Load Balancing

Admin

* Assignment 8 back soon

* Final review out tonight

Skip List Detalils

« Search(x):
o Start at top list, go right just before value gets > target

 Go down and repeat until element is found or hit bottom

14 < 179

I I

14 < 50 [> 79 >

I I I

14 < > 34 50 [> 66 [< > 79 96 > 125
I 1 | I I I I
14 <—>{ 23 [<—>{ 34 42 <150 <>159 <166 <> T72<>79 86 96 103 116[<—{125

— Example: Search for 72

* Level 1: 14 too sma
x Level 2: 14 too sma!
x Level 3: 50 too sma!
x Level 4: 66 too sma!

1, 79 too big; go down 14

1, 50 too small, 79 too big; go down 50

1, 66 too small, 79 too big; go down 66

1, 72 spot on

Skip List Analysis

* et us first define the height of a skip list formally.
o Let L, be the set of all items in level k > 1.

o Height of an element. £(x) = max{k | x € L;}
o Height of a skip list. A(L) = max{Z(x) | x € L}

18
>118 31
31 38

\18120’ 531
2527 {31 [>{326>(38[¢>{ 42

46

51

Skip List Expected Analysis

* Expected height of a node:
1 1
CE[Z(0)] =1+ 5 0+ 5(1 + E[£(x)])

e E[f(x)] =2
» Worst-case height? h(L) = max{Z(x) | x € L}

18
>118 31
31 38

\/
\18120’ 531
2527 K>{31[6{326>(385] 42465146

Skip List Analysis

« Claim. A skip list with n elements has height O(log n) levels with
high probabillity.

 Recall. (Informally) An event happens with high probabillity if the
porobabillity that it does not happen is polynomially small in n, that
is, < 1/n° where the constantc > 1

o (More formally) Skip list of size n has O(log n) levels with high
probability if the probability that it has more than d log n levels is at
most 1/n¢ where the constants ¢, d usually depend on each other

+ Proof idea. What is the probability that an element gets promoted
to level 17

1/2

Skip List Analysis

Claim. A skip list with n elements has height O(log n) levels with
high probabillity.

. Proof. Forany x € L, k > 1, the probability that height of x is k

. Prit(x) = k| = _

k
Pr(£(x) > k] = i Pr(£(x) = i] = 3 i = i
k+ 1 i=k+1 2! 2t -
N " Union bound
Pr{h(L) > k] = PrlU,g £(x) > k] <) Pr{£(x) > k] = — ——
xeL
1
Prlh(L) > clogn] < [pick any ¢ > 2 for w.h.p.]

nC—l
Thus, height of skip is O(log n) with high probability

Skip List Search Cost

 Claim. Search cost in a skip list is O(logn) with high probability

Proof.

e |dea think of the search path “backwards”

e Starting at the target element

* Going left or up until you reach top-left element

—o >(18
H
o0 Je— 518
H
00 |¢
I H

|
8
AN

20

31
)|31i(38
N\

25

\/
/31|:
27K{31[>1326>(38

42646

51

Skip List Search Cost

 Backwards search path, when do go up versus left?

* |f node wasn't promoted (got tails here), then we go [came from] left

* |f node was promoted (got heads here), then we go [came from] top

 How many consecutive tails in a row?” (left moves on a level)

 Same analysis as the height! O@ogn)

. O(log® n) length overal—but | claimed O(log n) earlier

- >[18!

~3
&l
N/

|
8
AN
o

18 31
H
31 38
N

\/
—00 [¢ - 3118120 531 51
/N
\/ H HT
—o0 [2 6K 8 18 2527311326138 42(>(46

Skip List Search Cost

We know height is O(log n) with high probability; say it is clogn
Thus, number of “up” moves is at most ¢ log n with high
probabillity

Search path is a sequence of HHHTTTHHTT . . .

Search cost:

« How many times do we need to flip a coin to get clogn
neads with high probability”?

18

&l
N/

|
8
AN

|
8
~

HT
T
2 {5 K] 6 > 8 L1518

2118

20

18 31
H
5 18 31 38
N

25

\/
531
27K5(31[132

38

42646

51

51

Coin Flipping

 Claim. Number of flips until ¢ log n heads is ®(log n) with high
probability, that is, with probability 1 — 1/n°¢

« Note. Constantin ®(logn) will depend on ¢
- Proof.

 Say we flip 10c log n coins

« When are there at least ¢ log n heads?

« Prlexactly clog n heads]

- 10clogn 1 clogn 1 9clogn
B clogn 2 2

10c log n] cloen
°rlat most ¢ log n heads] < | —
clogn 2

Coin Flipping

 Claim. Number of flips until ¢ log n heads is ®(log n) with high
probability, that is, with probability 1 — 1/n°¢

- Proof.

. lOclogn clogn 1 9clogn
. Prlat most clog n heads] < | —
clogn 2

9clogn
— (1Oe)clogn] (l)

2

1 9clogn
— 2log(lOe)-c10gn |

2
— 2(10g(1()e)—9)-clogn — 2—dlogn
= 1/n?

. If we instead look at probability of at most d'clog n heads, as d’ — oo,
d =9 —1log(10e) - o0, independent of ¢

Skip Lists

 Using O(log n) linked lists, achieve same performance as
binary search tree

* No stored information about balance, no tricky balancing rules

* Just flip coins while inserting each new element to decide what
Ists It goes In

Approximation Algorithms

Aside: Online Algorithms

* For algorithms we've seen, we have all data up front
 Not always true In practice!

 What happens when data comes in gradually, and you need to
commit to a solution before you see all of it”

Challenges: Approximation Algorithms

* Approximating problems that are NP hard

 Main challenge is showing that the algorithm performs close to
optimal when the optimal solution is not known/NP hard

* Usually done by lower (upper) bounding the cost of the optimal
solution for minimization (maximization) problems

* Approximation for online algorithms

 High benchmark. Comparison against an optimal that knows the
entire future, while the algorithm does not even know the next

element

» k-competitive: if the optimal offline algorithm has cost OPT, our
algorithm has cost k - OPT

Online: Ski Rental Problem

Assume that you are taking ski lessons

At some point (after ¢t days) the ski season ends. But you don't have
any information about when that will be.

Question: rent or buy the skis?
Cost of renting $1
Cost of buying $B

Offline strategy. If you knew in advance when the ski season ends
(you know f) what is the best strategy”

« Ift > B times, then buy, else rent

« In other words, optimal offline cost is min{¢, B}

Online: Ski Rental Problem

. Online strategy. We need to figure out a decision point, a number k
such you buy skis on the kth visit (renting before then)

. Claim. If we set k = B (the cost of buying skis), we are gauranteed to
never pay more than twice of the best offline optimal strategy. That is,
buying on the Bth ski visit is 2—competitive

 Offline costismin{z,B} = B
* Online strategy’s cost?

e Ift < B, then ourcostist and OPT has cost t. In that case, we
are 2-competitive (in fact we are 1-competitive)

o If £ > B, then our costis 2B, and OPT has cost B. In that case, we
are 2-competitive

Load Balancing

Load Balancing

e Input. m identical machines

« 1 jobs with processing times ¢4, ..., t,,, where job j has processing

time l; (on any machine)

 Job j must run contiguously on one machine
A machine can process at most one job at a time.

« Let S]i1] be the subset of jobs assigned to machine 1.

The load of machine i is L[i] = 2 t; (total processing time).

JESII]

machine 1 a d f

machine 2 b C e g

| I I >

0 L[1] L[2] time

Load Balancing

The makespan of an algorithm is the maximum load on any machine
L = max L|i]
i

Load balancing Problem. Assign jobs to machines so as to minimize
makespan.

Claim. Load balancing is NP hard even with m = 2 machines

Proof. Reduction from PARTITION problem.

We will design an approximation algorithm for this problem

[Greedy returns!| Consider the following greedy strategy:
* Fix some order on the |jobs

« Assign job J to machine 1 whose load is smallest so far

Load Balancing: Greedy

* (5o through the jobs one by one

e Assign each job to the machine with the smallest load so tar

 How can we keep track of this efficiently”?

* Priority queue

Load Balancing: Greedy

[LIST-SCHEDULING (m, n, t1, t2, ..., tn)

FOR i=1TO m

Lli] <= 0. __ |oadon machine i

Sli] < . «— jobs assigned to machine i

FOR j=1TOn

| <— argmin « L[k].
Sli] <= Slil U {j)
L[i] < L[i] + ¢.

— machine i has smallest load

«—— assign job jto machine i

«<—— update load of machine i

RETURN S[1], S[2], ..., S[m].

 Running time”

* O(nlogm) using a priority queue for loads L[]

Load Balancing: Greedy Analysis

Claim. Greedy algorithm is a 2-approximation.

To show this, we need to show greedy solution never more than a factor
two worse than the optima

Challenge. We don't know the optimal solution. In fact, finding the
optimal is NP hard.

We want to:
* Lower bound the cost of optimal solution

* A good enough lower bound can help show that our algorithm
cannot be too much worse than the optimal

In our problem, what are some lower bounds on the makespan of even
an optimal algorithm?

Load Balancing: Greedy Analysis

Let OPT be the optimal makespan.

Lemma. OPT > max t]
J

Proof. Some machine must process the most time-consuming job.

Any other lower bounds”

|
. Lemma. OPT > Z Z t]
J

- Prootf.

The total processing time Is Z l;
J

. Some machine must do a 1/m fraction of the total work.

Greedy is a 2-Approximation

. Proof. Consider load L]|i] of bottleneck machinei <—machine that ends up

: . , : with highest load
« Let] be the last scheduled job on machine 1

« When job j was assigned to machine i, 1 must have had the
smallest loaa

. Thatis, L|i] —Z}SL[k] VI <k<m

makespan
A
O
~
~

Greedy is a 2-Approximation

. Proof. Consider load L[1] of bottleneck machine 1
« LetJ be the last scheduled job on machine 1

« When job j was assigned to machine i, 1 must have had the
smallest load

. Thatis, L[i] — ; < Lkl V1 <k<m
« Summing over all k and diving by m

, 1
L[i] —gs%;uk]

Greedy is a 2-Approximation

- Prootf.

. Consider load L(1) of bottleneck machine 1

..

. We know that l‘] < OPT - < OPT
S
: 2
o Thus, L = L[i] < OPT+¢ £
)
S <
< 20PT N <Oft

Greedy is a 2-Approximation

|s our analysis tight”

Close to it.

Consider m(m — 1) jobs of length 1 and 1 job of length m
How would greedy schedule these jobs?

« Greedy will evenly divide the first m(m — 1) jobs among m
machines, will place the final long job on any one machine

e Makespan: m—14+m=2m-—1
How would optimal schedule it”

* (Give the long job to one machine, the rest split the other small jobs
with a makespan m

Ratio: 2m — 1)/m =~ 2

Greedy is Online

Notice that our greedy algorithm is an online algorithm
Assigns jobs to machines in the order they arrive
* Does not depend on future |jobs
Can we do better, it we assume all jobs are available at start time?

Offline. Slight modification of greedy gets better approximation!

Improving on Online Greedy

Worst case of our greedy algorithm: spreading jobs out evenly when a

glant job at the end messed things up
What can we do to avoid this?
* |dea: deal with larger jobs first

 Small jobs can only hurt so much

Turns out this Improves our approximation tfactor

Longest-processing-time (LPT) first. Sort n jobs in decreasing order
of processing times; then run the greedy algorithm on them

Claim. LPT has a makespan at most 1.5 - OPT

Observation. If we have fewer than m jobs, t
clearly optimal (as it puts each job on its own

nen the greedy solution is

machine)

LPT-first is a 1.5-Approximation

« Lemma. LPTfirst has a makespan at most 1.5 - OPT

- Observation.

o It we have fewer than m jobs, then the greedy solution is clearly
optimal (as it puts each job on its own machine)

o Claim. If more than m jobs then, OPT > 2 -¢ .,
. Proof. Consider the first m + 1 jobs in sorted order.
 Ihey each take at least 7, ; time

. m+ 1 jobs and m machines, there must be a machine with at least
two jobs

» Thus the optimal makespan OPT > 2 - ¢,

LPT-first is a 1.5-Approximation

Lemma. LPT-first has a makespan at most 1.5 - OPT

. Proof. Similar to our original proof. Consider the machine M. that has
the maximum loao

f M; has a single job, then our algorithm is optimal

Suppose M; has at least two jobs and let t] be the last job assigned to
the machine, note that j > m + 1 (why?)

1
ThUS, l} S tm 1 S EOPT ____________________________] N cmememeaea.

LPT-first is a 1.5-Approximation

Lemma. LPT-first has a makespan at most 1.5 - OPT

. Proof. Similar to our original proof. Consider the machine M. that has
the maximum loao

f M; has a single job, then our algorithm is optimal

Suppose M; has at least two jobs and let tJ be the last job assigned to
the machine, note that j > m + 1 (why?)

Thus, l} < tm 1 < EOPT ____________________________ _ mmmeaeaas

L[i] - t; < OPT

3
Lli] £ EOPT _

Is our 1.5-Approximation tight?

Question. Is out 3/2-approximation analysis tight?

e Jurns out, no
Theorem [Graham 1969]. LPT-first is a 4/3-approximation.

* Proof via a more sophisticated analysis of the same algorithm
Question. Is the 4/3-approximation analysis tight?

e Pretty much.

-xample
« m machines, n = 2m + 1 jobs
e 2jobseachoflengthm,m+1,....2m — 1 + one job of length m

« Approximation ratio = (4dm — 1)/3m ~ 4/3

Can we do better than 4/37?

Long series of iImprovements

Polynomial time algorithm for any constant approximation [Hochbaum
Shmoys 87]

Specifically: (1 + €) approximation in O ((n/e)l/ez) time

PTAS: Polynomial time approximation scheme

-or any desired constant-factor approximation, there exists a
oolynomial-time algorithm

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

* Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

