
Hashing



• Welcome back 

• Assignment 9 is out; intended to be done between Monday and Thursday 

• Assignment 10 will be ungraded midterm review 

• I think Zoom works now (can raise your physical hand, or your Zoom 
hand, to ask questions) 

• Any questions?

Admin



• What a hash function/hash table is from an 
algorithmic point of view 

• A little bit about good hash functions 

• Three kinds of hash table: 
• Chaining 
• Linear probing 
• Cuckoo Hashing

Today



• Array of size  that can store up to  items 

• Often have  or  

•  expected operations: 
• Insert a new item 
• Look up an item 
• Delete an item (we won’t discuss) 

• Key: hash function that maps each item to a slot

m n
m = 2n m = 1.5n

O(1)

Hash table



• Hash function , array  

• Item  is stored in  
• Let’s assume that there is only one item that 

hashes to each slot.  Then, we’re done:  time 
insert, lookup, delete

h A
i A[h(i)]

O(1)

Hash table

Amir


Beth


Chris



• Hash function , array  

• Item  is stored in  
• Let’s assume that there is only one item that 

hashes to each slot.  Then, we’re done:  time 
insert, lookup, delete

h A
i A[h(i)]

O(1)

Hash table

Amir


Beth


Chris

Amir

h(Amir) = 3



• Hash function , array  

• Item  is stored in  
• Let’s assume that there is only one item that 

hashes to each slot.  Then, we’re done:  time 
insert, lookup, delete

h A
i A[h(i)]

O(1)

Hash table

Amir


Beth


Chris

Beth Amir

h(Beth) = 0



• Hash function , array  

• Item  is stored in  
• Let’s assume that there is only one item that 

hashes to each slot.  Then, we’re done:  time 
insert, lookup, delete

h A
i A[h(i)]

O(1)

Hash table

Amir


Beth


Chris

Beth Amir Chris

h(Chris) = 4



• Goal: for any set of items, the hash function maps 
the items to different slots 

• How can we guarantee this? 
• Idea: use randomness

Hash function

Beth Amir Chris



• Select a hash function from a random family 
• Classic example: 

•  

•  and  are chosen at random; selecting them 
determines the exact hash function 

•  is a large prime 

• For any items :  

• By choosing a random hash function, we can guarantee 
that any two items probably don’t collide

h(i) = (ai + b) mod p mod m
a b

p

i1, i2 Pr
a,b

[h(i1) = h(i2)] = 1/m

Hash function: theory versus practice

Beth Amir Chris



• Some hash functions use a seed; same idea 
• Our hash table performance guarantees were in 

expectation 
• Our expectation is over the random choice of 

hash function 

• Hashing: data is worst-case, hash function is 
random!

Hash function: theory versus practice



• Sometimes people use hashes that aren’t random 
(Java and python hashes aren’t random) 

• That only works if your data is “spread out” — 
there are many datasets on which Java hashing 
does poorly 

• In fact, for integers of  bits, Java uses ≤ 32
h(i) = i

Hash function: theory versus practice



• In this class we will assume hash function is ideal: 

• For all ,  
• The hashes of all items are independent: 

 

• Good hash functions do behave this way in 
practice 

• Lots of theoretical work about weaker 
assumptions on the hash functions

i, k Pr(h(i) = k) = 1/m

Pr(h(i) = k |h(i2) = k2, h(i3) = k3, …) = 1/m

Hash function: theory versus practice

Dahlgaard et al. 2017



Hash Tables and 
Performance



• The only problem is what to do when multiple 
items happen to share the same hash 

• What can we do about that? 
• Assuming our hash functions are ideal, what is the 

resulting performance?

Goal



• Store a linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list

Chaining

Amir


Beth


Chris


Nir

Amir Chris

h(Nir) = 4

Beth



• Store a linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list

Chaining

Amir


Beth


Chris


Nir

Amir

Chris

h(Nir) = 4

Beth Nir



• Store a linked list at each array entry 
• When an item hashes to a slot, prepend it to the 

linked list 

• How can we insert? 

• How can we lookup? 

• How much time does insert/lookup take?

Chaining
 Amir

Chris

h(Nir) = 4

Beth Nir



• What is the expected lookup time? 
• You’ll do on Assignment 9! 

• That’s just average.  How long can the chains get? 

• Let’s show:  with high 
probability, even if  

• (That is to say, with probability  )

O(log n/log log n)
m = n

≥ 1 − 1/n3

Chaining: Analysis
 Amir

Chris

h(Nir) = 4

Beth Nir



• What is the probability that at least  items hash to 
a given slot? 

• Pick  items; each must hash to this slot 

•

k

k

(n
k) ( 1

n )
k

≤ ( en
k )

k

( 1
n )

k

= ( e
k )

k

Chaining: W.h.p.  Analysis
 Amir

Chris

h(Nir) = 4

Beth Nir



• Substituting ,  

• Probability that the bin has at least  balls is at 
most: 

•  

•  

• Can extend to higher powers of  by increasing  by a 
constant factor

k = 4 ln n/ln ln n
4 ln n/ln ln n

( e ln ln n
4 ln n )

4 ln n/ln ln n

≤ e
4 ln n
ln ln n ln e ln ln n

4 ln n ≤ e
4 ln n
ln ln n (ln ln ln n−ln ln n) ≤

≤ eln n−4 ln n = e−3 ln n = 1/n3

1/n k

Chaining: W.h.p.  Analysis
 Amir

Chris

h(Nir) = 4

Beth Nir



• Let’s say I store the first element of the chain in the 
table itself.  Then I don’t need a linked list for chains of 
length 1.  How many chains of length 1 will I have in 
expectation? 

• Random variable ,  
otherwise 

• By linearity of expectation, we want 

Xi = 1 if slot i has exactly one item 0

n

∑
i=1

Pr [slot i has one item]

Chaining: Some other questions



•  

•   

•  

• So expected number of slots with a chain of length  is 

Pr [slot i has one item]

= (n
1) ( 1

n ) (1 −
1
n )

n−1

= (1 −
1
n )

n−1

≈ 1/e

1
n/e

Chaining: Some other questions



• No linked lists; just the table 

• If there is already an item in , check 
, then , and so on

A[h(i)]
A[h(i) + 1] A[i + 2]

Linear Probing

Beth Nir Amir Chris

h(Nir) = 0



• No linked lists; just the table 

• If there is already an item in , check 
, then , and so on 

• How can we insert? 
• How can we lookup? 
• How much time does insert/lookup take?

A[h(i)]
A[h(i) + 1] A[i + 2]

Linear Probing

Beth Nir Amir Chris Elmer

h(Elmer) = 0



• Calculations are a bit harder because inserts depend 
on each other 

• Larger clusters are more likely to be hashed to, so their 
size grows 

• Expected lookup time if successful [Knuth]: 

•  

• Expected insert/unsuccessful lookup: 

•

O (1 + 1/(1 − n/m))

O (1 + 1/(1 − n/m)2)

Linear Probing Beth Nir Amir Chris Elmer

h(Elmer) = 0



• All operations are  w.h.p. 

• Here’s a sketch of why this is the case: 

• What is the probability that, given that this slot is empty, the next  slots 
are full? 

• Must have exactly  elements hashing to those  slots 
• Probability: 

 

•  so long as 

O(log n)

8 log n

8 log n 8 log n

( n
8 log n) ( 8 log n

m )
8 log n

(1 −
8 log n

m )
n−8 log n

≤ ( ne
8 log n )

8 log n

( 8 log n
m )

8 log n

(e
−8 log n

m )
n−8 log n

≤ (9/10)8 log n ≤ 1/n2 n
m

e1+(8 log n)/m−n/m =
e.5+(8 log n)/m

2
≤ 9/10

Linear Probing: w.h.p. Analysis
Amir Chris



• What are some advantages of chaining? 
• Simple (?) 
• Better w.h.p. performance 

• What are some advantages of linear probing? 
• Space-efficient (?) 
• Better cache efficiency 

• Linear probing is the more common one in practice

Linear Probing vs Chaining?



• We need randomness in order to hash 

• But can we get worst-case bounds? 

• For example, can we get  worst-case lookup, with 
 expected insert (and  insert with high 

probability)? 

• Yes—cuckoo hashing!

O(1)
O(1) O(log n)

Improving the Bounds



• Uses two hash functions,  and , two hash tables 

• Each table size  

• Item  is guaranteed to be in  or  

• So we can lookup in  
• How can we insert?

h1 h2

n
i A[h1(i)] A[h2(i)]

O(1)

Cuckoo Hashing

Beth Nir Amir Chris

h1(Beth) = 0, h2(Beth) = 1



• If  or  is empty, store  
• Otherwise, kick an item out of one of these locations 
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Beth Nir Amir Chris

h1(Elmer) = 0, h2(Elmer) = 0



• If  or  is empty, store  
• Otherwise, kick an item out of one of these locations 
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Amir Chris

Beth

h1(Beth) = 0, h2(Beth) = 1



• If  or  is empty, store  
• Otherwise, kick an item out of one of these locations 
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Amir Beth

h1(Chris) = 2, h2(Chris) = 1

Chris



• If  or  is empty, store  
• Otherwise, kick an item out of one of these locations 
• Reinsert that item using its other hash

A[h1(i)] A[h2(i)] i

Cuckoo Hashing: Insert

Elmer Nir Chris Amir Beth

h1(Chris) = 2, h2(Chris) = 4



• What can go wrong? 
• This process may not end 
• Example: 3 items hash to the same two slots 
• What is the probability that this happens? 

• n (n
3) ( 1

n )
6

= Θ(1/n2)

Cuckoo Hashing: Insert

Elmer

Elmer Nir Chris Amir Beth



• More complicated analysis: 

• Cuckoo hashing fails with probability  
• What happens when we fail? 
• Rebuild the whole hash table 
• (Expensive worst-case insert operation)

O(1/n2)

Cuckoo Hashing: Insert

Elmer

Elmer Nir Chris Amir Beth



• How long does an insert take on average? 
• One idea: each time we go to the other table, what is 

the probability the slot is empty? 

• .  (This analysis isn’t 100% right due to some subtle 
dependencies, but it’s the right idea) 

• So need two moves to find an empty slot in expectation 

• At most  with high probability

1/2

O(log n)

Cuckoo Hashing: Insert



Next class:  
Approximation Algorithms



Acknowledgments
• Some of the material in these slides are taken from 

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf) 

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf) 

• MIT course notes, 6.042/18.062J Mathematics for Computer Science 
April 26, 2005, Devadas and Lehman 

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

