
Approximating TSP



• “Assignment 10” (optional) review times: 
• Tuesday 9-11am 
• Wednesday 1-3pm 
• Thursday 3:30-5:30pm 
• Friday 3-5pm 

• TAs have office hours if you have any general questions 
• I did give them the assignment 10 solutions but they may 

not be as familiar as they would be 

• Any questions?

Admin



Greedy is a 2-Approximation
• Proof. 

• Consider load  of bottleneck machine  

•  

• We know that   

• Thus,   

                

L(i) i
L[i] − tj ≤ OPT

tj ≤ OPT

L = L[i] ≤ OPT+tj
≤ 2OPT ∎



Greedy is a 2-Approximation
• Is our analysis tight?   

• Close to it.  

• Consider  jobs of length 1 and 1 job of length  

• How would greedy schedule these jobs? 

• Greedy will evenly divide the first  jobs among  
machines, will place the final long job on any one machine 

• Makespan:    

• How would optimal schedule it? 

• Give the long job to one machine, the rest split the other small jobs 
with a makespan  

• Ratio:   

m(m − 1) m

m(m − 1) m

m − 1 + m = 2m − 1

m
(2m − 1)/m ≈ 2



Greedy is Online
• Notice that our greedy algorithm is an online algorithm 

• Assigns jobs to machines in the order they arrive 

• Does not depend on future jobs 

• Can we do better, if we assume all jobs are available at start time? 

• Offline.  Slight modification of greedy gets better approximation!



Improving on Online Greedy
• Worst case of our greedy algorithm: spreading jobs out evenly when a 

giant job at the end messed things up 

• What can we do to avoid this? 

• Idea:  deal with larger jobs first 

• Small jobs can only hurt so much 

• Turns out this improves our approximation factor 

• Longest-processing-time (LPT) first.  Sort  jobs in decreasing order 
of processing times; then run the greedy algorithm on them 

• Claim. LPT has a makespan at most  

• Observation.  If we have fewer than  jobs, then the greedy solution is 
clearly optimal (as it puts each job on its own machine)

n

1.5 ⋅ OPT

m



LPT-first is a 1.5-Approximation
• Lemma. LPT-first has a makespan at most  

• Observation.  

• If we have fewer than  jobs, then the greedy solution is clearly 
optimal (as it puts each job on its own machine) 

• Claim.  If more than  jobs then,  

• Proof.  Consider the first  jobs in sorted order. 

• They each take at least  time 

•  jobs and  machines, there must be a machine with at least 
two jobs 

• Thus the optimal makespan  

1.5 ⋅ OPT

m

m OPT ≥ 2 ⋅ tm+1

m + 1
tm+1

m + 1 m

OPT ≥ 2 ⋅ tm+1



• Lemma. LPT-first has a makespan at most  

• Proof. Similar to our original proof. Consider the machine  that has 
the maximum load 

• If  has a single job, then our algorithm is optimal 

• Suppose  has at least two jobs and let  be the last job assigned to 
the machine, note that  (why?) 

• Thus,  

1.5 ⋅ OPT

Mi

Mi

Mi tj
j ≥ m + 1

tj ≤ tm+1 ≤
1
2

OPT

LPT-first is a 1.5-Approximation
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the maximum load 
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•   

•   

1.5 ⋅ OPT

Mi

Mi

Mi tj
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tj ≤ tm+1 ≤
1
2

OPT

L[i] − tj ≤ OPT

L[i] ≤
3
2

OPT ∎

LPT-first is a 1.5-Approximation

/2



• Question.  Is out -approximation analysis tight? 

• Turns out, no 

• Theorem [Graham 1969].  LPT-first is a -approximation. 

• Proof via a more sophisticated analysis of the same algorithm 

• Question.  Is the -approximation analysis tight? 

• Pretty much. 

• Example 

•  machines,  jobs 

• 2 jobs each of length  + one job of length  

• Approximation ratio  

3/2

4/3

4/3

m n = 2m + 1
m, m + 1,…,2m − 1 m

= (4m − 1)/3m ≈ 4/3

Is our 1.5-Approximation tight?



• Long series of improvements 

• Polynomial time algorithm for any constant approximation [Hochbaum 
Shmoys 87] 

• Specifically:  approximation in  time 

• PTAS: Polynomial time approximation scheme 

• For any desired constant-factor approximation, there exists a 
polynomial-time algorithm 

(1 + ϵ) O ((n/ϵ)1/ϵ2)

Can we do better than ?4/3



Approximate TSP



• Recall the traveling salesman problem 

•  cities labeled   

• Let  be the distance from city  to city  

• TSP.  (Decision Version) Given pairwise distance between  cities 
and a bound , is there a tour (that visits each city exactly once 
and returns to starting city) of length at most ? 

• NP complete problem.  Reduction from Hamiltonian cycle. 

• Given directed graph , define instance of TSP as: 

• City  for each node  

•  if  

•  if 

n v1, …, vn

d(i, j) vi vj

n
D

D

G = (V, E)

ci vi

d(ci, cj) = 1 (vi, vj) ∈ E

d(ci, cj) = 2 (vi, vj) ∉ E

Approximating TSP



• Claim.  There is no polynomial-time -approximation algorithm for 
the general TSP problem, for any constant , unless . 

• Proof. Suppose there is a poly-time -approximation algorithm  
that computes a TSP tour of total weight at most  

• Show that  can be used to solve the Hamiltonian cycle problem 

• Modified reduction from Hamiltonian cycle instance  to TSP 
instance: 

•  if  

•  if  

• If  has a Hamiltonian cycle: there is a tour of length exactly  

• If  does not have a Hamiltonian cycle, any tour has length at 
least  

c
c ≥ 1 𝖯 = 𝖭𝖯

c A
c ⋅ OPT

A

G

d(ci, cj) = 1 (vi, vj) ∈ E

d(ci, cj) = cn + 1 (vi, vj) ∉ E

G n

G
cn + 1

Bad News: Approx-TSP is hard



• Claim.  There is no polynomial-time -approximation algorithm for 
the general TSP problem, for any constant , unless . 

• Proof. (Cont)

• If  has a Hamiltonian cycle: there is a tour of length exactly  

• If  does not have a Hamiltonian cycle, any tour has length at 
least   

•  computes tour of length at most    has a Hamiltonian 
cycle:  solves Hamiltonian cycle in polynomial time and  

• [More Bad news]  
For any function  that can be computed in polynomial time in 

, there is no polynomial-time -approximation for TSP on 
general weighted graphs, unless .

c
c ≥ 1 𝖯 = 𝖭𝖯

G n

G
cn + 1

A cn ⟺ G
A 𝖯 = 𝖭𝖯

f(n)
n f(n)

𝖯 = 𝖭𝖯

Bad News: Approx-TSP is hard



• While approximating TSP on general distances is NP hard, the 
common special case can be approximate easily 

• Metric TSP.  TSP problem where the distances satisfy the 
triangle inequality, that is,  

•  for any cities   

• Other properties of Euclidean (metric) distances: 

•  and  [Identify and Non-negative] 

•   [Symmetric] 

• Note that Metric TSP is still NP complete (reduction from 
undirected hamiltonian cycle) 

• Setting  when  satisfies triangle 
inequality

d(i, j) ≤ d(i, k) + d(k, j) i, j, k

d(i, i) = 0 d(i, j) ≥ 0

d(i, j) = d( j, i)

d(ci, cj) = 2 (vi, vj) ∉ E

Good News: Metric TSP is Not



• Consider the weighted complete graph  where each vertex is a 
city, and each edge  for  has weight equal to the 
distance , where  satisfies the triangle inequality 

• To approximate, consider the optimization version of the problem 

• Goal.  Find the tour of min total distance that visits each city once 

• Steps to follow when designing an approximation algorithm for a 
minimization problem (NP hard)? 

• Lower bound the optimal cost by some function of input 

• Upper bound the cost of algorithm by the same function  

• Minimum spanning trees give us such upper/lower bounds 

• We give a -approximation to metric-TSP using minimum 
spanning trees

G
(i, j) i, j ∈ V

d(i, j) d

2

Approximating Metric TSP



• Claim.  Let  be the minimum spanning tree of  then length 
of the optimal tour . 

• Proof.   

• Take an optimal tour of length  

• Drop an edge from it to obtain a spanning tree  

• Distances/weights are non-negative,  
so   

•    (  is the MST) 

• Thus    

T G
OPT ≥ w(T)

OPT

T′ 

w(T′ ) ≤ OPT

w(T) ≤ w(T′ ) T

w(T) ≤ OPT ∎

Lower Bound on OPT



• Find a minimum spanning tree  

• Duplicate every edge in  

• Find an Eulerian tour of resulting multi-graph 

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm
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T

T

Double Tree Algorithm

Why must an Euler tour exist?
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• Claim. The double-tree algorithm is a -approximation to TSP. 

• Proof.  The Euler tour visits every edge of MST  exactly 
twice, thus the length of tour  

• Due to triangle inequality, shortcutting the tour does not 
increase length 

• Since , we get that our tour length is  
 

2

T
≤ 2 ⋅ w(T)

w(T) ≤ OPT ≤ 2 ⋅ OPT
∎

Double Tree Analysis



• Doubling the edges of MST is one way to obtain Euler tour of the 
MST, but is there a cheaper way to augment to tree to obtain an 
Eulerian tour? 

• A graph has an Euler tour iff all nodes have even degree 
• What is the parity of odd degree vertices in an undirected graph? 

• Even number of odd degree vertices! 
• Christofides algorithm. Starts with an MST, but fixes the parity of 

odd degree vertices by augmenting it with a matching 
• Matching. A set of edges such that no two are adjacent  
• Perfect matching. Every vertex is incident to exactly one edge in 

the matching 
• Fact We'll Use.  Minimum cost “perfect” matchings of any graph 

can be computed in polynomial time.

Christofides Algorithm [Christofides 76][Serdyukov 76]



• Won’t see in this class, unfortunately 
• Edmond’s “blossom” algorithm 

•  (slow, but much better than exponential) 

• Somewhat similar to Ford-Fulkerson: 
• Use special structure to prove that we just need to find 

augmenting paths 
• Use data structures so that we can find augmenting paths 

quickly 
• Tricky part: “augmenting paths” are more complicated when 

finding a matching

O( |E | |V |2 )

Minimum Cost Matching



• Find the minimum spanning tree  

• Compute : the set of odd degree vertices in  

• Find the min-cost perfect matching  of subgraph induced 
by  

• Return shortcut of Euler tour of  

T

O T

M
O

T ∪ M

Christofides Algorithm  must be even|O |

All odd-degree vertices 
and any edges 

connecting them
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What does adding  do 
to 

M
O?
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Christofides Algorithm
• Find the minimum spanning tree  

• Compute : the set of odd degree vertices in  

• Find the min-cost perfect matching  of subgraph induced 
by  

• Return shortcut of Euler tour of  

T

O T

M
O
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• Cost of TSP tour returned is at most  

• We know    

• To bound the approximation factor, we lower bound the  in 
terms of the cost of  

• Claim.  Let  be the length of the optimal tour  and let  be a 
minimum-cost perfect matching on the complete subgraph 
induced by , the odd degree nodes in MST , then 

  

• Once we prove the lemma, we have,   

• Thus, Christofides algorithm is a -approximation to metric TSP

w(T) + w(M)

OPT ≥ w(T)

OPT
M

OPT M

O T

w(M) = ∑
e∈M

we ≤
1
2

⋅ OPT

w(T) + w(M) ≤
3
2

⋅ OPT

3/2

Christofides Analysis



• Proof of claim. Consider an optimal tour with cost   and 
consider vertices in , the odd-degree vertices in 

• Shortcut optimal tour to obtain tour of vertices in  

• By triangle inequality the cost of tour can only decrease

OPT
O T

O

Christofides Analysis



• Proof of claim. Consider an optimal tour with cost   and 
consider vertices in , the odd-degree vertices in 

• Shortcut optimal tour to obtain tour of vertices in  

• By triangle inequality the cost of tour can only decrease 

• Consider matchings  created by  
alternating edges on this tour 

•  

• Then,   

• , where :min-cost 
perfect matching on subgraph induced by  

• Thus, 

OPT
O T

O

M1, M2

w(M1) + w(M2) ≤ OPT

min{w(M1), w(M2)} ≤ OPT/2

w(M) ≤ min{w(M1, w(M2)} M
O

w(M) ≤ OPT/2

Christofides Analysis



• Held & Karp [1970s] developed a hueristic for calculating a lower bound on a TSP tour 
(coincides with a linear program known as Held-Karp relaxation) 

• Conjectured to give a 4/3-approximation 

• [Papadimitriou & Vempala, 2000’s] NP-hard to approximate metric TSP within 
220/219~1.0004  

• Simplified and slightly improved by Lampis’12 

• “Four decades after its discovery, Christofedes’ algorithm is the best approximation 
algorithm known for metric TSP” 

• This past summer [Karlin, Klein, Shayan] (unpublished): 

• 1.499999999999999999999999999999999999 approximation 

• “Euclidean TSP” does have a PTAS!  [Aurora 98] [Mitchell 99] 

• Understanding the approximability of TSP is a major open problem in TCS

TSP:  Summary

No PTAS

Christofide’s isn’t 
optimal!
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