Cuckoo Hashing and Skip Lists

Admin

- Assignment 9 Thursday
- You can take the final at any time from Sat Dec 12- Sun Dec 20
- Distribution not yet clear.
- Any questions?

Problem 4 Hint

- Just to get a head start since we've only seen a couple approximation algorithms
- Maximum matching: largest possible set of edges such that each vertex is adjacent to at most one edge
- How does the number of edges in a maximum matching (each vertex is adjacent to only one edge) compare to the size of the optimal vertex cover?
- How does the number of edges in a maximum matching compare to the size of the output of the algorithm?

Back to Linear Probing

Union Bound

- Upper bound on the probability that two events happen
- Remember: events are a set of outcomes. So for any events A, B:
- $\Pr[A \text{ or } B] = \Pr[A] + \Pr[B] \Pr[A \text{ and } B]$
- Probabilities are nonnegative. So:
- $\Pr[A \text{ or } B] \leq \Pr[A] + \Pr[B]$
- Union bound!

Linear Probing: w.h.p. Analysis

- All operations are $O(\log n)$ w.h.p.
- Here's a sketch of why this is the case:
- What is the probability that, given that this slot is empty, the next $8 \log n$ slots are full?
- Must have exactly 8 log n elements hashing to those 8 log n slots
- Probability:

m

 $\binom{n}{8\log n} \left(\frac{8\log n}{m}\right)^{8\log n} \left(1 - \frac{8\log n}{m}\right)^{n-8\log n} \le \left(\frac{ne}{8\log n}\right)^{8\log n} \left(\frac{8\log n}{m}\right)^{8\log n} \left(e^{\frac{-8\log n}{m}}\right)^{n-8\log n}$ • $\leq (9/10)^{8\log n} \leq 1/n^2$ so long as $\frac{n}{m}e^{1+(8\log n)/m-n/m} = \frac{e^{.5+(8\log n)/m}}{2} \leq 9/10$

Amir Chris Linear Probing: w.h.p. Analysis

- The probability that a given slot is before $O(\log n)$ consecutive full slots is $< 1/n^{2}$
- What is the probability that in the *entire table*, there is *any* slot is an empty slot before $O(\log n)$ consecutive slots?
- $\Pr[P_1 \lor P_2 \lor \ldots \lor P_m]$
- Since $P_i = 1/n^2$ for all *i*, $\Pr[P_1 \lor P_2 \lor ... \lor P_m] \le m/n^2 = O(1/n)$
- So the probability that any insert in the hash table takes more than log n probes is O(1/n)

Union bound

1			
		•	
ł		۱	
1	ļ	,	

Improving the Bounds

- We need randomness in order to hash, but can we get worst-case bounds?
- We saw that we can get O(1) worst-case insert, with O(1)expected lookup
- But lookups are often what we care about more!
- Can we do the reverse? O(1) worst-case lookup, with O(1)expected insert (and $O(\log n)$ insert with high probability)?
- Yes—cuckoo hashing!

Cuckoo Hashing [Pagh, Rodler '01]

- Uses two hash functions, h_1 and h_2 , two hash tables
- Each table size *n*
- Item *i* is guaranteed to be in $A[h_1(i)]$ or $A[h_2(i)]$
- So we can lookup in O(1)
- How can we insert?

 $h_1(\text{Beth}) = 0, h_2(\text{Beth}) = 1$

- If $A[h_1(i)]$ or $A[h_2(i)]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

- If $A[h_1(i)]$ or $A[h_2(i)]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

- If $A[h_1(i)]$ or $A[h_2(i)]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Chris

Amir	Beth	

 $h_1(\text{Chris}) = 2, h_2(\text{Chris}) = 1$

- If $A[h_1(i)]$ or $A[h_2(i)]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

|--|

 $h_1(\text{Chris}) = 2, h_2(\text{Chris}) = 1$

- What can go wrong?
- This process may not end
- Example: 3 items hash to the same two slots
- What is the probability that we have an insert to two slots, where each item in those slots only hashes to those two slots?

- More complicated analysis:
- Cuckoo hashing fails with probability $O(1/n^2)$
- What happens when we fail?
- Rebuild the whole hash table
- (Expensive worst-case insert operation)

- How long does an insert take on average?
- One idea: each time we go to the other table, what is the probability the slot is empty?
- 1/2. (This analysis isn't 100% right due to some subtle dependencies, but it's the right idea)
- So need two moves to find an empty slot in expectation
- At most $O(\log n)$ with high probability

Skip Lists

Skip Lists: Randomized Search Trees

- Invented around 1990 by Bill Pugh
- Idea: binary search trees are a pain to implement
- Skip lists balance randomly; no rules to remember, no rebalancing
- Build out of simple structure: sorted linked lists
- Inserts, deletes, search, predecessor, successor are $O(\log n)$ with high probability
- No rebalancing makes them useful in concurrent programming (e.g. lock-free data structures)

One Linked List

- Start from simplest data structure: (sorted) linked list
- Search cost?
 - $\Theta(n)$
- How can we improve it?

n items

Two Linked List

- Suppose you had *two* sorted linked list
- Each element can appear in one or both lists
- How can you use two lists to improve search cost?

→ 5 | 2

n items

Two Linked List

- Suppose you had two sorted linked list
- Each element can appear in one or both lists
- How can you use two lists to improve search cost?
- Idea: have one "express" linked list, and one "local" linked list

Two Linked List

- How much gap between elements?
- If gap between elements in top list is g, then the number of elements traversed is at most g + n/g
- Optimized by setting $g = \sqrt{n}$. So the total cost is at most $2\sqrt{n}$

K Linked Lists

- Can you extend the previous idea to k linked lists?
- What is the cost of traversing them?
- $k(1 + n^{1/k})$
- Minimized at $k = \Theta(\log n)$
- Cost is $O(\log n(1 + n^{1/\log n})) = O(\log n)$

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Idea: use randomness!

- lnsert(x)
 - New element should certainly be added to the bottommost list
 - Invariant: Bottommost list contains all elements
 - Which other lists should a new item to added to?
 - Insert *x* at level 1 and flip a coin (idea we want half of the elements to go next level, similar to a balanced binary tree)
 - If heads: element gets promoted to next level, and we repeat
 - If tails element stays put at current level and we are done.

- Thus, on average
 - 1/2 of the elements go up 1 level
 - 1/4 of the elements go up 2 levels
 - 1/8 go up to 3 levels
 - Etc.
- Search(x):

 - right

• Start at top list, go right just before value gets > target

• Go down and repeat until element is found or hit bottom

- Search(x):
 - Start at top list, go right just before value gets > target
 - Go down and repeat until element is found or hit bottom

– **Example:** Search for 72

- * Level 1: 14 too small, 79 too big; go down 14 * Level 2: 14 too small, 50 too small, 79 too big; go down 50 * Level 3: 50 too small, 66 too small, 79 too big; go down 66

- * Level 4: 66 too small, 72 spot on

Skip List Analysis

- Let us first define the height of a skip list formally.
- Let L_k be the set of all items in level $k \ge 1$.
- Height of an element. $\ell(x) = \max\{k \mid x \in L_k\}$
- Height of a skip list. $h(L) = \max\{\ell(x) \mid x \in L_0\}$

Skip List Expected Analysis

- Expected height of a node:
 - $E[\ell(x)] = 1 + \frac{1}{2} \cdot 0 + \frac{1}{2}(1 + E[\ell(x)])$
 - $E[\ell(x)] = 2$
- Worst-case height? $h(L) = \max\{\ell(x) \mid x \in L\}$

Skip List Analysis

- high probability.
- is, $\leq 1/n^c$ where the constant $c \geq 1$
- to level 1?
 - · 1/2

• **Claim.** A skip list with n elements has height $O(\log n)$ levels with

• Recall. (Informally) An event happens with high probability if the probability that it does not happen is polynomially small in n, that

• (More formally) Skip list of size n has $O(\log n)$ levels with high probability if the probability that it has more than $d \log n$ levels is at most $1/n^c$ where the constants c, d usually depend on each other

• **Proof idea.** What is the probability that an element gets promoted

Skip List Analysis

- high probability.
- . $\Pr[\ell(x) = k] = \frac{1}{2^k}$ $\Pr[\ell(x) > k] = \sum_{k=1}^{\infty} \Pr[\ell(x) = k]$ *k*+1
- $\Pr[h(L) > k] = \Pr[\bigcup_{x \in L} \ell(x)]$
- $\Pr[h(L) > c \log n] \le \frac{1}{n^{c-1}}$
- Thus, height of skip is $O(\log n)$ with high probability

• **Claim.** A skip list with *n* elements has height $O(\log n)$ levels with

• **Proof.** For any $x \in L$, $k \ge 1$, the probability that height of x is k

$$= i] = \sum_{i=k+1}^{\infty} \frac{1}{2^{i}} = \frac{1}{2^{k}}$$
$$> k] \le \sum_{x \in L} \Pr[\ell(x) > k] = \frac{n}{2^{k}}$$

Union bound

[pick any c > 2 for w.h.p.]

Skip List Search Cost

- **Claim.** Search cost in a skip list is $O(\log n)$ with high probability
- **Proof.**
- Idea think of the search path "backwards"
- Starting at the target element
- Going left or up until you reach root or sentinel node $(-\infty)$

- Backwards search path, when do go up versus left?
- If node wasn't promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top
- How many consecutive tails in a row? (left moves on a level)
 - Same analysis as the height! $O(\log n)$
 - $O(\log^2 n)$ length overall—but I claimed $O(\log n)$ earlier

Skip List Search Cost

- Thus, number of "up" moves is at most $c \log n$ with high probability
- Search path is a sequence of *HHHTTTHHTT*...
- Search cost:
 - heads with high probability?

Skip List Search Cost

• We know height is $O(\log n)$ with high probability; say it is $c \log n$

• How many times do we need to flip a coin to get $c \log n$

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$
- Note. Constant in $\Theta(\log n)$ will depend on c
- **Proof.** •
 - Say we flip $10c \log n$ coins
 - When are there at least $c \log n$ heads?
 - Pr[exactly $c \log n$ heads] $= \left(\frac{10c\log n}{c\log n}\right) \cdot \left(\frac{1}{2}\right)^{c\log n} \cdot \left(\frac{1}{2}\right)^{9c}$

Coin Flipping

```
• Pr[at most c \log n heads] \leq \left( \frac{10c \log n}{c \log n} \right) \cdot \left( \frac{1}{2} \right)^9
```

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1 - 1/n^c$
- Proof.
 - Pr[at most $c \log n$ heads] ≤

 $d = 9 - \log(10e) \rightarrow \infty$, independent of c

Coin Flipping

$$\leq \left(\frac{e \cdot 10c \log n}{c \log n}\right)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}$$
$$= (10e)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}$$
$$= 2^{\log(10e) \cdot c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}$$
$$= 2^{(\log(10e) - 9) \cdot c \log n} = 2^{-d \log n}$$
$$= 1/n^d$$

• If we instead look at probability of at most $d'c \log n$ heads, as $d' \to \infty$,

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules
- Just flip coins while inserting each new element to decide what lists it goes in

Skip Lists

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/teaching/</u> <u>algorithms/book/Algorithms-JeffE.pdf</u>)
 - MIT course notes, 6.042/18.062J Mathematics for Computer Science April 26, 2005, Devadas and Lehman