Cuckoo Hashing and Skip Lists

Admin

- Assignment 9 Thursday
- You can take the final at any time from Sat Dec 12- Sun Dec 20
- Distribution not yet clear.
- Any questions?

Problem 4 Hint

- Just to get a head start since we've only seen a couple approximation algorithms

- Maximum matching: largest possible set of edges such that each vertex is adjacent to at most one edge
- How does the number of edges in a maximum matching (each vertex is adjacent to only one edge) compare to the size of the optimal vertex cover?
- How does the number of edges in a maximum matching compare to the size of the output of the algorithm?

Back to Linear Probing

Union Bound

- Upper bound on the probability that two events happen
- Remember: events are a set of outcomes. So for any events A, B :
- $\operatorname{Pr}[A$ or $B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A$ and $B]$
- Probabilities are nonnegative. So:
- $\operatorname{Pr}[A$ or $B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
- Union bound!

Linear Probing: w.h.p. Analysis

- All operations are $O(\log n)$ w.h.p.

- Here's a sketch of why this is the case:
- What is the probability that, given that this slot is empty, the next $8 \log n$ slots are full?
- Must have exactly $8 \log n$ elements hashing to those $8 \log n$ slots
- Probability:
$\binom{n}{8 \log n}\left(\frac{8 \log n}{m}\right)^{8 \log n}\left(1-\frac{8 \log n}{m}\right)^{n-8 \log n} \leq\left(\frac{n e}{8 \log n}\right)^{8 \log n}\left(\frac{8 \log n}{m}\right)^{8 \log n}\left(e^{\frac{-8 \log n}{m}}\right)^{n-8 \log n}$
- $\leq(9 / 10)^{8 \log n} \leq 1 / n^{2}$ so long as $\frac{n}{m} e^{1+(8 \log n) / m-n / m}=\frac{e^{.5+(8 \log n) / m}}{2} \leq 9 / 10$

Linear Probing: w.h.p. Analysis

- The probability that a given slot is before $O(\log n)$ consecutive full slots is $\leq 1 / n^{2}$
- What is the probability that in the entire table, there is any slot is an empty slot before $O(\log n)$ consecutive slots?
- $\operatorname{Pr}\left[P_{1} \vee P_{2} \vee \ldots \vee P_{m}\right]$
- Since $P_{i}=1 / n^{2}$ for all $i, \operatorname{Pr}\left[P_{1} \vee P_{2} \vee \ldots \vee P_{m}\right] \leq m / n^{2}=O(1 / n)$
- So the probability that any insert in the hash table takes more than $\log n$ probes is $O(1 / n)$

Improving the Bounds

- We need randomness in order to hash, but can we get worst-case bounds?
- We saw that we can get $O(1)$ worst-case insert, with $O(1)$ expected lookup
- But lookups are often what we care about more!
- Can we do the reverse? $O(1)$ worst-case lookup, with $O(1)$ expected insert (and $O(\log n)$ insert with high probability)?
- Yes-cuckoo hashing!

Cuckoo Hashing [Pagh, Rodler '01]

- Uses two hash functions, h_{1} and h_{2}, two hash tables
- Each table size n
- Item i is guaranteed to be in $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$

- So we can lookup in $O(1)$
- How can we insert?

$$
h_{1}(\text { Beth })=0, \quad h_{2}(\text { Beth })=1
$$

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Chris

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- What can go wrong?
- This process may not end
- Example: 3 items hash to the same two slots

- What is the probability that we have an insert to two slots, where each item in those slots only hashes to those two slots?

Nays to choose 2
Probability that those items out of the n two items hash to the

Cuckoo Hashing: Insert

- More complicated analysis:
- Cuckoo hashing fails with probability $O\left(1 / n^{2}\right)$
- What happens when we fail?

- Rebuild the whole hash table
- (Expensive worst-case insert operation)

Cuckoo Hashing: Insert

- How long does an insert take on average?
- One idea: each time we go to the other table, what is the probability the slot is empty?
- $1 / 2$. (This analysis isn't 100% right due to some subtle dependencies, but it's the right idea)
- So need two moves to find an empty slot in expectation
- At most $O(\log n)$ with high probability

Skip Lists

Skip Lists: Randomized Search Trees

- Invented around 1990 by Bill Pugh
- Idea: binary search trees are a pain to implement
- Skip lists balance randomly; no rules to remember, no rebalancing
- Build out of simple structure: sorted linked lists
- Inserts, deletes, search, predecessor, successor are $O(\log n)$ with high probability
- No rebalancing makes them useful in concurrent programming (e.g. lock-free data structures)

One Linked List

- Start from simplest data structure: (sorted) linked list
- Search cost?
- $\Theta(n)$
- How can we improve it?

$$
2 \rightarrow 5 \rightarrow 6 \rightarrow 8 \rightarrow 11 \rightarrow 15 \rightarrow 18 \rightarrow 20 \rightarrow 25 \rightarrow 27 \rightarrow 31 \rightarrow 32 \rightarrow 38 \rightarrow 42 \rightarrow 46 \rightarrow 5
$$

n items

Two Linked List

- Suppose you had two sorted linked list
- Each element can appear in one or both lists
- How can you use two lists to improve search cost?

$$
2 \rightarrow 5 \rightarrow 6 \rightarrow 8 \rightarrow 11 \rightarrow 15 \rightarrow 18 \rightarrow 20 \rightarrow 25 \rightarrow 27 \rightarrow 31 \rightarrow 32 \rightarrow 38 \rightarrow 42 \rightarrow 46 \rightarrow 5
$$

n items

Two Linked List

- Suppose you had two sorted linked list
- Each element can appear in one or both lists
- How can you use two lists to improve search cost?
- Idea: have one "express" linked list, and one "local" linked list

Two Linked List

- How much gap between elements?
- If gap between elements in top list is g, then the number of elements traversed is at most $g+n / g$
- Optimized by setting $g=\sqrt{n}$. So the total cost is at most $2 \sqrt{n}$

K Linked Lists

- Can you extend the previous idea to k linked lists?
-What is the cost of traversing them?
- $k\left(1+n^{1 / k}\right)$
- Minimized at $k=\Theta(\log n)$
- Cost is $O\left(\log n\left(1+n^{1 / \log n}\right)\right)=O(\log n)$

Skip List Details

- This is good, but how can we insert?
- Every new element disrupts our spacing
- Idea: use randomness!

Skip List Details

- Insert(x)
- New element should certainly be added to the bottommost list
- Invariant: Bottommost list contains all elements
- Which other lists should a new item to added to?
- Insert x at level 1 and flip a coin (idea we want half of the elements to go next level, similar to a balanced binary tree)
- If heads: element gets promoted to next level, and we repeat
- If tails element stays put at current level and we are done.

Skip List Details

- Thus, on average
- $1 / 2$ of the elements go up 1 level
- $1 / 4$ of the elements go up 2 levels
- $1 / 8$ go up to 3 levels
- Etc.
- Search (x) :
- Start at top list, go right just before value gets $>$ target
- Go down and repeat until element is found or hit bottom right

Skip List Details

- Search (x) :
- Start at top list, go right just before value gets $>$ target
- Go down and repeat until element is found or hit bottom

- Example: Search for 72
* Level 1: 14 too small, 79 too big; go down 14
* Level 2: 14 too small, 50 too small, 79 too big; go down 50
* Level 3: 50 too small, 66 too small, 79 too big; go down 66
* Level 4: 66 too small, 72 spot on

Skip List Analysis

- Let us first define the height of a skip list formally.
- Let L_{k} be the set of all items in level $k \geq 1$.
- Height of an element. $\ell(x)=\max \left\{k \mid x \in L_{k}\right\}$
- Height of a skip list. $h(L)=\max \left\{\ell(x) \mid x \in L_{0}\right\}$

Skip List Expected Analysis

- Expected height of a node:
. $E[\ell(x)]=1+\frac{1}{2} \cdot 0+\frac{1}{2}(1+E[\ell(x)])$
- $E[\ell(x)]=2$
- Worst-case height? $h(L)=\max \{\ell(x) \mid x \in L\}$

Skip List Analysis

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability.
- Recall. (Informally) An event happens with high probability if the probability that it does not happen is polynomially small in n, that is, $\leq 1 / n^{c}$ where the constant $c \geq 1$
- (More formally) Skip list of size n has $O(\log n)$ levels with high probability if the probability that it has more than $d \log n$ levels is at most $1 / n^{c}$ where the constants c, d usually depend on each other
- Proof idea. What is the probability that an element gets promoted to level 1?
- $1 / 2$

Skip List Analysis

- Claim. A skip list with n elements has height $O(\log n)$ levels with high probability.
- Proof. For any $x \in L, k \geq 1$, the probability that height of x is k
. $\operatorname{Pr}[\ell(x)=k]=\frac{1}{2^{k}}$
- $\operatorname{Pr}[\ell(x)>k]=\sum_{k+1}^{\infty} \operatorname{Pr}[\ell(x)=i]=\sum_{i=k+1}^{\infty} \frac{1}{2^{i}}=\frac{1}{2^{k}}$
- $\operatorname{Pr}[h(L)>k]=\operatorname{Pr}\left[\cup_{x \in L} \ell(x)>k\right] \leq \sum_{x \in L} \operatorname{Pr}[\ell(x)>k]=\frac{n}{2^{k}}$
- $\operatorname{Pr}[h(L)>c \log n] \leq \frac{1}{n^{c-1}} \quad$ [pick any $c>2$ for w.h.p.]
- Thus, height of skip is $O(\log n)$ with high probability

Skip List Search Cost

- Claim. Search cost in a skip list is $O(\log n)$ with high probability
- Proof.
- Idea think of the search path "backwards"
- Starting at the target element
- Going left or up until you reach root or sentinel node ($-\infty$)

Skip List Search Cost

- Backwards search path, when do go up versus left?
- If node wasn't promoted (got tails here), then we go [came from] left
- If node was promoted (got heads here), then we go [came from] top
- How many consecutive tails in a row? (left moves on a level)
- Same analysis as the height! $O(\log n)$
- $O\left(\log ^{2} n\right)$ length overall-but I claimed $O(\log n)$ earlier

Skip List Search Cost

- We know height is $O(\log n)$ with high probability; say it is $c \log n$
- Thus, number of "up" moves is at most $c \log n$ with high probability
- Search path is a sequence of $H H H T T T H H T T ~ . ~ . ~ . ~$
- Search cost:
- How many times do we need to flip a coin to get $c \log n$ heads with high probability?

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Note. Constant in $\Theta(\log n)$ will depend on c
- Proof.
- Say we flip $10 c \log n$ coins
- When are there at least $c \log n$ heads?
- $\operatorname{Pr}[$ exactly $c \log n$ heads]

$$
=\binom{10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}
$$

- $\operatorname{Pr}[$ at most $c \log n$ heads $] \leq\binom{ 10 c \log n}{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

Coin Flipping

- Claim. Number of flips until $c \log n$ heads is $\Theta(\log n)$ with high probability, that is, with probability $1-1 / n^{c}$
- Proof.
- Pr[at most $c \log n$ heads $] \leq\left(\frac{e \cdot 10 c \log n}{c \log n}\right)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n}$

$$
\begin{aligned}
& =(10 e)^{c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{\log (10 e) \cdot c \log n} \cdot\left(\frac{1}{2}\right)^{9 c \log n} \\
& =2^{(\log (10 e)-9) \cdot c \log n}=2^{-d \log n} \\
& =1 / n^{d}
\end{aligned}
$$

- If we instead look at probability of at most $d^{\prime} c \log n$ heads, as $d^{\prime} \rightarrow \infty$, $d=9-\log (10 e) \rightarrow \infty$, independent of c

Skip Lists

- Using $O(\log n)$ linked lists, achieve same performance as binary search tree
- No stored information about balance, no tricky balancing rules
- Just flip coins while inserting each new element to decide what lists it goes in

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- MIT course notes, 6.042/18.062J Mathematics for Computer Science April 26, 2005, Devadas and Lehman

