
Cuckoo Hashing and Skip
Lists

• Assignment 9 Thursday

• You can take the final at any time from Sat Dec 12- Sun Dec
20

• Distribution not yet clear.

• Any questions?

Admin

• Just to get a head start since we’ve only seen a couple
approximation algorithms

• Maximum matching: largest possible set of edges such that
each vertex is adjacent to at most one edge

• How does the number of edges in a maximum matching (each
vertex is adjacent to only one edge) compare to the size of the
optimal vertex cover?

• How does the number of edges in a maximum matching
compare to the size of the output of the algorithm?

Problem 4 Hint

Back to Linear Probing

• Upper bound on the probability that two events happen

• Remember: events are a set of outcomes. So for any events :

•

• Probabilities are nonnegative. So:

•

• Union bound!

A, B

Pr [A or B] = Pr[A] + Pr[B] − Pr[A and B]

Pr[A or B] ≤ Pr[A] + Pr[B]

Union Bound

• All operations are w.h.p.

• Here’s a sketch of why this is the case:

• What is the probability that, given that this slot is empty, the next slots
are full?

• Must have exactly elements hashing to those slots
• Probability:

• so long as

O(log n)

8 log n

8 log n 8 log n

(n
8 log n) (8 log n

m)
8 log n

(1 −
8 log n

m)
n−8 log n

≤ (ne
8 log n)

8 log n

(8 log n
m)

8 log n

(e
−8 log n

m)
n−8 log n

≤ (9/10)8 log n ≤ 1/n2 n
m

e1+(8 log n)/m−n/m =
e.5+(8 log n)/m

2
≤ 9/10

Linear Probing: w.h.p. Analysis
Amir Chris

• The probability that a given slot is before consecutive full slots is

• What is the probability that in the entire table, there is any slot is an empty
slot before consecutive slots?

•

• Since for all ,

• So the probability that any insert in the hash table takes more than
probes is

O(log n)
≤ 1/n2

O(log n)

Pr[P1 ∨ P2 ∨ … ∨ Pm]
Pi = 1/n2 i Pr[P1 ∨ P2 ∨ … ∨ Pm] ≤ m/n2 = O(1/n)

log n
O(1/n)

Linear Probing: w.h.p. Analysis Amir Chris

Union bound

• We need randomness in order to hash, but can we get
worst-case bounds?

• We saw that we can get worst-case insert, with
expected lookup

• But lookups are often what we care about more!

• Can we do the reverse? worst-case lookup, with
expected insert (and insert with high probability)?

• Yes—cuckoo hashing!

O(1) O(1)

O(1) O(1)
O(log n)

Improving the Bounds

• Uses two hash functions, and , two hash tables

• Each table size

• Item is guaranteed to be in or

• So we can lookup in
• How can we insert?

h1 h2

n
i A[h1(i)] A[h2(i)]

O(1)

Cuckoo Hashing [Pagh, Rodler ’01]

Beth Nir Amir Chris

h1(Beth) = 0, h2(Beth) = 1

• If or is empty, store
• Otherwise, kick an item out of one of these locations
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Beth Nir Amir Chris

h1(Elmer) = 0, h2(Elmer) = 0

• If or is empty, store
• Otherwise, kick an item out of one of these locations
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Amir Chris

Beth

h1(Beth) = 0, h2(Beth) = 1

• If or is empty, store
• Otherwise, kick an item out of one of these locations
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Amir Beth

h1(Chris) = 2, h2(Chris) = 1

Chris

• If or is empty, store
• Otherwise, kick an item out of one of these locations
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Chris Amir Beth

h1(Chris) = 2, h2(Chris) = 1

• What can go wrong?
• This process may not end
• Example: 3 items hash to the same two slots
• What is the probability that we have an insert to two

slots, where each item in those slots only hashes to
those two slots?

• (n
2) (1

n)
4

= Θ(1/n2)

Cuckoo Hashing: Insert

Elmer

Elmer Nir Chris Amir Beth

Ways to choose 2
items out of the n

inserted

Probability that those
two items hash to the

given two slots

• More complicated analysis:

• Cuckoo hashing fails with probability
• What happens when we fail?
• Rebuild the whole hash table
• (Expensive worst-case insert operation)

O(1/n2)

Cuckoo Hashing: Insert

Elmer

Elmer Nir Chris Amir Beth

• How long does an insert take on average?
• One idea: each time we go to the other table, what is

the probability the slot is empty?

• . (This analysis isn’t 100% right due to some subtle
dependencies, but it’s the right idea)

• So need two moves to find an empty slot in expectation

• At most with high probability

1/2

O(log n)

Cuckoo Hashing: Insert

Skip Lists

Skip Lists: Randomized Search Trees

• Invented around 1990 by Bill Pugh

• Idea: binary search trees are a pain to implement

• Skip lists balance randomly; no rules to remember, no rebalancing

• Build out of simple structure: sorted linked lists

• Inserts, deletes, search, predecessor, successor are with
high probability

• No rebalancing makes them useful in concurrent programming (e.g.
lock-free data structures)

O(log n)

One Linked List
• Start from simplest data structure: (sorted) linked list

• Search cost?

•

• How can we improve it?

Θ(n)

Two Linked List
• Suppose you had two sorted linked list

• Each element can appear in one or both lists

• How can you use two lists to improve search cost?

Two Linked List
• Suppose you had two sorted linked list

• Each element can appear in one or both lists

• How can you use two lists to improve search cost?

• Idea: have one “express” linked list, and one “local” linked
list

Two Linked List
• How much gap between elements?

• If gap between elements in top list is , then the number of
elements traversed is at most

• Optimized by setting . So the total cost is at most

g
g + n/g

g = n
2 n

K Linked Lists
• Can you extend the previous idea to linked lists?

• What is the cost of traversing them?

•

• Minimized at

• Cost is

k

k(1 + n1/k)

k = Θ(log n)

O(log n(1 + n1/log n)) = O(log n)

Skip List Details
• This is good, but how can we insert?

• Every new element disrupts our spacing

• Idea: use randomness!

Skip List Details
• Insert

• New element should certainly be added to the bottommost list

• Invariant: Bottommost list contains all elements

• Which other lists should a new item to added to?

• Insert at level and flip a coin (idea we want half of the
elements to go next level, similar to a balanced binary tree)

• If heads: element gets promoted to next level, and we repeat

• If tails element stays put at current level and we are done.

(x)

x 1

Skip List Details
• Thus, on average

• of the elements go up 1 level

• of the elements go up 2 levels

• go up to levels

• Etc.

• Search :

• Start at top list, go right just before value gets target

• Go down and repeat until element is found or hit bottom
right

1/2

1/4

1/8 3

(x)

>

Skip List Details
• Search :

• Start at top list, go right just before value gets target

• Go down and repeat until element is found or hit bottom
right

(x)

>

Skip List Analysis
• Let us first define the height of a skip list formally.
• Let be the set of all items in level .
• Height of an element.
• Height of a skip list.
•

Lk k ≥ 1
ℓ(x) = max{k | x ∈ Lk}
h(L) = max{ℓ(x) | x ∈ L0}

Skip List Expected Analysis
• Expected height of a node:

•

•
• Worst-case height?

E[ℓ(x)] = 1 +
1
2

⋅ 0 +
1
2

(1 + E[ℓ(x)])

E[ℓ(x)] = 2
h(L) = max{ℓ(x) | x ∈ L}

Skip List Analysis
• Claim. A skip list with elements has height levels with

high probability.

• Recall. (Informally) An event happens with high probability if the
probability that it does not happen is polynomially small in , that
is, where the constant

• (More formally) Skip list of size has levels with high
probability if the probability that it has more than levels is at
most where the constants usually depend on each other

• Proof idea. What is the probability that an element gets promoted
to level

•

n O(log n)

n
≤ 1/nc c ≥ 1

n O(log n)
d log n

1/nc c, d

1?

1/2

Skip List Analysis
• Claim. A skip list with elements has height levels with

high probability.
• Proof. For any , , the probability that height of is

•

•

•

• [pick any for w.h.p.]

• Thus, height of skip is with high probability

n O(log n)

x ∈ L k ≥ 1 x k

Pr[ℓ(x) = k] =
1
2k

Pr[ℓ(x) > k] =
∞

∑
k+1

Pr[ℓ(x) = i] =
∞

∑
i=k+1

1
2i

=
1
2k

Pr[h(L) > k] = Pr[∪x∈Lℓ(x) > k] ≤ ∑
x∈L

Pr[ℓ(x) > k] =
n
2k

Pr[h(L) > c log n] ≤
1

nc−1
c > 2

O(log n)

Union bound

Skip List Search Cost
• Claim. Search cost in a skip list is with high probability
• Proof.
• Idea think of the search path “backwards”
• Starting at the target element
• Going left or up until you reach root or sentinel node

O(log n)

(−∞)

• Backwards search path, when do go up versus left?
• If node wasn’t promoted (got tails here), then we go [came from] left
• If node was promoted (got heads here), then we go [came from] top
• How many consecutive tails in a row? (left moves on a level)

• Same analysis as the height!

• length overall—but I claimed earlier
O(log n)

O(log2 n) O(log n)

Skip List Search Cost

• We know height is with high probability; say it is
• Thus, number of “up” moves is at most with high

probability
• Search path is a sequence of
• Search cost:

• How many times do we need to flip a coin to get
heads with high probability?

O(log n) c log n
c log n

HHHTTTHHTT . . .

c log n

Skip List Search Cost

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Note. Constant in will depend on
• Proof.

• Say we flip coins
• When are there at least heads?
•

•

c log n Θ(log n)
1 − 1/nc

Θ(log n) c

10c log n
c log n

Pr[exactly c log n heads]

= (10c log n
c log n) ⋅ (1

2)
c log n

⋅ (1
2)

9c log n

Pr[at most c log n heads] ≤ (10c log n
c log n) ⋅ (1

2)
9c log n

Coin Flipping

• Claim. Number of flips until heads is with high
probability, that is, with probability

• Proof.

•

• If we instead look at probability of at most heads, as ,
, independent of

c log n Θ(log n)
1 − 1/nc

Pr[at most c log n heads] ≤ (e ⋅ 10c log n
c log n)

c log n

⋅ (1
2)

9c log n

= (10e)c log n ⋅ (1
2)

9c log n

= 2log(10e)⋅c log n ⋅ (1
2)

9c log n

= 2(log(10e)−9)⋅c log n = 2−d log n

= 1/nd

d′ c log n d′ → ∞
d = 9 − log(10e) → ∞ c

Coin Flipping

Skip Lists
• Using linked lists, achieve same performance as

binary search tree

• No stored information about balance, no tricky balancing rules

• Just flip coins while inserting each new element to decide what
lists it goes in

O(log n)

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• MIT course notes, 6.042/18.062J Mathematics for Computer Science
April 26, 2005, Devadas and Lehman

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

