Load Balancing

Admin

- Assignment 8 back soon
- Final review out tonight

Skip List Details

- Search (x) :
- Start at top list, go right just before value gets $>$ target
- Go down and repeat until element is found or hit bottom

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66
* Level 4: 66 too small, 72 spot on

Skip List Analysis

- Let us first define the height of a skip list formally.
- Let L_{k} be the set of all items in level $k \geq 1$.
- Height of an element. $\ell(x)=\max \left\{k \mid x \in L_{k}\right\}$
- Height of a skip list. $h(L)=\max \left\{\ell(x) \mid x \in L_{0}\right\}$

Skip List Expected Analysis

- Expected height of a node:
. $E[\ell(x)]=1+\frac{1}{2} \cdot 0+\frac{1}{2}(1+E[\ell(x)])$
- $E[\ell(x)]=2$
- Worst-case height? $h(L)=\max \{\ell(x) \mid x \in L\}$

Skip List Analysis

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability.
- Recall. (Informally) An event happens with high probability if the probability that it does not happen is polynomially small in n, that is, $\leq 1 / n^{c}$ where the constant $c \geq 1$
- (More formally) Skip list of size n has $O(\log n)$ levels with high probability if the probability that it has more than $d \log n$ levels is at most $1 / n^{c}$ where the constants c, d usually depend on each other
- Proof idea. What is the probability that an element gets promoted to level 1?
- $1 / 2$

Skip List Analysis

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability.
- Proof. For any $x \in L, k \geq 1$, the probability that height of x is k
. $\operatorname{Pr}[\ell(x)=k]=\frac{1}{2^{k}}$
- $\operatorname{Pr}[\ell(x)>k]=\sum_{k+1}^{\infty} \operatorname{Pr}[\ell(x)=i]=\sum_{i=k+1}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{k}}$
- $\operatorname{Pr}[h(L)>k]=\operatorname{Pr}\left[\cup_{x \in L} \ell(x)>k\right] \leq \sum_{x \in L} \operatorname{Pr}[\ell(x)>k]=\frac{n}{2^{k}}$
- $\operatorname{Pr}[h(L)>c \log n] \leq \frac{1}{n^{c-1}} \quad$ [pick any $c>2$ for w.h.p.]
- Thus, height of skip is $O(\log n)$ with high probability

Skip List Search Cost

- Claim. Search cost in a skip list is $O(\log n)$ with high probability
- Proof.
- Idea think of the search path "backwards"
- Starting at the target element
- Going left or up until you reach top-left element

Skip List Search Cost

- Backwards search path, when do go up versus left?
- If node wasn't promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top
- How many consecutive tails in a row? (left moves on a level)
- Same analysis as the height! $O(\log n)$
- $O\left(\log ^{2} n\right)$ length overall-but I claimed $O(\log n)$ earlier

Skip List Search Cost

- We know height is $O(\log n)$ with high probability; say it is $c \log n$
- Thus, number of "up" moves is at most $c \log n$ with high probability
- Search path is a sequence of $H H H T T T H H T T ~ . ~ . ~ . ~$
- Search cost:
- How many times do we need to flip a coin to get $c \log n$ heads with high probability?

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Note. Constant in $\Theta(\log n)$ will depend on c
- Proof.
- Say we flip $10 c \log n$ coins
- When are there at least $c \log n$ heads?
- $\operatorname{Pr}[$ exactly $c \log n$ heads]

$$
=\binom{10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}
$$

- $\operatorname{Pr}[$ at most $c \log n$ heads $] \leq\binom{ 10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Proof.
- Pr[at most $c \log n$ heads $] \leq\left(\frac{e \cdot 10 c \log n}{c \log n}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

$$
\begin{aligned}
& =(10 e)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{\log (10 e) \cdot c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{(\log (10 e)-9) \cdot c \log n}=2^{-d \log n} \\
& =1 / n^{d}
\end{aligned}
$$

- If we instead look at probability of at most $d^{\prime} c \log n$ heads, as $d^{\prime} \rightarrow \infty$, $d=9-\log (10 e) \rightarrow \infty$, independent of c

Skip Lists

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules
- Just flip coins while inserting each new element to decide what lists it goes in

Approximation Algorithms

Aside: Online Algorithms

- For algorithms we've seen, we have all data up front
- Not always true in practice!
- What happens when data comes in gradually, and you need to commit to a solution before you see all of it?

Challenges: Approximation Algorithms

- Approximating problems that are NP hard
- Main challenge is showing that the algorithm performs close to optimal when the optimal solution is not known/NP hard
- Usually done by lower (upper) bounding the cost of the optimal solution for minimization (maximization) problems
- Approximation for online algorithms
- High benchmark. Comparison against an optimal that knows the entire future, while the algorithm does not even know the next element
- k-competitive: if the optimal offline algorithm has cost $O P T$, our algorithm has cost $k \cdot O P T$

Online: Ski Rental Problem

- Assume that you are taking ski lessons
- At some point (after t days) the ski season ends. But you don't have any information about when that will be.
- Question: rent or buy the skis?
- Cost of renting \$1
- Cost of buying $\$ B$
- Offline strategy. If you knew in advance when the ski season ends (you know t) what is the best strategy?
- If $t \geq B$ times, then buy, else rent
- In other words, optimal offline cost is $\min \{t, B\}$

Online: Ski Rental Problem

- Online strategy. We need to figure out a decision point, a number k such you buy skis on the k th visit (renting before then)
- Claim. If we set $k=B$ (the cost of buying skis), we are gauranteed to never pay more than twice of the best offline optimal strategy. That is, buying on the B th ski visit is 2 -competitive
- Offline cost is $\min \{t, B\}=B$
- Online strategy's cost?
- If $t \leq B$, then our cost is t, and OPT has cost t. In that case, we are 2-competitive (in fact we are 1-competitive)
- If $t>B$, then our cost is $2 B$, and OPT has cost B. In that case, we are 2-competitive

Load Balancing

Load Balancing

- Input. m identical machines
- n jobs with processing times t_{1}, \ldots, t_{m}, where job j has processing time t_{j} (on any machine)
- Job j must run contiguously on one machine
- A machine can process at most one job at a time.
- Let $S[i]$ be the subset of jobs assigned to machine i.
- The load of machine i is $L[i]=\sum_{j \in S[i]} t_{j} \quad$ (total processing time).
machine 1
a
d
f
machine 2
b
C
e
g

Load Balancing

- The makespan of an algorithm is the maximum load on any machine $L=\max L[i]$
i
- Load balancing Problem. Assign jobs to machines so as to minimize makespan.
- Claim. Load balancing is NP hard even with $m=2$ machines
- Proof. Reduction from PARTITION problem.
- We will design an approximation algorithm for this problem
- [Greedy returns!] Consider the following greedy strategy:
- Fix some order on the jobs
- Assign job j to machine i whose load is smallest so far

Load Balancing: Greedy

- Go through the jobs one by one
- Assign each job to the machine with the smallest load so far
- How can we keep track of this efficiently?
- Priority queue

Load Balancing: Greedy

```
LIST-SCHEDULING ( }m,n,\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{}
FOR i=1 TO m
    L[i]}\leftarrow0.\quad\longleftarrow load on machine 
    S[i]}\leftarrow\varnothing.\longleftarrow jobs assigned to machine 
FOR j=1 TO n
    i}\mp@subsup{\operatorname{argmin}}{k}{}L[k].\quad\longleftarrow\quad\mathrm{ machine i has smallest load
    S[i]}\leftarrowS[i]\cup{j}. \longleftarrow assign job j to machine 
    L[i]}\leftarrowL[i]+tj
                                    update load of machine i
RETURN S[1],S[2], .., S[m].
```

- Running time?
- $O(n \log m)$ using a priority queue for loads $L[k]$

Load Balancing: Greedy Analysis

- Claim. Greedy algorithm is a 2-approximation.
- To show this, we need to show greedy solution never more than a factor two worse than the optimal
- Challenge. We don't know the optimal solution. In fact, finding the optimal is NP hard.
- We want to:
- Lower bound the cost of optimal solution
- A good enough lower bound can help show that our algorithm cannot be too much worse than the optimal
- In our problem, what are some lower bounds on the makespan of even an optimal algorithm?

Load Balancing: Greedy Analysis

- Let OPT be the optimal makespan.
. Lemma. OPT $\geq \max _{j} t_{j}$.
- Proof. Some machine must process the most time-consuming job.
- Any other lower bounds?

Lemma. OPT $\geq \frac{1}{m} \sum_{j} t_{j}$

- Proof.
. The total processing time is $\sum_{j} t_{j}$
- Some machine must do a $1 / m$ fraction of the total work.

Greedy is a 2-Approximation

- Proof. Consider load $L[i]$ of bottleneck machine i
- Let j be the last scheduled job on machine i
\longleftarrow machine that ends up
with highest load
- When job j was assigned to machine i, i must have had the smallest load
- That is, $L[i]-t_{j} \leq L[k] \quad \forall 1 \leq k \leq m$

Greedy is a 2-Approximation

- Proof. Consider load $L[i]$ of bottleneck machine i
- Let j be the last scheduled job on machine i
- When job j was assigned to machine i, i must have had the smallest load
- That is, $L[i]-t_{j} \leq L[k] \quad \forall 1 \leq k \leq m$
- Summing over all k and diving by m

$$
\begin{aligned}
L[i]-t_{j} & \leq \frac{1}{m} \sum_{k} L[k] \\
& \leq \frac{1}{m} \sum_{j^{\prime}} t_{j^{\prime}} \\
& \leq \text { OPT }
\end{aligned}
$$

Greedy is a 2-Approximation

- Proof.
- Consider load $L(i)$ of bottleneck machine i
- $L[i]-t_{j} \leq$ OPT
- We know that $t_{j} \leq$ OPT
- Thus, $L=L[i] \leq \mathrm{OPT}+t_{j}$ $\leq 2 \mathrm{OPT}$

Greedy is a 2-Approximation

- Is our analysis tight?
- Close to it.
- Consider $m(m-1)$ jobs of length 1 and 1 job of length m
- How would greedy schedule these jobs?
- Greedy will evenly divide the first $m(m-1)$ jobs among m machines, will place the final long job on any one machine
- Makespan: $m-1+m=2 m-1$
- How would optimal schedule it?
- Give the long job to one machine, the rest split the other small jobs with a makespan m
- Ratio: $(2 m-1) / m \approx 2$

Greedy is Online

- Notice that our greedy algorithm is an online algorithm
- Assigns jobs to machines in the order they arrive
- Does not depend on future jobs
- Can we do better, if we assume all jobs are available at start time?
- Offline. Slight modification of greedy gets better approximation!

Improving on Online Greedy

- Worst case of our greedy algorithm: spreading jobs out evenly when a giant job at the end messed things up
-What can we do to avoid this?
- Idea: deal with larger jobs first
- Small jobs can only hurt so much
- Turns out this improves our approximation factor
- Longest-processing-time (LPT) first. Sort n jobs in decreasing order of processing times; then run the greedy algorithm on them
- Claim. LPT has a makespan at most 1.5 - OPT
- Observation. If we have fewer than m jobs, then the greedy solution is clearly optimal (as it puts each job on its own machine)

LPT-first is a 1.5-Approximation

- Lemma. LPT-first has a makespan at most $1.5 \cdot$ OPT
- Observation.
- If we have fewer than m jobs, then the greedy solution is clearly optimal (as it puts each job on its own machine)
- Claim. If more than m jobs then, OPT $\geq 2 \cdot t_{m+1}$
- Proof. Consider the first $m+1$ jobs in sorted order.
- They each take at least t_{m+1} time
- $m+1$ jobs and m machines, there must be a machine with at least two jobs
- Thus the optimal makespan OPT $\geq 2 \cdot t_{m+1}$

LPT-first is a 1.5-Approximation

- Lemma. LPT-first has a makespan at most $1.5 \cdot$ OPT
- Proof. Similar to our original proof. Consider the machine M_{i} that has the maximum load
- If M_{i} has a single job, then our algorithm is optimal
- Suppose M_{i} has at least two jobs and let t_{j} be the last job assigned to the machine, note that $j \geq m+1$ (why?)
- Thus, $t_{j} \leq t_{m+1} \leq \frac{1}{2}$ OPT

LPT-first is a 1.5-Approximation

- Lemma. LPT-first has a makespan at most $1.5 \cdot$ OPT
- Proof. Similar to our original proof. Consider the machine M_{i} that has the maximum load
- If M_{i} has a single job, then our algorithm is optimal
- Suppose M_{i} has at least two jobs and let t_{j} be the last job assigned to the machine, note that $j \geq m+1$ (why?)
- Thus, $t_{j} \leq t_{m+1} \leq \frac{1}{2}$ OPT
- $L[i]-t_{j} \leq$ OPT
. $L[i] \leq \frac{3}{2}$ OPT

Is our 1.5-Approximation tight?

- Question. Is out $3 / 2$-approximation analysis tight?
- Turns out, no
- Theorem [Graham 1969]. LPT-first is a 4/3-approximation.
- Proof via a more sophisticated analysis of the same algorithm
- Question. Is the 4/3-approximation analysis tight?
- Pretty much.
- Example
- m machines, $n=2 m+1$ jobs
- 2 jobs each of length $m, m+1, \ldots, 2 m-1+$ one job of length m
- Approximation ratio $=(4 m-1) / 3 m \approx 4 / 3$

Can we do better than $4 / 3$?

- Long series of improvements
- Polynomial time algorithm for any constant approximation [Hochbaum Shmoys 87]
- Specifically: $(1+\epsilon)$ approximation in $O\left((n / \epsilon)^{1 / \epsilon^{2}}\right)$ time
- PTAS: Polynomial time approximation scheme
- For any desired constant-factor approximation, there exists a polynomial-time algorithm

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/ cs161.1138/

