
Approximating TSP

• “Assignment 10” (optional) review times:
• Tuesday 9-11am
• Wednesday 1-3pm
• Thursday 3:30-5:30pm
• Friday 3-5pm

• TAs have office hours if you have any general questions
• I did give them the assignment 10 solutions but they may

not be as familiar as they would be

• Any questions?

Admin

Greedy is a 2-Approximation
• Proof.

• Consider load of bottleneck machine

•

• We know that

• Thus,

L(i) i
L[i] − tj ≤ OPT

tj ≤ OPT

L = L[i] ≤ OPT+tj
≤ 2OPT ∎

Greedy is a 2-Approximation
• Is our analysis tight?

• Close to it.

• Consider jobs of length 1 and 1 job of length

• How would greedy schedule these jobs?

• Greedy will evenly divide the first jobs among
machines, will place the final long job on any one machine

• Makespan:

• How would optimal schedule it?

• Give the long job to one machine, the rest split the other small jobs
with a makespan

• Ratio:

m(m − 1) m

m(m − 1) m

m − 1 + m = 2m − 1

m
(2m − 1)/m ≈ 2

Greedy is Online
• Notice that our greedy algorithm is an online algorithm

• Assigns jobs to machines in the order they arrive

• Does not depend on future jobs

• Can we do better, if we assume all jobs are available at start time?

• Offline. Slight modification of greedy gets better approximation!

Improving on Online Greedy
• Worst case of our greedy algorithm: spreading jobs out evenly when a

giant job at the end messed things up

• What can we do to avoid this?

• Idea: deal with larger jobs first

• Small jobs can only hurt so much

• Turns out this improves our approximation factor

• Longest-processing-time (LPT) first. Sort jobs in decreasing order
of processing times; then run the greedy algorithm on them

• Claim. LPT has a makespan at most

• Observation. If we have fewer than jobs, then the greedy solution is
clearly optimal (as it puts each job on its own machine)

n

1.5 ⋅ OPT

m

LPT-first is a 1.5-Approximation
• Lemma. LPT-first has a makespan at most

• Observation.

• If we have fewer than jobs, then the greedy solution is clearly
optimal (as it puts each job on its own machine)

• Claim. If more than jobs then,

• Proof. Consider the first jobs in sorted order.

• They each take at least time

• jobs and machines, there must be a machine with at least
two jobs

• Thus the optimal makespan

1.5 ⋅ OPT

m

m OPT ≥ 2 ⋅ tm+1

m + 1
tm+1

m + 1 m

OPT ≥ 2 ⋅ tm+1

• Lemma. LPT-first has a makespan at most

• Proof. Similar to our original proof. Consider the machine that has
the maximum load

• If has a single job, then our algorithm is optimal

• Suppose has at least two jobs and let be the last job assigned to
the machine, note that (why?)

• Thus,

1.5 ⋅ OPT

Mi

Mi

Mi tj
j ≥ m + 1

tj ≤ tm+1 ≤
1
2

OPT

LPT-first is a 1.5-Approximation

/2

• Lemma. LPT-first has a makespan at most

• Proof. Similar to our original proof. Consider the machine that has
the maximum load

• If has a single job, then our algorithm is optimal

• Suppose has at least two jobs and let be the last job assigned to
the machine, note that (why?)

• Thus,

•

•

1.5 ⋅ OPT

Mi

Mi

Mi tj
j ≥ m + 1

tj ≤ tm+1 ≤
1
2

OPT

L[i] − tj ≤ OPT

L[i] ≤
3
2

OPT ∎

LPT-first is a 1.5-Approximation

/2

• Question. Is out -approximation analysis tight?

• Turns out, no

• Theorem [Graham 1969]. LPT-first is a -approximation.

• Proof via a more sophisticated analysis of the same algorithm

• Question. Is the -approximation analysis tight?

• Pretty much.

• Example

• machines, jobs

• 2 jobs each of length + one job of length

• Approximation ratio

3/2

4/3

4/3

m n = 2m + 1
m, m + 1,…,2m − 1 m

= (4m − 1)/3m ≈ 4/3

Is our 1.5-Approximation tight?

• Long series of improvements

• Polynomial time algorithm for any constant approximation [Hochbaum
Shmoys 87]

• Specifically: approximation in time

• PTAS: Polynomial time approximation scheme

• For any desired constant-factor approximation, there exists a
polynomial-time algorithm

(1 + ϵ) O ((n/ϵ)1/ϵ2)

Can we do better than ?4/3

Approximate TSP

• Recall the traveling salesman problem

• cities labeled

• Let be the distance from city to city

• TSP. (Decision Version) Given pairwise distance between cities
and a bound , is there a tour (that visits each city exactly once
and returns to starting city) of length at most ?

• NP complete problem. Reduction from Hamiltonian cycle.

• Given directed graph , define instance of TSP as:

• City for each node

• if

• if

n v1, …, vn

d(i, j) vi vj

n
D

D

G = (V, E)

ci vi

d(ci, cj) = 1 (vi, vj) ∈ E

d(ci, cj) = 2 (vi, vj) ∉ E

Approximating TSP

• Claim. There is no polynomial-time -approximation algorithm for
the general TSP problem, for any constant , unless .

• Proof. Suppose there is a poly-time -approximation algorithm
that computes a TSP tour of total weight at most

• Show that can be used to solve the Hamiltonian cycle problem

• Modified reduction from Hamiltonian cycle instance to TSP
instance:

• if

• if

• If has a Hamiltonian cycle: there is a tour of length exactly

• If does not have a Hamiltonian cycle, any tour has length at
least

c
c ≥ 1 𝖯 = 𝖭𝖯

c A
c ⋅ OPT

A

G

d(ci, cj) = 1 (vi, vj) ∈ E

d(ci, cj) = cn + 1 (vi, vj) ∉ E

G n

G
cn + 1

Bad News: Approx-TSP is hard

• Claim. There is no polynomial-time -approximation algorithm for
the general TSP problem, for any constant , unless .

• Proof. (Cont)

• If has a Hamiltonian cycle: there is a tour of length exactly

• If does not have a Hamiltonian cycle, any tour has length at
least

• computes tour of length at most has a Hamiltonian
cycle: solves Hamiltonian cycle in polynomial time and

• [More Bad news]  
For any function that can be computed in polynomial time in

, there is no polynomial-time -approximation for TSP on
general weighted graphs, unless .

c
c ≥ 1 𝖯 = 𝖭𝖯

G n

G
cn + 1

A cn ⟺ G
A 𝖯 = 𝖭𝖯

f(n)
n f(n)

𝖯 = 𝖭𝖯

Bad News: Approx-TSP is hard

• While approximating TSP on general distances is NP hard, the
common special case can be approximate easily

• Metric TSP. TSP problem where the distances satisfy the
triangle inequality, that is,

• for any cities

• Other properties of Euclidean (metric) distances:

• and [Identify and Non-negative]

• [Symmetric]

• Note that Metric TSP is still NP complete (reduction from
undirected hamiltonian cycle)

• Setting when satisfies triangle
inequality

d(i, j) ≤ d(i, k) + d(k, j) i, j, k

d(i, i) = 0 d(i, j) ≥ 0

d(i, j) = d(j, i)

d(ci, cj) = 2 (vi, vj) ∉ E

Good News: Metric TSP is Not

• Consider the weighted complete graph where each vertex is a
city, and each edge for has weight equal to the
distance , where satisfies the triangle inequality

• To approximate, consider the optimization version of the problem

• Goal. Find the tour of min total distance that visits each city once

• Steps to follow when designing an approximation algorithm for a
minimization problem (NP hard)?

• Lower bound the optimal cost by some function of input

• Upper bound the cost of algorithm by the same function

• Minimum spanning trees give us such upper/lower bounds

• We give a -approximation to metric-TSP using minimum
spanning trees

G
(i, j) i, j ∈ V

d(i, j) d

2

Approximating Metric TSP

• Claim. Let be the minimum spanning tree of then length
of the optimal tour .

• Proof.

• Take an optimal tour of length

• Drop an edge from it to obtain a spanning tree

• Distances/weights are non-negative,
so

• (is the MST)

• Thus

T G
OPT ≥ w(T)

OPT

T′

w(T′) ≤ OPT

w(T) ≤ w(T′) T

w(T) ≤ OPT ∎

Lower Bound on OPT

• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm

• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm

• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm

Why must an Euler tour exist?

• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm

Double Tree Algorithm
• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm
• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm
• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm
• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

Double Tree Algorithm
• Find a minimum spanning tree

• Duplicate every edge in

• Find an Eulerian tour of resulting multi-graph

• Shortcut Euler tour to avoid repeated vertices

T

T

• Claim. The double-tree algorithm is a -approximation to TSP.

• Proof. The Euler tour visits every edge of MST exactly
twice, thus the length of tour

• Due to triangle inequality, shortcutting the tour does not
increase length

• Since , we get that our tour length is

2

T
≤ 2 ⋅ w(T)

w(T) ≤ OPT ≤ 2 ⋅ OPT
∎

Double Tree Analysis

• Doubling the edges of MST is one way to obtain Euler tour of the
MST, but is there a cheaper way to augment to tree to obtain an
Eulerian tour?

• A graph has an Euler tour iff all nodes have even degree
• What is the parity of odd degree vertices in an undirected graph?

• Even number of odd degree vertices!
• Christofides algorithm. Starts with an MST, but fixes the parity of

odd degree vertices by augmenting it with a matching
• Matching. A set of edges such that no two are adjacent
• Perfect matching. Every vertex is incident to exactly one edge in

the matching
• Fact We'll Use. Minimum cost “perfect” matchings of any graph

can be computed in polynomial time.

Christofides Algorithm [Christofides 76][Serdyukov 76]

• Won’t see in this class, unfortunately
• Edmond’s “blossom” algorithm

• (slow, but much better than exponential)

• Somewhat similar to Ford-Fulkerson:
• Use special structure to prove that we just need to find

augmenting paths
• Use data structures so that we can find augmenting paths

quickly
• Tricky part: “augmenting paths” are more complicated when

finding a matching

O(|E | |V |2)

Minimum Cost Matching

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm must be even|O |

All odd-degree vertices
and any edges

connecting them

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm

What does adding do
to

M
O?

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm

• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

Christofides Algorithm

Christofides Algorithm
• Find the minimum spanning tree

• Compute : the set of odd degree vertices in

• Find the min-cost perfect matching of subgraph induced
by

• Return shortcut of Euler tour of

T

O T

M
O

T ∪ M

• Cost of TSP tour returned is at most

• We know

• To bound the approximation factor, we lower bound the in
terms of the cost of

• Claim. Let be the length of the optimal tour and let be a
minimum-cost perfect matching on the complete subgraph
induced by , the odd degree nodes in MST , then

• Once we prove the lemma, we have,

• Thus, Christofides algorithm is a -approximation to metric TSP

w(T) + w(M)

OPT ≥ w(T)

OPT
M

OPT M

O T

w(M) = ∑
e∈M

we ≤
1
2

⋅ OPT

w(T) + w(M) ≤
3
2

⋅ OPT

3/2

Christofides Analysis

• Proof of claim. Consider an optimal tour with cost and
consider vertices in , the odd-degree vertices in

• Shortcut optimal tour to obtain tour of vertices in

• By triangle inequality the cost of tour can only decrease

OPT
O T

O

Christofides Analysis

• Proof of claim. Consider an optimal tour with cost and
consider vertices in , the odd-degree vertices in

• Shortcut optimal tour to obtain tour of vertices in

• By triangle inequality the cost of tour can only decrease

• Consider matchings created by
alternating edges on this tour

•

• Then,

• , where :min-cost
perfect matching on subgraph induced by

• Thus,

OPT
O T

O

M1, M2

w(M1) + w(M2) ≤ OPT

min{w(M1), w(M2)} ≤ OPT/2

w(M) ≤ min{w(M1, w(M2)} M
O

w(M) ≤ OPT/2

Christofides Analysis

• Held & Karp [1970s] developed a hueristic for calculating a lower bound on a TSP tour
(coincides with a linear program known as Held-Karp relaxation)

• Conjectured to give a 4/3-approximation

• [Papadimitriou & Vempala, 2000’s] NP-hard to approximate metric TSP within
220/219~1.0004

• Simplified and slightly improved by Lampis’12

• “Four decades after its discovery, Christofedes’ algorithm is the best approximation
algorithm known for metric TSP”

• This past summer [Karlin, Klein, Shayan] (unpublished):

• 1.499999999999999999999999999999999999 approximation

• “Euclidean TSP” does have a PTAS! [Aurora 98] [Mitchell 99]

• Understanding the approximability of TSP is a major open problem in TCS

TSP: Summary

No PTAS

Christofide’s isn’t
optimal!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

