
Load Balancing

• Assignment 8 back soon

• Final review out tonight

Admin

Skip List Details
• Search :

• Start at top list, go right just before value gets target

• Go down and repeat until element is found or hit bottom
right

(x)

>

Skip List Analysis
• Let us first define the height of a skip list formally.
• Let be the set of all items in level .
• Height of an element.
• Height of a skip list.
•

Lk k ≥ 1
ℓ(x) = max{k | x ∈ Lk}
h(L) = max{ℓ(x) | x ∈ L0}

Skip List Expected Analysis
• Expected height of a node:

•

•
• Worst-case height?

E[ℓ(x)] = 1 +
1
2

⋅ 0 +
1
2

(1 + E[ℓ(x)])

E[ℓ(x)] = 2
h(L) = max{ℓ(x) | x ∈ L}

Skip List Analysis
• Claim. A skip list with elements has height levels with

high probability.

• Recall. (Informally) An event happens with high probability if the
probability that it does not happen is polynomially small in , that
is, where the constant

• (More formally) Skip list of size has levels with high
probability if the probability that it has more than levels is at
most where the constants usually depend on each other

• Proof idea. What is the probability that an element gets promoted
to level

•

n O(log n)

n
≤ 1/nc c ≥ 1

n O(log n)
d log n

1/nc c, d

1?

1/2

Skip List Analysis
• Claim. A skip list with elements has height levels with

high probability.
• Proof. For any , , the probability that height of is

•

•

•

• [pick any for w.h.p.]

• Thus, height of skip is with high probability

n O(log n)

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k] =
1
2k

Pr[ℓ(x) > k] =
∞

∑
k+1

Pr[ℓ(x) = i] =
∞

∑
i=k+1

1
2i

=
1
2k

Pr[h(L) > k] = Pr[∪x∈Lℓ(x) > k] ≤ ∑
x∈L

Pr[ℓ(x) > k] =
n
2k

Pr[h(L) > c log n] ≤
1

nc−1
c > 2

O(log n)

Union bound

Skip List Search Cost
• Claim. Search cost in a skip list is with high probability
• Proof.
• Idea think of the search path “backwards”
• Starting at the target element
• Going left or up until you reach top-left element

O(log n)

• Backwards search path, when do go up versus left?
• If node wasn’t promoted (got tails here), then we go [came from] left
• If node was promoted (got heads here), then we go [came from] top
• How many consecutive tails in a row? (left moves on a level)

• Same analysis as the height!

• length overall—but I claimed earlier
O(log n)

O(log2 n) O(log n)

Skip List Search Cost

• We know height is with high probability; say it is
• Thus, number of “up” moves is at most with high

probability
• Search path is a sequence of
• Search cost:

• How many times do we need to flip a coin to get
heads with high probability?

O(log n) c log n
c log n

HHHTTTHHTT . . .

c log n

Skip List Search Cost

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Note. Constant in will depend on
• Proof.

• Say we flip coins
• When are there at least heads?
•

•

c log n Θ(log n)
1 − 1/nc

Θ(log n) c

10c log n
c log n

Pr[exactly c log n heads]

= (10c log n
c log n) ⋅ (1

2)
c log n

⋅ (1
2)

9c log n

Pr[at most c log n heads] ≤ (10c log n
c log n) ⋅ (1

2)
9c log n

Coin Flipping

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Proof.

•

• If we instead look at probability of at most heads, as ,
, independent of

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ (e ⋅ 10c log n
c log n)

c log n

⋅ (1
2)

9c log n

= (10e)c log n ⋅ (1
2)

9c log n

= 2log(10e)⋅c log n ⋅ (1
2)

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

d′ c log n d′ → ∞
d = 9 − log(10e) → ∞ c

Coin Flipping

Skip Lists
• Using linked lists, achieve same performance as

binary search tree

• No stored information about balance, no tricky balancing rules

• Just flip coins while inserting each new element to decide what
lists it goes in

O(log n)

Approximation Algorithms

Aside: Online Algorithms
• For algorithms we’ve seen, we have all data up front

• Not always true in practice!

• What happens when data comes in gradually, and you need to
commit to a solution before you see all of it?

• Approximating problems that are NP hard
• Main challenge is showing that the algorithm performs close to

optimal when the optimal solution is not known/NP hard
• Usually done by lower (upper) bounding the cost of the optimal

solution for minimization (maximization) problems

• Approximation for online algorithms
• High benchmark. Comparison against an optimal that knows the

entire future, while the algorithm does not even know the next
element

• -competitive: if the optimal offline algorithm has cost , our
algorithm has cost
k OPT

k ⋅ OPT

Challenges: Approximation Algorithms

Online: Ski Rental Problem
• Assume that you are taking ski lessons

• At some point (after days) the ski season ends. But you don’t have
any information about when that will be.

• Question: rent or buy the skis?

• Cost of renting

• Cost of buying

• Offline strategy. If you knew in advance when the ski season ends
(you know) what is the best strategy?

• If times, then buy, else rent

• In other words, optimal offline cost is

t

$1
$B

t
t ≥ B

min{t, B}

• Online strategy. We need to figure out a decision point, a number
such you buy skis on the th visit (renting before then)

• Claim. If we set (the cost of buying skis), we are gauranteed to
never pay more than twice of the best offline optimal strategy. That is,
buying on the th ski visit is competitive

• Offline cost is

• Online strategy’s cost?

• If , then our cost is , and OPT has cost . In that case, we
are 2-competitive (in fact we are 1-competitive)

• If , then our cost is , and OPT has cost . In that case, we
are 2-competitive

k
k

k = B

B 2−
min{t, B} = B

t ≤ B t t

t > B 2B B

Online: Ski Rental Problem

Load Balancing

Load Balancing
• Input. identical machines

• jobs with processing times , where job has processing
time (on any machine)

• Job must run contiguously on one machine

• A machine can process at most one job at a time.

• Let be the subset of jobs assigned to machine .

•
The load of machine is (total processing time).

m

n t1, …, tm j
tj

j

S[i] i

i L[i] = ∑
j∈S[i]

tj

Machine 2

Machine 1a d f

b c e g

timeL[2]0

machine 1

machine 2

L[1]

Load Balancing
• The makespan of an algorithm is the maximum load on any machine

• Load balancing Problem. Assign jobs to machines so as to minimize
makespan.

• Claim. Load balancing is NP hard even with machines

• Proof. Reduction from PARTITION problem.

• We will design an approximation algorithm for this problem

• [Greedy returns!] Consider the following greedy strategy:

• Fix some order on the jobs

• Assign job to machine whose load is smallest so far

L = max
i

L[i]

m = 2

j i

Load Balancing: Greedy
• Go through the jobs one by one

• Assign each job to the machine with the smallest load so far

• How can we keep track of this efficiently?

• Priority queue

Load Balancing: Greedy

• Running time?

• using a priority queue for loads O(n log m) L[k]

LIST-SCHEDULING (m, n, t1, t2, …, tn)

FOR i = 1 TO m

 L[i] ← 0.

 S[i] ← ∅.

FOR j = 1 TO n

 i ← argmin k L[k].

 S[i] ← S[i] ∪ { j }.

 L[i] ← L[i] + tj.

RETURN S[1], S[2], …, S[m].

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

Load Balancing: Greedy Analysis
• Claim. Greedy algorithm is a -approximation.

• To show this, we need to show greedy solution never more than a factor
two worse than the optimal

• Challenge. We don’t know the optimal solution. In fact, finding the
optimal is NP hard.

• We want to:

• Lower bound the cost of optimal solution

• A good enough lower bound can help show that our algorithm
cannot be too much worse than the optimal

• In our problem, what are some lower bounds on the makespan of even
an optimal algorithm?

2

Load Balancing: Greedy Analysis
• Let be the optimal makespan.

• Lemma. .

• Proof. Some machine must process the most time-consuming job.

• Any other lower bounds?

•
Lemma.

• Proof.

•
The total processing time is

• Some machine must do a fraction of the total work.

OPT

OPT ≥ max
j

tj

OPT ≥
1
m ∑

j

tj

∑
j

tj

1/m

Greedy is a 2-Approximation
• Proof. Consider load of bottleneck machine

• Let be the last scheduled job on machine

• When job was assigned to machine , must have had the
smallest load

• That is,

L[i] i
j i

j i i

L[i] − tj ≤ L[k] ∀1 ≤ k ≤ m

machine that ends up
with highest load

Greedy is a 2-Approximation
• Proof. Consider load of bottleneck machine

• Let be the last scheduled job on machine

• When job was assigned to machine , must have had the
smallest load

• That is,

• Summing over all and diving by

L[i] i
j i

j i i

L[i] − tj ≤ L[k] ∀1 ≤ k ≤ m

k m

L[i] − tj ≤
1
m ∑

k

L[k]

≤
1
m ∑

j′

tj′

≤ OPT

Greedy is a 2-Approximation
• Proof.

• Consider load of bottleneck machine

•

• We know that

• Thus,

L(i) i
L[i] − tj ≤ OPT

tj ≤ OPT

L = L[i] ≤ OPT+tj
≤ 2OPT ∎

Greedy is a 2-Approximation
• Is our analysis tight?

• Close to it.

• Consider jobs of length 1 and 1 job of length

• How would greedy schedule these jobs?

• Greedy will evenly divide the first jobs among
machines, will place the final long job on any one machine

• Makespan:

• How would optimal schedule it?

• Give the long job to one machine, the rest split the other small jobs
with a makespan

• Ratio:

m(m − 1) m

m(m − 1) m

m − 1 + m = 2m − 1

m
(2m − 1)/m ≈ 2

Greedy is Online
• Notice that our greedy algorithm is an online algorithm

• Assigns jobs to machines in the order they arrive

• Does not depend on future jobs

• Can we do better, if we assume all jobs are available at start time?

• Offline. Slight modification of greedy gets better approximation!

Improving on Online Greedy
• Worst case of our greedy algorithm: spreading jobs out evenly when a

giant job at the end messed things up

• What can we do to avoid this?

• Idea: deal with larger jobs first

• Small jobs can only hurt so much

• Turns out this improves our approximation factor

• Longest-processing-time (LPT) first. Sort jobs in decreasing order
of processing times; then run the greedy algorithm on them

• Claim. LPT has a makespan at most

• Observation. If we have fewer than jobs, then the greedy solution is
clearly optimal (as it puts each job on its own machine)

n

1.5 ⋅ OPT

m

LPT-first is a 1.5-Approximation
• Lemma. LPT-first has a makespan at most

• Observation.

• If we have fewer than jobs, then the greedy solution is clearly
optimal (as it puts each job on its own machine)

• Claim. If more than jobs then,

• Proof. Consider the first jobs in sorted order.

• They each take at least time

• jobs and machines, there must be a machine with at least
two jobs

• Thus the optimal makespan

1.5 ⋅ OPT

m

m OPT ≥ 2 ⋅ tm+1

m + 1
tm+1

m + 1 m

OPT ≥ 2 ⋅ tm+1

• Lemma. LPT-first has a makespan at most

• Proof. Similar to our original proof. Consider the machine that has
the maximum load

• If has a single job, then our algorithm is optimal

• Suppose has at least two jobs and let be the last job assigned to
the machine, note that (why?)

• Thus,

1.5 ⋅ OPT

Mi

Mi

Mi tj
j ≥ m + 1

tj ≤ tm+1 ≤
1
2

OPT

LPT-first is a 1.5-Approximation

/2

• Lemma. LPT-first has a makespan at most

• Proof. Similar to our original proof. Consider the machine that has
the maximum load

• If has a single job, then our algorithm is optimal

• Suppose has at least two jobs and let be the last job assigned to
the machine, note that (why?)

• Thus,

•

•

1.5 ⋅ OPT

Mi

Mi

Mi tj
j ≥ m + 1

tj ≤ tm+1 ≤
1
2

OPT

L[i] − tj ≤ OPT

L[i] ≤
3
2

OPT ∎

LPT-first is a 1.5-Approximation

/2

• Question. Is out -approximation analysis tight?

• Turns out, no

• Theorem [Graham 1969]. LPT-first is a -approximation.

• Proof via a more sophisticated analysis of the same algorithm

• Question. Is the -approximation analysis tight?

• Pretty much.

• Example

• machines, jobs

• 2 jobs each of length + one job of length

• Approximation ratio

3/2

4/3

4/3

m n = 2m + 1
m, m + 1,…,2m − 1 m

= (4m − 1)/3m ≈ 4/3

Is our 1.5-Approximation tight?

• Long series of improvements

• Polynomial time algorithm for any constant approximation [Hochbaum
Shmoys 87]

• Specifically: approximation in time

• PTAS: Polynomial time approximation scheme

• For any desired constant-factor approximation, there exists a
polynomial-time algorithm

(1 + ϵ) O ((n/ϵ)1/ϵ2)

Can we do better than ?4/3

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

