Hashing

Admin

- Welcome back
- Assignment 9 is out; intended to be done between Monday and Thursday
- Assignment 10 will be ungraded midterm review
- I think Zoom works now (can raise your physical hand, or your Zoom hand, to ask questions)
- Any questions?

Today

- What a hash function/hash table is from an algorithmic point of view
- A little bit about good hash functions
- Three kinds of hash table:
- Chaining
- Linear probing
- Cuckoo Hashing

Hash table

- Array of size m that can store up to n items
- Often have $m=2 n$ or $m=1.5 n$
- $O(1)$ expected operations:
- Insert a new item
- Look up an item
- Delete an item (we won't discuss)
- Key: hash function that maps each item to a slot

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- Let's assume that there is only one item that hashes to each slot. Then, we're done: $O(1)$ time insert, lookup, delete

Amir

Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- Let's assume that there is only one item that hashes to each slot. Then, we're done: $O(1)$ time insert, lookup, delete

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- Let's assume that there is only one item that hashes to each slot. Then, we're done: $O(1)$ time insert, lookup, delete

Amir
Beth
Chris

Hash table

- Hash function h, array A
- Item i is stored in $A[h(i)]$
- Let's assume that there is only one item that hashes to each slot. Then, we're done: $O(1)$ time insert, lookup, delete

Amir
Beth
Chris

Hash function

- Goal: for any set of items, the hash function maps the items to different slots
- How can we guarantee this?
- Idea: use randomness

Hash function: theory versus practice

- Select a hash function from a random family
- Classic example:
- $h(i)=(a i+b) \bmod p \bmod m$

- a and b are chosen at random; selecting them determines the exact hash function
- p is a large prime
- For any items $i_{1}, i_{2}: \underset{a, b}{\operatorname{Pr}}\left[h\left(i_{1}\right)=h\left(i_{2}\right)\right]=1 / m$
- By choosing a random hash function, we can guarantee that any two items probably don't collide

Hash function: theory versus practice

- Some hash functions use a seed; same idea
- Our hash table performance guarantees were in expectation
- Our expectation is over the random choice of hash function
- Hashing: data is worst-case, hash function is random!

Hash function: theory versus practice

- Sometimes people use hashes that aren't random (Java and python hashes aren't random)
- That only works if your data is "spread out" there are many datasets on which Java hashing does poorly
- In fact, for integers of ≤ 32 bits, Java uses
$h(i)=i$

Hash function: theory versus practice

- In this class we will assume hash function is ideal:
- For all $i, k, \operatorname{Pr}(h(i)=k)=1 / m$
- The hashes of all items are independent:

$$
\operatorname{Pr}\left(h(i)=k \mid h\left(i_{2}\right)=k_{2}, h\left(i_{3}\right)=k_{3}, \ldots\right)=1 / m
$$

Dahlgaard et al. 2017

- Good hash functions do behave this way in practice
- Lots of theoretical work about weaker assumptions on the hash functions

Hash Tables and Performance

Goal

- The only problem is what to do when multiple items happen to share the same hash
- What can we do about that?
- Assuming our hash functions are ideal, what is the resulting performance?

Chaining

- Store a linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Chaining

- Store a linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

Amir
Beth
Chris
Nir

Chaining

- Store a linked list at each array entry
- When an item hashes to a slot, prepend it to the linked list

- How can we insert?
- How can we lookup?
- How much time does insert/lookup take?

Chaining: Analysis

- What is the expected lookup time?
- You'll do on Assignment 9!
- That's just average. How long can the chains get?

- Let's show: $O(\log n / \log \log n)$ with high probability, even if $m=n$
- (That is to say, with probability $\geq 1-1 / n^{3}$)

Chaining: W.h.p. Analysis

- What is the probability that at least k items hash to a given slot?
- Pick k items; each must hash to this slot
- $\binom{n}{k}\left(\frac{1}{n}\right)^{k} \leq\left(\frac{e n}{k}\right)^{k}\left(\frac{1}{n}\right)^{k}=\left(\frac{e}{k}\right)^{k}$

Chaining: W.h.p. Analysis

- Substituting $k=4 \ln n / \ln \ln n$,

- Probability that the bin has at least $4 \ln n / \ln \ln n$ balls is at most:

- $\left(\frac{e \ln \ln n}{4 \ln n}\right)^{4 \ln n / \ln \ln n} \leq e^{\frac{4 \ln n}{\ln \ln n} \ln \frac{e \ln \ln n}{4 \ln n}} \leq e^{\frac{4 \ln n}{\ln \ln n}(\ln \ln \ln n-\ln \ln n)} \leq$
- $\leq e^{\ln n-4 \ln n}=e^{-3 \ln n}=1 / n^{3}$
- Can extend to higher powers of $1 / n$ by increasing k by a constant factor

Chaining: Some other questions

- Let's say I store the first element of the chain in the table itself. Then I don't need a linked list for chains of length 1. How many chains of length 1 will I have in expectation?
- Random variable $X_{i}=1$ if slot i has exactly one item, 0 otherwise
- By linearity of expectation, we want
$\sum_{i=1}^{n} \operatorname{Pr}[$ slot i has one item]

Chaining: Some other questions

- $\operatorname{Pr}[$ slot i has one item]
. $=\binom{n}{1}\left(\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{n-1}$
. $=\left(1-\frac{1}{n}\right)^{n-1} \approx 1 / e$
- So expected number of slots with a chain of length 1 is n / e

Linear Probing

- No linked lists; just the table
- If there is already an item in $A[h(i)]$, check $A[h(i)+1]$, then $A[i+2]$, and so on

Linear Probing

- No linked lists; just the table
- If there is already an item in $A[h(i)]$, check
$A[h(i)+1]$, then $A[i+2]$, and so on
- How can we insert?
- How can we lookup?
- How much time does insert/lookup take?

Linear Probing

- Calculations are a bit harder because inserts depend

$$
h(\text { Elmer })=0
$$ on each other

- Larger clusters are more likely to be hashed to, so their size grows
- Expected lookup time if successful [Knuth]:
- $O(1+1 /(1-n / m))$
- Expected insert/unsuccessful lookup:
- $O\left(1+1 /(1-n / m)^{2}\right)$

Linear Probing: w.h.p. Analysis

- All operations are $O(\log n)$ w.h.p.

- Here's a sketch of why this is the case:
- What is the probability that, given that this slot is empty, the next $8 \log n$ slots are full?
- Must have exactly $8 \log n$ elements hashing to those $8 \log n$ slots
- Probability:
$\binom{n}{8 \log n}\left(\frac{8 \log n}{m}\right)^{8 \log n}\left(1-\frac{8 \log n}{m}\right)^{n-8 \log n} \leq\left(\frac{n e}{8 \log n}\right)^{8 \log n}\left(\frac{8 \log n}{m}\right)^{8 \log n}\left(e^{\frac{-8 \log n}{m}}\right)^{n-8 \log n}$
- $\leq(9 / 10)^{8 \log n} \leq 1 / n^{2}$ so long as $\frac{n}{m} e^{1+(8 \log n) / m-n / m}=\frac{e^{.5+(8 \log n) / m}}{2} \leq 9 / 10$

Linear Probing vs Chaining?

- What are some advantages of chaining?
- Simple (?)
- Better w.h.p. performance
- What are some advantages of linear probing?
- Space-efficient (?)
- Better cache efficiency
- Linear probing is the more common one in practice

Improving the Bounds

- We need randomness in order to hash
- But can we get worst-case bounds?
- For example, can we get $O(1)$ worst-case lookup, with $O(1)$ expected insert (and $O(\log n)$ insert with high probability)?
- Yes-cuckoo hashing!

Cuckoo Hashing

- Uses two hash functions, h_{1} and h_{2}, two hash tables
- Each table size n
- Item i is guaranteed to be in $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$

- So we can lookup in $O(1)$
- How can we insert?

$$
h_{1}(\text { Beth })=0, \quad h_{2}(\text { Beth })=1
$$

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Chris

Cuckoo Hashing: Insert

- If $A\left[h_{1}(i)\right]$ or $A\left[h_{2}(i)\right]$ is empty, store i
- Otherwise, kick an item out of one of these locations
- Reinsert that item using its other hash

Cuckoo Hashing: Insert

- What can go wrong?
- This process may not end
- Example: 3 items hash to the same two slots

- What is the probability that this happens?
- $n\binom{n}{3}\left(\frac{1}{n}\right)^{6}=\Theta\left(1 / n^{2}\right)$

Elmer	Nir	Chris	Amir	Beth	

Cuckoo Hashing: Insert

- More complicated analysis:
- Cuckoo hashing fails with probability $O\left(1 / n^{2}\right)$
- What happens when we fail?

- Rebuild the whole hash table
- (Expensive worst-case insert operation)

Cuckoo Hashing: Insert

- How long does an insert take on average?
- One idea: each time we go to the other table, what is the probability the slot is empty?
- $1 / 2$. (This analysis isn't 100% right due to some subtle dependencies, but it's the right idea)
- So need two moves to find an empty slot in expectation
- At most $O(\log n)$ with high probability

Next class: Approximation Algorithms

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- MIT course notes, 6.042/18.062J Mathematics for Computer Science April 26, 2005, Devadas and Lehman

