Approximating TSP

Admin

 “"Assignment 10" (optional) review times:
e Juesday 9-11am
 Wednesday 1-3pm
e Thursday 3:30-5:30pm
e Friday 3-5pm

* TAs have office hours if you have any general questions

* | did give them the assignment 10 solutions but they may
not be as familiar as they would be

 Any questions?

Greedy is a 2-Approximation

- Prootf.

. Consider load L(1) of bottleneck machine 1

--

 We know that l‘J < OPT

makespan

. Thus, L = L[i] < OPT+1,

< 20PT §

Greedy is a 2-Approximation

|s our analysis tight”

Close to it.

Consider m(m — 1) jobs of length 1 and 1 job of length m
How would greedy schedule these jobs?

« Greedy will evenly divide the first m(m — 1) jobs among m
machines, will place the final long job on any one machine

e Makespan: m—14+m=2m-—1
How would optimal schedule it”

* (Give the long job to one machine, the rest split the other small jobs
with a makespan m

Ratio: 2m — 1)/m =~ 2

Greedy is Online

Notice that our greedy algorithm is an online algorithm
Assigns jobs to machines in the order they arrive
* Does not depend on future |jobs
Can we do better, it we assume all jobs are available at start time?

Offline. Slight modification of greedy gets better approximation!

Improving on Online Greedy

Worst case of our greedy algorithm: spreading jobs out evenly when a

glant job at the end messed things up
What can we do to avoid this?
* |dea: deal with larger jobs first

 Small jobs can only hurt so much

Turns out this Improves our approximation tfactor

Longest-processing-time (LPT) first. Sort n jobs in decreasing order
of processing times; then run the greedy algorithm on them

Claim. LPT has a makespan at most 1.5 - OPT

Observation. If we have fewer than m jobs, t
clearly optimal (as it puts each job on its own

nen the greedy solution is

machine)

LPT-first is a 1.5-Approximation

« Lemma. LPTfirst has a makespan at most 1.5 - OPT

- Observation.

o It we have fewer than m jobs, then the greedy solution is clearly
optimal (as it puts each job on its own machine)

o Claim. If more than m jobs then, OPT > 2 -¢ .,
. Proof. Consider the first m + 1 jobs in sorted order.
 Ihey each take at least 7, ; time

. m+ 1 jobs and m machines, there must be a machine with at least
two jobs

» Thus the optimal makespan OPT > 2 - ¢,

LPT-first is a 1.5-Approximation

Lemma. LPT-first has a makespan at most 1.5 - OPT

. Proof. Similar to our original proof. Consider the machine M. that has
the maximum loao

f M; has a single job, then our algorithm is optimal

Suppose M; has at least two jobs and let tJ be the last job assigned to
the machine, note that j > m + 1 (why?)

|
ThUS, l} S tm 1 S EOPT _____________________________ e e e e e ee e e

LPT-first is a 1.5-Approximation

Lemma. LPT-first has a makespan at most 1.5 - OPT

. Proof. Similar to our original proof. Consider the machine M. that has
the maximum loao

f M; has a single job, then our algorithm is optimal

Suppose M; has at least two jobs and let tJ be the last job assigned to
the machine, note that j > m + 1 (why?)

ThUS, l} S tm 1 S EOPT ____________________________ e

L[i] - t; < OPT

3
Lli] £ EOPT _

Is our 1.5-Approximation tight?

Question. Is out 3/2-approximation analysis tight?

e Jurns out, no
Theorem [Graham 1969]. LPT-first is a 4/3-approximation.

* Proof via a more sophisticated analysis of the same algorithm
Question. Is the 4/3-approximation analysis tight?

e Pretty much.

-xample
« m machines, n = 2m + 1 jobs
e 2jobseachoflengthm,m+1,....2m — 1 + one job of length m

« Approximation ratio = (4dm — 1)/3m ~ 4/3

Can we do better than 4/37?

Long series of iImprovements

Polynomial time algorithm for any constant approximation [Hochbaum
Shmoys 87]

Specifically: (1 + €) approximation in O ((n/e)l/ez) time

PTAS: Polynomial time approximation scheme

-or any desired constant-factor approximation, there exists a
oolynomial-time algorithm

Approximate TSP

Approximating TSP

* Recall the traveling salesman problem

e ncities labeled vy, ..., Vv,

. Letd(i,) be the distance from city v, to city V;

 TSP. (Decision Version) Given pairwise distance between n cities
and a bound D, is there a tour (that visits each city exactly once
and returns to starting city) of length at most D?

* NP complete problem. Reduction from Hamiltonian cycle.
« Given directed graph G = (V, E), define instance of TSP as:

 City ¢, for each node v;

Bad News: Approx-TSP is hard

« Claim. There is no polynomial-time c-approximation algorithm for
the general TSP problem, for any constant ¢ > 1, unless P = NP.

« Proof. Suppose there is a poly-time c-approximation algorithm A
that computes a TSP tour of total weight at most ¢ - OPT

« Show that A can be used to solve the Hamiltonian cycle problem

« Modified reduction from Hamiltonian cycle instance G to TSP
iInstance:

. d(c;,c) =1if(v,v) € E

« If G has a Hamiltonian cycle: there is a tour of length exactly n

« |f G does not have a Hamiltonian cycle, any tour has length at
leastcn + 1

Bad News: Approx-TSP is hard

« Claim. There is no polynomial-time c-approximation algorithm for
the general TSP problem, for any constant ¢ > 1, unless P = NP.

* Proof. (Cont)

« |f G has a Hamiltonian cycle: there is a tour of length exactly n

« |f G does not have a Hamiltonian cycle, any tour has length at
leastcn + 1

« A computes tour of length at most cn <= G has a Hamiltonian
cycle: A solves Hamiltonian cycle in polynomial time and P = NP

 [More Bad news]
For any function f(n) that can be computed in polynomial time in
n, there is no polynomial-time f(n)-approximation for TSP on
general weighted graphs, unless P = NP.

Good News: Metric TSP is Not

 While approximating TSP on general distances is NP hard, the
common special case can be approximate easily

 Metric TSP. TSP problem where the distances satisty the
triangle inequality, that is,

e d(i,j) <d(i,k)+d(k,j)for any cities i, j, k

* QOther properties of Euclidean (metric) distances:
e d(i,1) = 0andd(i,j) > 0 [Identify and Non-negative]
e d(i,j) =d(j,1) [Symmetric]

* Note that Metric TSP is still NP complete (reduction from
undirected hamiltonian cycle)

. Setting d(c;, cj) = 2 when (v, vj) ¢ E satisfies triangle
iInequality

Approximating Metric TSP

« Consider the weighted complete graph G where each vertex is a
city, and each edge (i, j) for i, j € V has weight equal to the
distance d(i, j), where d satisfies the triangle inequality

* To approximate, consider the optimization version of the problem
 Goal. Find the tour of min total distance that visits each city once

e Steps to follow when designing an approximation algorithm for a
minimization problem (NP hard)?

 Lower bound the optimal cost by some function of input
* Upper bound the cost of algorithm by the same function
 Minimum spanning trees give us such upper/lower bounds

« We give a 2-approximation to metric-TSP using minimum
spanning trees

Lower Bound on OPT

« Claim. Let T be the minimum spanning tree of GG then length
of the optimal tour OPT > w(T).

 Proof.

o Take an optimal tour of length OP
« Drop an edge from it to obtain a spanning tree T"

* Distances/weights are non-negative,
so w(1") < OPT

e W(T) <w(T") (T isthe MST)
e Thusw(7T) < OPT N

Double Tree Algorithm

« Find a minimum spanning tree 1’
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

e Shortcut Euler tour to avoid repeated vertices

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T’
* Find an Eulerian tour of resulting multi-graph

e Shortcut Euler tour to avoid repeated vertices

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

e Shortcut Euler tour to avoid repeat-:d vertices

Why must an Euler tour exist?

A,B,D,H,D,1,D,B,E,B,FB,A,C,G,C,A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

A’B’D’H’&I’D’B’E’B’F’B’A’C’G’C’A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

i
i

O—C
A,B,D,H,Bil,B,8,E,B,FB,A,C,G,C,A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

A’ B’D’H’&I’E’B’ E’B’F’B’A’C’G’C’A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

A’ B’D’H’&I’g’g’ E’B’ F’B,K’C’G’C’A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

A’ B,D,H,&LE,B, E’B’ F,B,K,C ’G’g ’A

Double Tree Algorithm

« Find a minimum spanning tree 1T°
« Duplicate every edge in T°
* Find an Eulerian tour of resulting multi-graph

 Shortcut Euler tour to avoid repeated vertices

A

A,B,D,H,B BB E B FB A,C,G,E A

Double Tree Analysis

. Claim. The double-tree algorithm is a 2-approximation to TSP,

. Proof. The Euler tour visits every edge of MST T exactly
twice, thus the length of tour < 2 - w(T)

* Due to triangle inequality, shortcutting the tour does not
iIncrease length

« Since w(T') < OPT, we get that our tour length is < 2 - OPT A
B

A’ B’D’H’ & |,8,8, E’gy F’&K’C ’Gyg ’A

Christofides Algorithm [Christofides 76][Serdyukov 76]

* Doubling the edges of MST is one way to obtain Euler tour of the
MST, but is there a cheaper way to augment to tree to obtain an
Eulerian tour?

* A graph has an Euler tour iff all nodes have even degree
 What is the parity of odd degree vertices in an undirected graph?
 Even number of odd degree vertices!

» Christofides algorithm. Starts with an MST, but fixes the parity of
odd degree vertices by augmenting it with a matching

 Matching. A set of edges such that no two are adjacent

* Perfect matching. Every vertex is incident to exactly one edge in
the matching

 Fact We'll Use. Minimum cost “perfect” matchings of any graph
can be computed Iin polynomial time.

Minimum Cost Matching i

 Won't see In this class, unfortunately \ m \

* Edmond’s "blossom” algorithm g M

. O(|E|] V\Z) (slow, but much better than exponential) :

* Somewhat similar to Ford-Fulkerson: >\/ >\
edges in matching edges in matching

e Use special structure to prove that we just need to find exposed

vertex

augmenting paths

e Use data structures so that we can find augmenting paths
quickly

e Jricky part: "augmenting paths™ are more complicated when
finding a matching

Christofides Algorithm 0| must be ever

« Find the minimum spanning tree 1

« Compute O: the set of odd degree vertices in T All odd-degree vertices

and any edges

« Find the min-cost perfect matching M of subgraph induced _
connecting them

by O

e Return shortcut of Euler tour of 7 UM

Christofides Algorithm

« Find the minimum spanning tree 1

« Compute O: the set of odd degree vertices in T°

What does adding M do

» Find the min-cost perfect matching M of subgraph induced 09
oOuU!

by O

e Return shortcut of Euler tour of 7 UM

Christofides Algorithm

« Find the minimum spanning tree 1’
« Compute O: the set of odd degree vertices in T°

 Find the min-cost perfect matching M of subgraph induced
by O

e Return shortcut of Euler tour of 7 UM

Christofides Algorithm

« Find the minimum spanning tree 1’
« Compute O: the set of odd degree vertices in T°

 Find the min-cost perfect matching M of subgraph induced

by O
e Return shortcut of Euler tour of 7 UM
0—0O 0

Christofides Algorithm

« Find the minimum spanning tree 1’
« Compute O: the set of odd degree vertices in T°

 Find the min-cost perfect matching M of subgraph induced
by O

e Return shortcut of Euler tour of 7 UM

Christofides Algorithm

« Find the minimum spanning tree 1’
« Compute O: the set of odd degree vertices in T°

 Find the min-cost perfect matching M of subgraph induced
by O

e Return shortcut of Euler tour of 7 UM

Christofides Algorithm

Find the minimum spanning tree 1
Compute O: the set of odd degree vertices in T

Find the min-cost perfect matching M of subgraph induced
by O

Return shortcut of Euler tour of 77U M

Christofides Analysis

« Cost of TSP tour returned is at most w(71') + w(M)
« We know OPT > w(T)

o [0 bound the approximation factor, we lower bound the OPT In
terms of the cost of M

. Claim. Let OPT be the length of the optimal tour and let M be a

minimum-cost perfect matching on the complete subgraph
induced by O, the odd degree nodes in MST T, then

1
w(M) = ZW€S5°OPT
eeM

3
. Once we prove the lemma, we have, w(T) + w(M) < 5 OPT

 Thus, Christofides algorithm is a 3/2-approximation to metric TSP

Christofides Analysis

- Proof of claim. Consider an optimal tour with cost OPT and
consider vertices in O, the odd-degree vertices in T

« Shortcut optimal tour to obtain tour of vertices in O

e By triangle inequality the cost of tour can only decrease

Christofides Analysis

- Proof of claim. Consider an optimal tour with cost OPT and
consider vertices in O, the odd-degree vertices in T

« Shortcut optimal tour to obtain tour of vertices in O
e By triangle inequality the cost of tour can only decrease

 Consider matchings M, M, created by
alternating edges on this tour

e WM;)+wM,) < OPT

« Then, min{w(M,), w(M,)} < OPT/2

e wM) < miniw(M,, w(M,)}, where M:min-cost
perfect matching on subgraph induced by O

. Thus, w(M) < OPT/2

TSP: Summary

Held & Karp [1970s] developed a hueristic for calculating a lower bound on a TSP tour
(coincides with a linear program known as Held-Karp relaxation)

» Conjectured to give a 4/3-approximation

[Papadimitriou & Vempala, 2000’s] NP-hard to approximate metric TSP within
220/219~1.0004

o Simplified and slightly improved by Lampis’™12

"Four decades after its discovery, Christofedes’ algorithm is the best approximation
algorithm known for metric TSP~

his past summer [Karlin, Klein, Shayan] (unpublished):
e 1.499999999999999999999999999999999999 approximation
“Euclidean TSP” does have a PTAS! [Aurora 98] [Mitchell 99]

Understanding the approximability of TSP is a major open problem in TCS

No PTAS

Christofide’s isn’t
optimall

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

* Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

