30am
- Must be turned in by 8:30pm Sunday, Dec 20 at 8:30pm •
- 24 hours from download to turn it in
- Some logistics not finalized yet
 - Probably a GLOW exam which has a pdf with a link to overleaf
- Comprehensive, but focuses on the second half of the lacksquaresemester
- Similar style and length to the midterm
- "Open book": can use lecture slides/videos, your notes from class—any course materials. Cannot google answers

Admin

- Office hours/Assignment 10 discussion:
 - Today 1-3pm
 - Thursday 3:30-5:30pm
 - Friday. 3-5pm

• Questions?

Set Cover

• Set Cover (Optimization version). Given a set U of n elements, a collection \mathcal{S} of subsets of U, find the minimum number of subsets from \mathscr{S} whose union covers U.

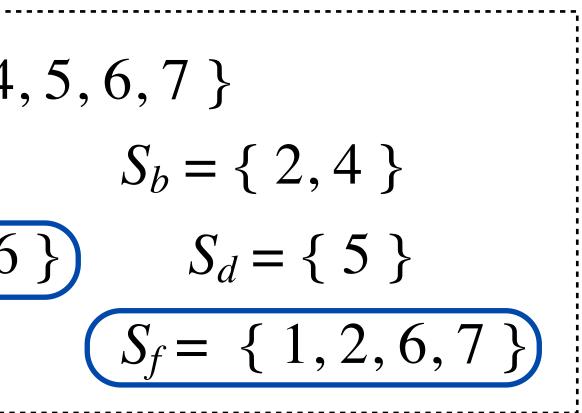
$$U = \{ 1, 2, 3, 4$$

$$S_a = \{ 3, 7 \}$$

$$S_c = \{ 3, 4, 5, 6$$

$$S_e = \{ 1 \}$$

a set cover instance

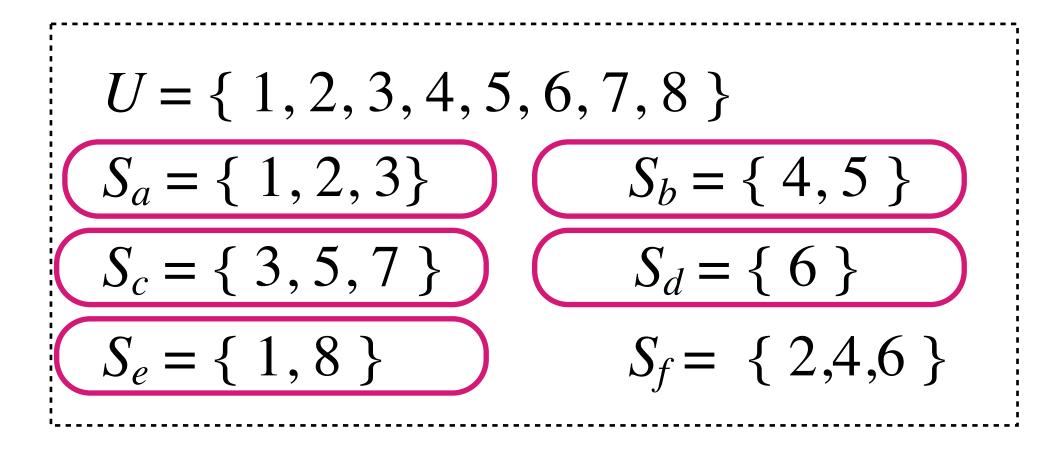


Greedy Algorithm

- Greedily pick sets that maximize coverage until done
- Greedy $Cover(\mathcal{U}, \mathcal{S})$:
 - Initially all elements of $\mathcal U$ are marked uncovered
 - $C \leftarrow \emptyset$ (Initialize cover)
 - While there is an uncovered element in ${\mathscr U}$
 - Pick the set S_m from $S \setminus C$ that maximizes the number of uncovered elements
 - $C \leftarrow C \cup \{S_m\}$
 - Mark elements of S_m as covered

Greedy Algorithm

- Greedily pick sets that maximize coverage until done
- Greedy $Cover(\mathcal{U}, \mathcal{S})$:
 - Initially all elements of $\mathcal U$ are marked uncovered
 - $C \leftarrow \emptyset$ (Initialize cover)
 - While there is an uncovered element in ${\mathscr U}$
 - Pick the set S_m from $S \setminus C$ that maximizes the number of uncovered elements
 - $C \leftarrow C \cup \{S_m\}$
 - Mark elements of S_m as covered



Greedy Algorithm

- Greedily pick sets that maximize coverage until done
- Greedy $Cover(\mathcal{U}, \mathcal{S})$:
 - Initially all elements of ${\mathcal U}$ are marked uncovered
 - $C \leftarrow \emptyset$ (Initialize cover)
 - While there is an uncovered element in ${\mathscr U}$
 - Pick the set S_m from $S \setminus C$ that maximizes the number of uncovered elements
 - $C \leftarrow C \cup \{S_m\}$
 - Mark elements of S_m as covered

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

$$S_a = \{ 1, 2, 3 \}$$

$$S_b = \{ 4, 5 \}$$

$$S_c = \{ 3, 5, 7 \}$$

$$S_d = \{ 6 \}$$

$$S_e = \{ 1, 8 \}$$

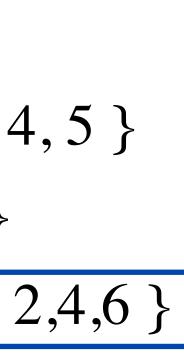
$$S_f = \{ 2, 4, 6 \}$$

• **Claim**. Greedy set cover is a ln *n*-approximation, that is, greedy uses at most $k \ln n$ sets where k is the size of the optimal set cover.

Main observations behind proof:

- If there exists k subsets whose union covers all n elements, then there exists a subset that covers $\geq 1/k$ fraction of elements
- Greedy always picks subsets that maximize remaining. uncovered elements
- In each iteration, greedy's choice must cover at least 1/k• fraction of the remaining elements
- Such a subset must always exist since the remaining elements can also be covered by at most k subsets

 $U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$ $S_a = \{ 1, 2, 3 \}$ $S_b = \{ 4, 5 \}$ $S_c = \{3, 5, 7\}$ $S_d = \{ 6 \}$ $S_e = \{ 1, 8 \}$ $S_f =$



- Claim. Greedy set cover is a $\ln n$ -approximation—greedy uses at most $k \ln n$ sets where k is the size of the optimal set cover.
- Proof.
- Let E_t be the set of elements still uncovered after *t*th iteration.
- The optimal solution covers E_t with no more than k sets
- Greedy always picks the subset that covers most of E_t in step t+1
- Selected subset must cover at least $|E_t|/k$ elements of E_t
- Thus $|E_{t+1}| \le |E_t| (1 1/k)$ and as $E_0 = n$, inductively we have $|E_t| \le n(1 1/k)^t$
- When $|E_t| < 1$, we are done

- **Claim.** Greedy set cover is a ln *n*-approximation—greedy uses • at most $k \ln n$ sets where k is the size of the optimal set cover.
- **Proof.** (Cont.) •
- $|E_t| \le n(1 1/k)^t$
- When $|E_t| < 1$, we are done
- Setting $t = k \ln n$, we get $|E_t| =$ $n\left(1-\frac{1}{k}\right)^{k\ln n} < n \cdot \frac{1}{n} = 1$
- Thus, greedy finishes in $k \ln n$ steps where k is the optimal-set cover size, so it uses at most $k \ln n$ sets.
- We can tighten the analysis by considering when there are at most k uncovered elements

$$\left(1 - \frac{1}{x}\right)^x < \frac{1}{e} \text{ for } x > 0$$

- **Claim**. If the optimal set cover has size k then the greedy set cover has size at most $k(1 + \ln(n/k))$.
- **Proof**. (Cont.)
- $|E_t| \leq n(1-1/k)^t$
- When $|E_t| \leq k$, we finish after selecting at most k more sets

• Setting
$$t = k \ln(n/k)$$
, we get $|E_t| = n \left(1 - \frac{1}{k}\right)^{k \ln(n/k)}$
 $\leq n \cdot k/n = k$

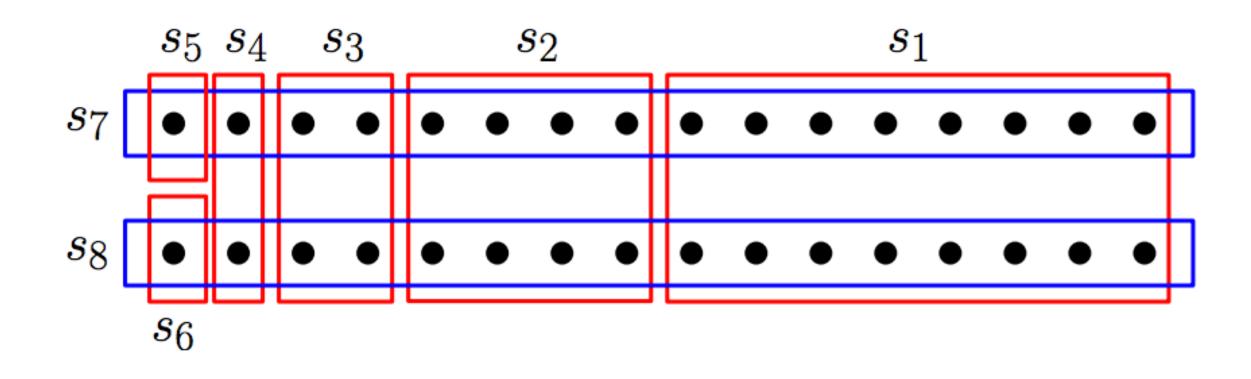
• Greedy uses at most $k + k \ln(n/k)$ sets in total.

Special Case

- We can do slightly better for special input
- **Claim**. If the maximum size of any subset in \mathcal{S} is B then the greedy algorithm is $(\ln B + 1)$ -approximation
- **Proof**.
- If each subset has almost B elements and the optimal set cover has k subsets then $k \ge n/B$
- Substituting $n/k \leq B$ shows that greedy is $(\ln B + 1)$ approximation

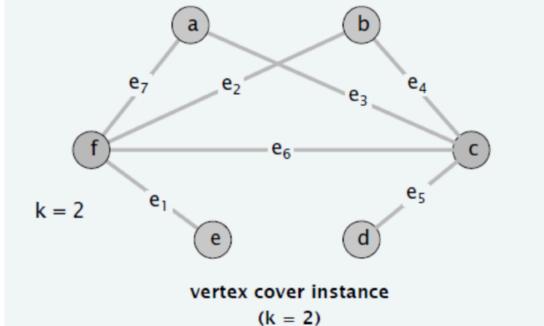
Tight Approximation

- Is the greedy approximation tight?
- Essentially, yes
- Consider the following example with $n = 2^5$ elements
- s_1 has 16 elements, but s_7 and s_8 each have 15, so greedy chooses s_1
- Then, s_2 has 8 elements, but but s_7 and s_8 each have 7, so greedy chooses s_2 ...
- This happens $\log_2(n/2)$ times, so the approximation ratio is $(\log_2 \frac{n}{2})/2$



Approximating Vertex Cover

- We know that vertex cover reduces to set cover
- $\mathcal{U} = E$ and $\mathcal{S} = \{S_v \mid v \in V\}$ where $S_v = \{e \in E \mid e \text{ incident to } v\}$
- Thus the greedy approximation algorithm for set cover also gives an approximation algorithm for vertex cover
- Greedy picks vertices that cover maximum number of edges • (i.e., vertices with max degrees w.r.t. uncovered edges)
- Greedy vertex cover is thus a $(\ln \Delta + 1)$ approximation where Δ is maximum degree of any vertex
- The seemingly stupider algorithm on assignment 9 is better than greedy—2-approximation is best known
- Finding a (2ε) -approximation of VC is a big open problem!
 - Can't be done under "unique games conjecture"



 $U = \{1, 2, 3, 4, 5, 6, 7\}$ $S_a = \{3, 7\}$ $S_b = \{2, 4\}$ $S_c = \{3, 4, 5, 6\}$ $S_d = \{5\}$ $S_e = \{ 1 \}$ $S_f = \{1, 2, 6, 7\}$

> set cover instance (k = 2)

This won't work for all reductions

Approximate Weighted Set Cover

Weighted Set Cover

- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- The goal is to find the a collection of subset $C = \{S_1, \dots, S_k\}$ such that they cover \mathcal{U}

minimized

- We extend the greedy algorithm to the weighted case
- What should we be greedy about?
 - What could happen if we pick the larges ullet
 - What could happen if we pick the cheap \bullet

ets and
$$\sum_{S_i \in C} w(S_i)$$
 is

st?
Dest?

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

$$\$5 \ S_a = \{ 1, 2, 3 \}$$

$$\$4 \ S_b = \{ 4, 5 \}$$

$$\$13 \ S_c = \{ 3, 5, 7 \}$$

$$\$3 \ S_d = \{ 6 \}$$

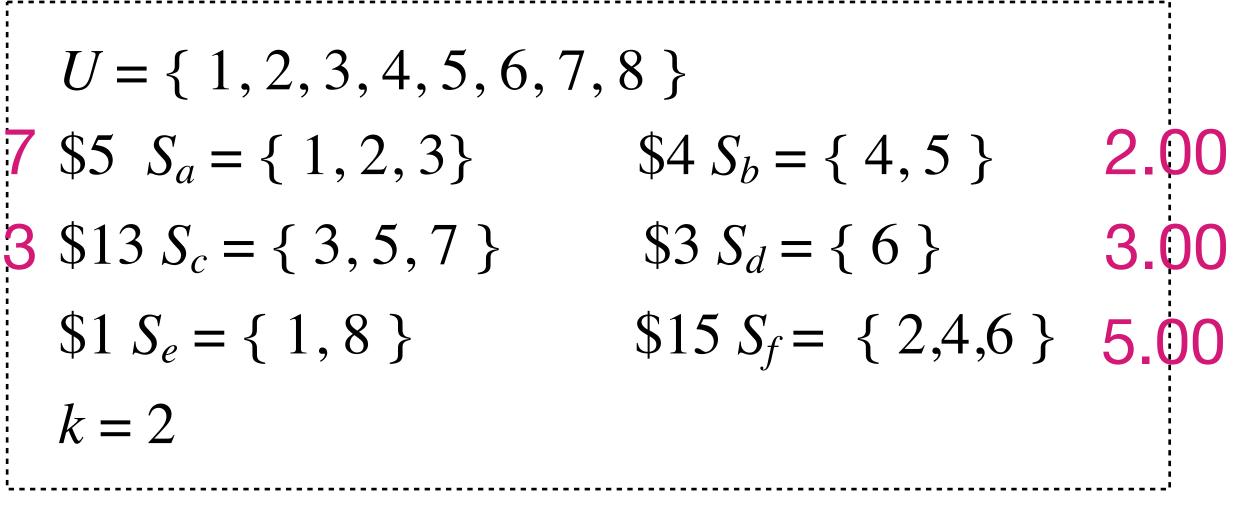
$$\$15 \ S_f = \{ 2, 4, 6 \}$$

$$k = 2$$

- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- Each potential set that can be added to the solution has some "benefit" (elements it covers) and some "cost" (its weight)
- We can be greedy in terms of the cost/benefit or the "amortized" cost" of choosing set S_i —how much are we spending per new item covered?

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

1.67 \$5 $S_a = \{ 1, 2, 3 \}$ \$4 $S_b = \{ 4, 5 \}$
4.33 \$13 $S_c = \{ 3, 5, 7 \}$ \$3 $S_d = \{ 6 \}$
.50 \$1 $S_e = \{ 1, 8 \}$ \$15 $S_f = \{ 2, 4, 6 \}$
 $k = 2$

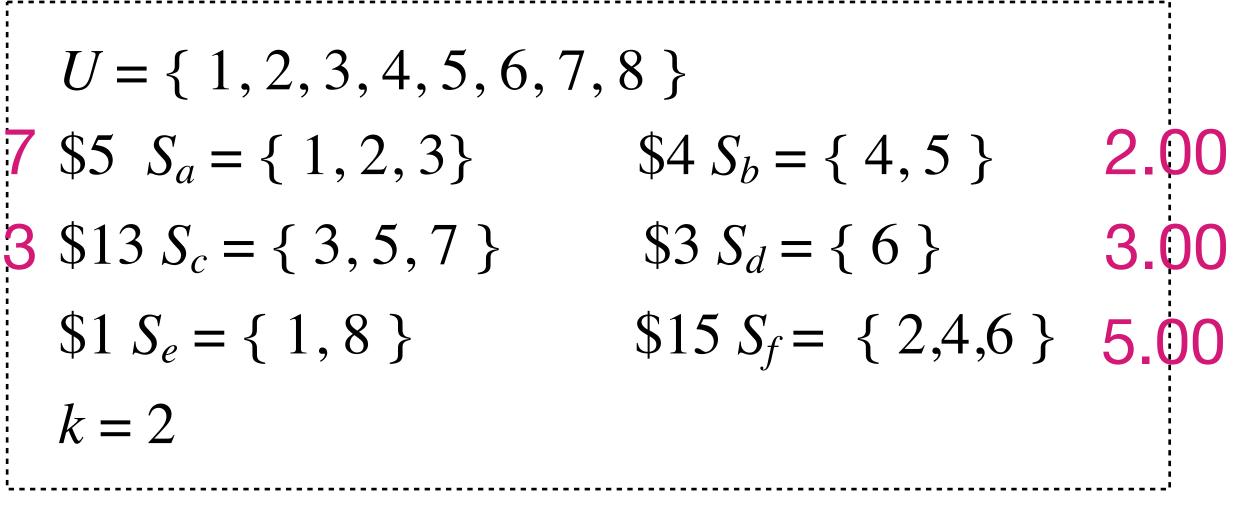


- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- Each potential set that can be added to the solution has some "benefit" (elements it covers) and some "cost" (its weight)
- We can be greedy in terms of the cost/benefit or the "amortized cost" of choosing set ${\cal S}_i$
- Greedy algorithm.
 - Begin with an empty cover and continue until all elements covered
 - In each iteration choose the set S_i that minimizes amortized cost w_i/e , where e is the # of new elements covered by S_i

- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- Each potential set that can be added to the solution has some • "benefit" (elements it covers) and some "cost" (its weight)
- We can be greedy in terms of the cost/benefit or the "amortized" cost" of choosing set S_i

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

1.67 \$5 $S_a = \{ 1, 2, 3 \}$ \$4 $S_b = \{ 4, 5 \}$
4.33 \$13 $S_c = \{ 3, 5, 7 \}$ \$3 $S_d = \{ 6 \}$
.50 \$1 $S_e = \{ 1, 8 \}$ \$15 $S_f = \{ 2, 4, 6 \}$
 $k = 2$



- How good is the greedy strategy for the weighted case?
- **Claim.** Greedy is a $(1 + \ln n)$ -approximation for weighted set cover.
- We prove this by proving a **different claim**: ullet
 - Let c_{ℓ} be the "amortized" cost of covering element ℓ :

If greedy selects S_i , with uncovered items U^i

Our claim: for any subset
$$S_i \in \mathcal{S}, \ \sum_{\ell \in S_i} c_\ell \leq$$

- Let \mathcal{S}_O be the sets chosen by optimal, and \mathcal{S}_G by greedy. Then the total cost of greedy is $\sum w_i = \sum c_{\ell} = \sum c_{\ell} = \sum c_{\ell} = \sum c_{\ell} \leq (1 + \ln n) \sum w_i$ $S_{j} \in \mathcal{S}_{G} \qquad S_{j} \in \mathcal{S}_{G} \ \ell \in S_{j} \qquad \ell \in U \qquad S_{i} \in \mathcal{S}_{O} \ \ell \in S_{i} \qquad S_{i} \in \mathcal{S}_{O} \qquad S_{i} \in \mathcal{S}_{O}$
- This would complete the proof that greedy is a $O(\log n)$ -approximation

T*then
$$c_{\ell} = \frac{W_j}{|S_j \cap U^*|}$$

 $\leq w_i(1 + \ln n)$

Weighted Greedy: Analysis

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times W_i (the cost of choosing S_i itself)
- **Proof**. Order the elements of $S_i = \{a_1, a_2, \dots, a_d\}$ in the order in which they were covered by the greedy algorithm (if more than one are covered at the same time, break ties arbitrarily)
- Consider the time the element a_d is covered: the available sets to cover a_d include S_i itself
- Covering a_d with S_i would incur an amortized cost of w_i or less (if a_d is the only new element covered by S_i or less otherwise)
- Greedy picks the set with least amortized cost so its cost is at most w_i to cover a_d . Therefore $c_d \leq w_i$

Weighted Greedy: Analysis

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times W_i (the cost of choosing S_i itself)
- Proof. lacksquare

Now look at when a_{d-1} is covered, at this time, it is possible to select S_i and cover both a_{d-1} and a_d incurring an amortized cost of $w_i/2$ or less (if more elements are covered)

- Greedy picks the set with least amortized cost so its cost to cover a_{d-1} is at most $w_i/2$, therefore $c_{d-1} \leq w_i/2$
- Similarly a_{d-2} is covered at amortized cost at most $w_i/3$. Each element a_i incurs an amortized cost at most $c_j \leq w_i/(d-j+1)$ up until a_1 which is covered at amortized $\cot c_1 \le w_i/d$

Weighted Set Cover

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times w_i (the cost of choosing S_i itself)
- **Proof**. lacksquare
- Each element a_i incurs an amortized cost at most $w_i/(d-j+1)$ up until a_1 which is covered at amortized cost w_i/d
- Thus the total amortized cost of all elements in S_i is

$$\sum_{\ell \in S_i} c_{\ell} \le w_i \left(\sum_{j=1}^d \frac{1}{n-j+1} \right) = w_i H_d \le$$

• This analysis can be shown to be essentially tight as well

 $\leq w_i H_n \leq w_i (1 + \ln n)$

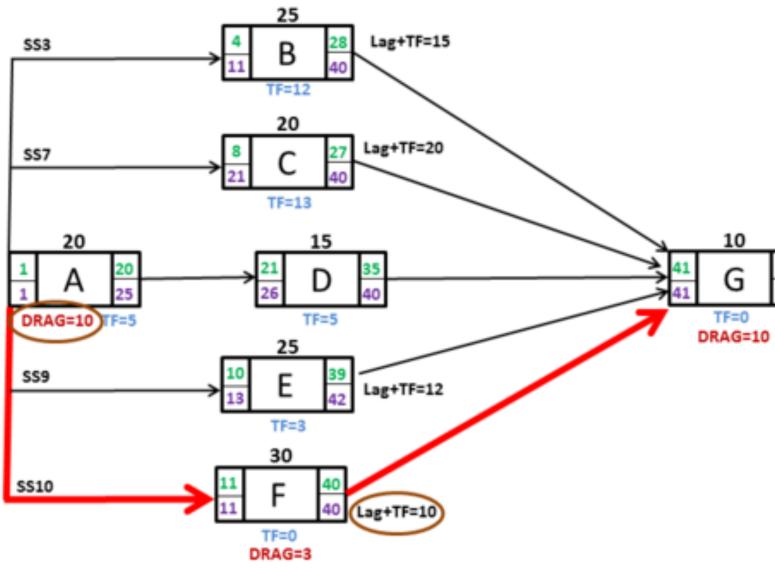
Wrapping Up Approximations

- Set Cover. Can we do better than $1 + \ln n$?
- [Raz & Safra 1997]. There exists a constant c > 0, there is no polynomial-time $c \ln n$ -approximation algorithm, unless P = NP.'
- [Dinur & Steurer 2014] No polynomial time $(1 \epsilon) \ln n$ approximation for any constant $\epsilon > 0$ unless P = NP

Other Models of Computation

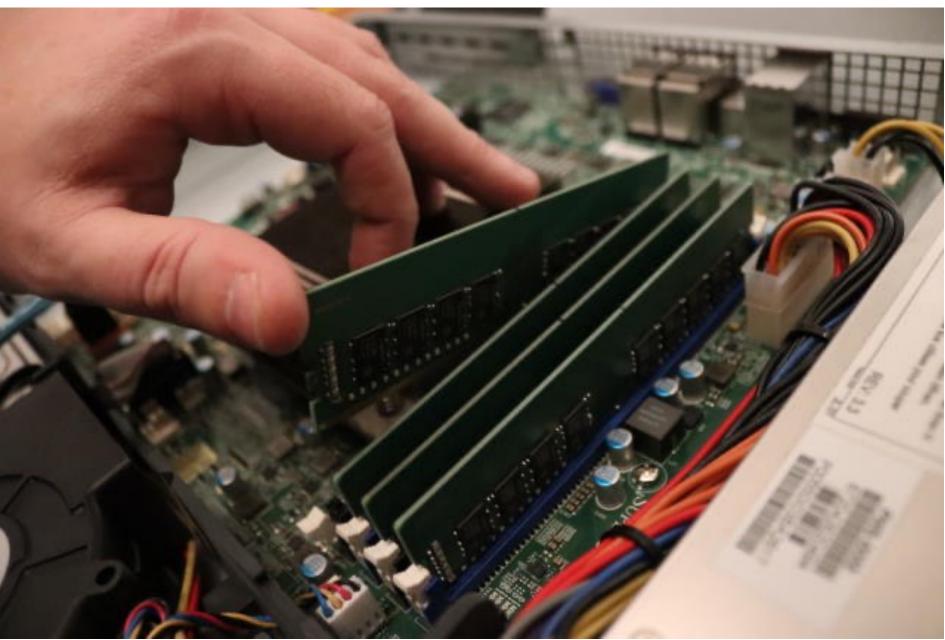
Cost in this class

- Cost in this class was almost always number of operations
- Usually a pretty good idea to minimize this most importantly
- Modern computing has other costs. How can algorithmic • analysis reflect that?



Space

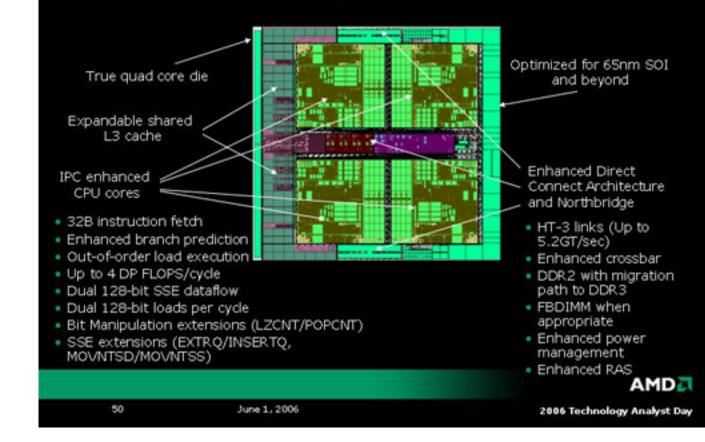
- Memory is more expensive than time in computing ullet
 - Generally have less of it
 - Generally costs more to expand \bullet
 - Computing on larger amounts of memory takes more time! \bullet
- Space analysis is crucial for effective algorithms
- Discussed occasionally in this class, but not emphasized
 - The algorithms we go over are usually fairly space efficient
 - (Or, difficult to improve)



Cache Performance

- Your computer stores information in various places
- Needs to transfer it to a location in order to compute
- Can transfer in large chunks of consecutive pieces
- Takes LOTS of time
- 1 RAM access ~ 100 computations
- Frequently bottleneck of an implementation

A Closer Look at AMD's Next Generation Server and Desktop Architecture

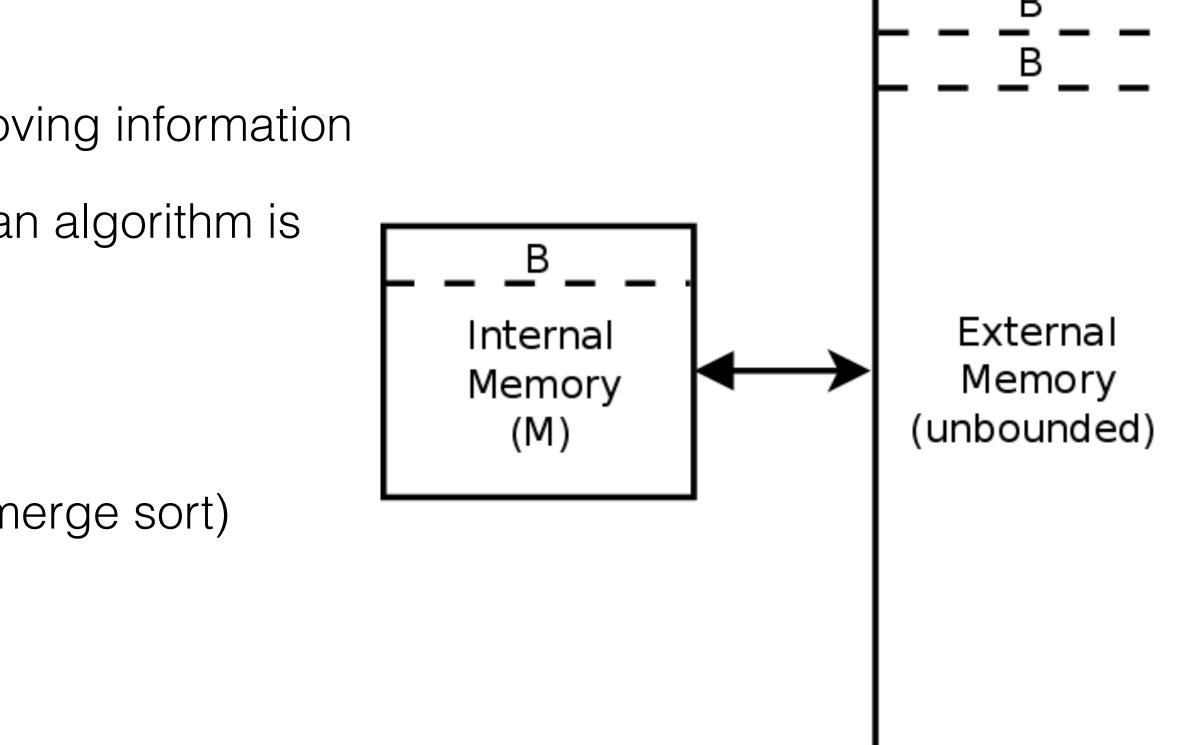


External Memory Model

- Algorithmic model to measure asymptotic cache performance •
- Doesn't capture everything \bullet
- Ignores computation cost! Only cost of moving information
- But can help indicate how cache-efficient an algorithm is \bullet

Cache-efficient algorithms for:

- Sorting (run generation/timsort, multi-way merge sort)
- Dictionaries (B trees) \bullet
- Matrix multiplication
- Dynamic programming

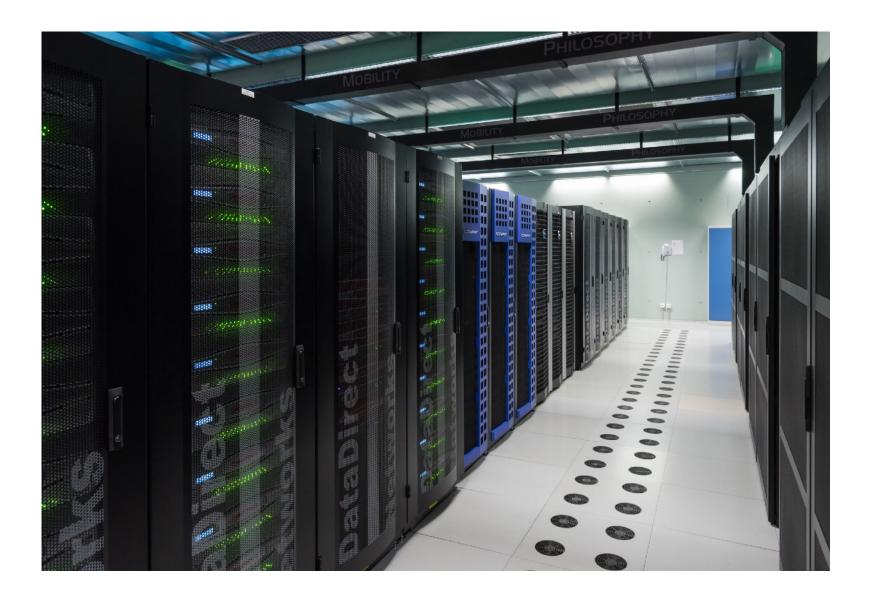


Operations Aren't the Same

- Addition and subtraction are fast, multiplication is fast
- Division and modulo are slow
- Integers are faster than floats
- Can we model this in theory?
- Not really. Asymptotics ignore this intentionally
- Occasionally something like: $O(n \log n)$ additions, O(n)• divisions

Parallelism

- Modern computers almost always have multiple compute cores
- If we have p identical "processors" can we speed up our algorithms?
 - Maybe by a factor of *p*?
- Many models for algorithm analysis lacksquare
 - PRAM is as above, classical model \bullet
 - MapReduce model: massive number of cores, want to minimize communication rounds
 - Many others



Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/teaching/</u> <u>algorithms/book/Algorithms-JeffE.pdf</u>)