
Approximate Set Cover



Final
• Released Saturday, Dec 12 at 8:30am 

• Must be turned in by 8:30pm Sunday, Dec 20 at 8:30pm 

• 24 hours from download to turn it in 

• Some logistics not finalized yet 

• Probably a GLOW exam which has a pdf with 
a link to overleaf 

• Comprehensive, but focuses on the second half of the 
semester 

• Similar style and length to the midterm 

• “Open book”: can use lecture slides/videos, your notes from 
class—any course materials.   Cannot google answers



Admin
• Office hours/Assignment 10 discussion: 

• Today 1-3pm 

• Thursday 3:30-5:30pm 

• Friday. 3-5pm 

• Questions?



Set Cover
• Set Cover (Optimization version). Given a set  of  

elements, a collection  of subsets of , find the minimum 
number of subsets from  whose union covers . 

U n
𝒮 U

𝒮 U

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }      Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }      Sd = { 5 } 
Se = { 1 }      Sf =  { 1, 2, 6, 7 }

a set cover instance



Greedy Algorithm
• Greedily pick sets that maximize coverage until done 

• Greedy Cover( ):  

• Initially all elements of  are marked uncovered 

•   (Initialize cover) 

• While there is an uncovered element in  

• Pick the set  from  that maximizes the 
number of uncovered elements 

•   

• Mark elements of  as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm
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Analyzing Greedy
• Claim. Greedy set cover is a -approximation, that is, greedy 

uses at most  sets where  is the size of the optimal set 
cover. 

Main observations behind proof: 

• If there exists  subsets whose union covers all  elements, then 
there exists a subset that covers  fraction of elements 

• Greedy always picks subsets that maximize remaining 
uncovered elements 

• In each iteration, greedy’s choice must cover at least  
fraction of the remaining elements 

• Such a subset must always exist since the remaining elements 
can also be covered by at most  subsets

ln n
k ln n k

k n
≥ 1/k

1/k

k
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• Claim. Greedy set cover is a -approximation—greedy 
uses at most  sets where  is the size of the optimal set 
cover. 

• Proof. 
• Let  be the set of elements still uncovered after th iteration. 

• The optimal solution covers  with no more than  sets 

• Greedy always picks the subset that covers most of  in step 
 

• Selected subset must cover at least  elements of   

• Thus  and as , inductively 
we have   

• When , we are done 

ln n
k ln n k

Et t
Et k

Et
t + 1

|Et | /k Et

|Et+1 | ≤ |Et |(1 − 1/k) E0 = n
|Et | ≤ n(1 − 1/k)t

|Et | < 1

Analyzing Greedy



• Claim. Greedy set cover is a -approximation—greedy uses 
at most  sets where  is the size of the optimal set cover. 

• Proof. (Cont.)

•   

• When , we are done  

• Setting , we get 

  

• Thus, greedy finishes in  steps where  is the optimal-set 
cover size, so it uses at most  sets. 

• We can tighten the analysis by considering when there are at 
most  uncovered elements

ln n
k ln n k
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Analyzing Greedy



• Claim. If the optimal set cover has size  then the greedy set 
cover has size at most .  

• Proof. (Cont.) 

•   

• When , we finish after selecting at most  more sets 

• Setting , we get  

                                                            

• Greedy uses at most  sets in total.

k
k(1 + ln(n/k))

|Et | ≤ n(1 − 1/k)t

|Et | ≤ k k

t = k ln(n/k) |Et | = n (1 −
1
k )

k ln(n/k)

≤ n ⋅ k/n = k

k + k ln(n/k)

Analyzing Greedy



Special Case
• We can do slightly better for special input 

• Claim. If the maximum size of any subset in  is  then the 
greedy algorithm is -approximation 

• Proof. 

• If each subset has almost  elements and the optimal set 
cover has  subsets then   

• Substituting  shows that greedy is  
approximation 

𝒮 B
(ln B + 1)

B
k k ≥ n/B

n/k ≤ B (ln B + 1)



Tight Approximation
• Is the greedy approximation tight? 

• Essentially, yes  

• Consider the following example with  elements 

•  has 16 elements, but  and  each have 15, so greedy chooses  

• Then,  has 8 elements, but but  and  each have 7, so greedy chooses  … 

• This happens  times, so the approximation ratio is 

n = 25

s1 s7 s8 s1

s2 s7 s8 s2

log2(n/2) (log2
n
2

)/2



• We know that vertex cover reduces to set cover 

•  and  =  where 
 

• Thus the greedy approximation algorithm for set cover also 
gives an approximation algorithm for vertex cover 

• Greedy picks vertices that cover maximum number of edges 
(i.e., vertices with max degrees w.r.t. uncovered edges) 

• Greedy vertex cover is thus a ( +1) approximation where 
 is maximum degree of any vertex  

• The seemingly stupider algorithm on assignment 9 is better 
than greedy— -approximation is best known 

• Finding a -approximation of VC is a big open problem! 

• Can’t be done under “unique games conjecture”

𝒰 = E 𝒮 {Sv |v ∈ V}
Sv = {e ∈ E | e incident to v}

ln Δ
Δ

2
(2 − ε)

Approximating Vertex Cover

This won’t work for all 
reductions



Approximate Weighted
Set Cover



• In the weighted-version of the set cover problem, each subset 
 has a weight  associated with it 

• The goal is to find the a collection of subsets 
 such that they cover  and  is 

minimized 

• We extend the greedy algorithm to the weighted case 

• What should we be greedy about? 

• What could happen if we pick the largest? 

• What could happen if we pick the cheapest?

Si ∈ 𝒮 wi

C = {S1, …, Sk} 𝒰 ∑
Si∈C

w(Si)

Weighted Set Cover

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
$5  Sa = { 1, 2, 3}     $4 Sb = { 4, 5 }
$13 Sc = { 3, 5, 7 }          $3 Sd = { 6 } 
$1 Se = { 1, 8 }              $15 Sf =  { 2,4,6 }
k = 2



• In the weighted-version of the set cover problem, each subset 
 has a weight  associated with it 

• Each potential set that can be added to the solution has some 
“benefit” (elements it covers) and some “cost” (its weight) 

• We can be greedy in terms of the cost/benefit or the “amortized 
cost” of choosing set —how much are we spending per new 
item covered? 

Si ∈ 𝒮 wi

Si

Weighted Case: Greedy

U = { 1, 2, 3, 4, 5, 6, 7, 8 }
$5  Sa = { 1, 2, 3}     $4 Sb = { 4, 5 }
$13 Sc = { 3, 5, 7 }          $3 Sd = { 6 } 
$1 Se = { 1, 8 }              $15 Sf =  { 2,4,6 }
k = 2

1.67
4.33
.50

2.00
3.00
5.00



• In the weighted-version of the set cover problem, each subset 
 has a weight  associated with it 

• Each potential set that can be added to the solution has some 
“benefit” (elements it covers) and some “cost” (its weight) 

• We can be greedy in terms of the cost/benefit or the “amortized 
cost” of choosing set  

• Greedy algorithm.   

• Begin with an empty cover and continue until all elements 
covered 

• In each iteration choose the set  that minimizes amortized 
cost , where  is the # of new elements covered by  
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Si

Si
wi/e e Si

Weighted Case: Greedy
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• How good is the greedy strategy for the weighted case? 

• Claim.  Greedy is a -approximation for weighted set cover. 

• We prove this by proving a different claim:  

• Let  be the “amortized" cost of covering element : 

•
If greedy selects , with uncovered items then  

•
Our claim: for any subset ,  

• Let  be the sets chosen by optimal, and  by greedy.  Then the total cost of greedy is 
 

• This would complete the proof that greedy is a -approximation

(1 + ln n)

cℓ ℓ

Sj U* cℓ =
wj

|Sj ∩ U* |

Si ∈ 𝒮 ∑
ℓ∈Si

cℓ ≤ wi(1 + ln n)

𝒮O 𝒮G

∑
Sj∈𝒮G

wi = ∑
Sj∈𝒮G

∑
ℓ∈Sj

cℓ = ∑
ℓ∈U

cℓ = ∑
Si∈𝒮O

∑
ℓ∈Si

cℓ ≤ (1 + ln n) ∑
Si∈𝒮0

wi

O(log n)

Weighted Case: Greedy



• Claim.  For any subset , the greedy algorithm covers 
the elements of  with a cost no greater than  times 

 (the cost of choosing  itself) 

• Proof.  Order the elements of  in the 
order in which they were covered by the greedy algorithm (if 
more than one are covered at the same time, break ties 
arbitrarily) 

• Consider the time the element  is covered: the available sets 
to cover  include  itself  

• Covering  with  would incur an amortized cost of  or less 
(if  is the only new element covered by  or less otherwise) 

• Greedy picks the set with least amortized cost so its cost is at 
most  to cover .  Therefore 

Si ∈ 𝒮
Si O(log n)

wi Si

Si = {a1, a2, …, ad}

ad
ad Si

ad Si wi
ad Si

wi ad cd ≤ wi

Weighted Greedy: Analysis



• Claim.  For any subset , the greedy algorithm covers 
the elements of  with a cost no greater than  times 

 (the cost of choosing  itself) 

• Proof.   
Now look at when  is covered, at this time, it is possible to 
select  and cover both  and  incurring an amortized 
cost of  or less (if more elements are covered) 

• Greedy picks the set with least amortized cost so its cost to 
cover  is at most , therefore  

• Similarly  is covered at amortized cost at most . Each 
element  incurs an amortized cost at most 

 up until  which is covered at amortized 
cost 

Si ∈ 𝒮
Si O(log n)

wi Si

ad−1
Si ad−1 ad
wi/2

ad−1 wi/2 cd−1 ≤ wi/2

ad−2 wi/3
aj

cj ≤ wi/(d − j + 1) a1
c1 ≤ wi/d

Weighted Greedy: Analysis



• Claim.  For any subset , the greedy algorithm covers the 
elements of  with a cost no greater than  times  (the 
cost of choosing  itself) 

• Proof.   

• Each element  incurs an amortized cost at most  up 
until  which is covered at amortized cost  

• Thus the total amortized cost of all elements in  is 

  

• This analysis can be shown to be essentially tight as well

Si ∈ 𝒮
Si O(log n) wi

Si

aj wi/(d − j + 1)
a1 wi/d

Si

∑
ℓ∈Si

cℓ ≤ wi

d

∑
j=1

1
n − j + 1

= wiHd ≤ wiHn ≤ wi(1 + ln n)

Weighted Set Cover



• Set Cover.  Can we do better than ? 

• [Raz & Safra 1997]. There exists a constant , there is no 
polynomial-time -approximation algorithm, unless 

.’ 

• [Dinur & Steurer 2014] No polynomial time  
approximation for any constant  unless  

1 + ln n

c > 0
c ln n

𝖯 = 𝖭𝖯

(1 − ϵ)ln n
ϵ > 0 𝖯 = 𝖭𝖯

Wrapping Up Approximations



Other Models of 
Computation



• Cost in this class was almost always number of operations 

• Usually a pretty good idea to minimize this most importantly 

• Modern computing has other costs.  How can algorithmic 
analysis reflect that? 

Cost in this class



• Memory is more expensive than time in computing 

• Generally have less of it 

• Generally costs more to expand 

• Computing on larger amounts of memory takes more time! 

• Space analysis is crucial for effective algorithms 

• Discussed occasionally in this class, but not emphasized 

• The algorithms we go over are usually fairly space efficient 

• (Or, difficult to improve)

Space



• Your computer stores information in various places 

• Needs to transfer it to a location in order to compute 

• Can transfer in large chunks of consecutive pieces 

• Takes LOTS of time 

• 1 RAM access ~ 100 computations 

• Frequently bottleneck of an implementation

Cache Performance



• Algorithmic model to measure asymptotic cache performance 

• Doesn’t capture everything 

• Ignores computation cost!  Only cost of moving information 

• But can help indicate how cache-efficient an algorithm is 

Cache-efficient algorithms for: 

• Sorting (run generation/timsort, multi-way merge sort) 

• Dictionaries (B trees) 

• Matrix multiplication 

• Dynamic programming

External Memory Model



• Addition and subtraction are fast, multiplication is fast 

• Division and modulo are slow 

• Integers are faster than floats 

• Can we model this in theory? 

• Not really.  Asymptotics ignore this intentionally 

• Occasionally something like:  additions,  
divisions

O(n log n) O(n)

Operations Aren’t the Same



• Modern computers almost always have multiple compute 
cores 

• If we have  identical “processors” can we speed up our 
algorithms? 

• Maybe by a factor of ? 

• Many models for algorithm analysis 

• PRAM is as above, classical model 

• MapReduce model: massive number of cores, want to 
minimize communication rounds 

• Many others

p

p

Parallelism
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