
More Randomized Algorithms



• Analyzed simple probabilistic processes 

• Birthday paradox 

• Pokemon collector problem 

• Random walks 

• Designing and analyzed simple randomized algorithms  

• Karger's min cut 

• Randomized selection 

• Randomized quicksort 

• Today: Use randomization to design approximation 
algorithms for NP complete problems: 

• Max-3-SAT and Max cut 

Randomization So Far



• Next class in a week! 

• Assignment 9 out Friday 

• Any questions?

Admin



• Sometimes it’s hard to get the correct answer to a problem 
using an efficient algorithm 

• Can we give guarantees on the algorithm’s performance, 
even if they fall short of giving the correct answer? 

• Approximation Algorithm: gives an answer with a guarantee 
of the quality of that answer compared to the optimal answer 

• First example:  
• We can’t satisfy all clauses of a 3-SAT instance in polynomial 

time.  If the optimal algorithm satisfies  clauses in the 3SAT 
instance, how many can we satisfy in polynomial time? 

•  

• We’ll use a randomized algorithm to get this bound

k

7k/8

Randomized Approximation Algorithms



Randomized Approximation:   
Max 3-SAT



• Maximum 3-satisfiability.  Given a 3-SAT formula, find a 
truth assignment that satisfies as many clauses as possible.

• Remark.  NP-hard problem.
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• Maximum 3-satisfiability.  Given a 3-SAT formula, find a 
truth assignment that satisfies as many clauses as possible.

• Remark.  NP-hard problem.

• What if we:

• Flip a fair coin for each variable

• If heads, set variable to true 

• If tails, set variable to false

• What is the expected number of clauses satisfied by a 
random assignment?
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• Claim.  Given a 3-SAT formula with  clauses, the expected 
number of clauses satisfied by a random assignment is 

k
7k/8

• Proof. 

Max 3-SAT



• Claim.  Given a 3-SAT formula with  clauses, the expected 
number of clauses satisfied by a random assignment is 

k
7k/8

• Proof. 

• Define indicate random variables  if clause  is 
satisfied, and zero otherwise

Zi = 1 Ci

Max 3-SAT



• Claim.  Given a 3-SAT formula with  clauses, the expected 
number of clauses satisfied by a random assignment is 

k
7k/8

• Proof. 

• Define indicate random variables  if clause  is 
satisfied, and zero otherwise

Zi = 1 Ci

• Let  be random variable equal to the # of clauses satisfiedZ

Max 3-SAT



• Claim.  Given a 3-SAT formula with  clauses, the expected 
number of clauses satisfied by a random assignment is 

k
7k/8

• Proof. 

• Define indicate random variables  if clause  is 
satisfied, and zero otherwise

Zi = 1 Ci

• Let  be random variable equal to the # of clauses satisfiedZ

•
E[Z] = E[

k

∑
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Zi] =
n

∑
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• Claim.  Given a 3-SAT formula with  clauses, the expected 
number of clauses satisfied by a random assignment is 

k
7k/8

• Proof. 

• Define indicate random variables  if clause  is 
satisfied, and zero otherwise

Zi = 1 Ci

• Let  be random variable equal to the # of clauses satisfiedZ

•
E[Z] = E[

k

∑
i=1

Zi] =
n

∑
i=1

E[Zi]

•  =  
 
E[Zi] = Pr[clause Ci is satisfied]

1−Pr[clause Ci is not satisfied]
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• Let  be an arbitrary clause Ci

• When is  not satisfied?Ci

• If each variable in  is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently 

• Probability of this happening is  ( 1
2 )

3

=
1
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• Probability that clause  is not satisfied is thus  Ci
1
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• Expected number of clauses satisfied is thus  E[Z] =
7k
8

• A random variable is at least its expectation some of the time

• Conclusion.  For every instance of 3-SAT, there is a truth 
assignment that satisfies at least a th fraction of clauses.7/8

• This is a non-obvious fact about 3-SAT—the existence of an 
assignment satisfying that many clauses—whose statement 
has nothing to do with the randomization that led us to it

• Widespread principle in combinatorics:

• Probabilistic method.  [Paul Erdös]  Prove the existence 
of a non-obvious property by showing that a random 
construction produces it with positive probability!

Surprising Conclusion



• Can we turn this into an approximation algorithm that is 
guaranteed to return a truth assignment that satisfies at least 

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm
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•
Define  .  Then   p = ∑

j≥7k/8
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• How do we use the expectation to get a lower bound on ?  p
• Rewrite the expectation as:   

  E[Z] =
7
8
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• Thus with probability at least  we succeed in finding an 
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.  

• Max-number of clauses that can be satisfied? 

• k
• There is a randomized algorithm with polynomial running time 

that is th approximation algorithm to MAX 3-SAT7/8
• Fun fact: It is NP hard to approximation MAX 3-SAT with an 

approximation factor , for any  [Håstad 97]7/8 + ε ϵ > 0

(7/8)-Approximation



Randomized Approximation:   
Max Cut



• Global max-cut problem.  Given an undirected graph 
, find a cut  of maximum cardinality (that is, 

max # of edges crossing it).
G = (V, E) (A, B)

Max-Cut



• Global max-cut problem.  Given an undirected graph 
, find a cut  of maximum cardinality (that is, 

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized) 
algorithms for the min-cut variant, as we discussed a couple 
classes ago

Max-Cut



• Global max-cut problem.  Given an undirected graph 
, find a cut  of maximum cardinality (that is, 

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized) 
algorithms for the min-cut variant, as we discussed a couple 
classes ago

• But global max-cut is NP-hard 

Max-Cut



• Global max-cut problem.  Given an undirected graph 
, find a cut  of maximum cardinality (that is, 

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized) 
algorithms for the min-cut variant, as we discussed a couple 
classes ago

• But global max-cut is NP-hard 

• We will design an approximation algorithm for this problem 
using randomization

Max-Cut



• Global max-cut problem.  Given an undirected graph 
, find a cut  of maximum cardinality (that is, 

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized) 
algorithms for the min-cut variant, as we discussed a couple 
classes ago

• But global max-cut is NP-hard 

• We will design an approximation algorithm for this problem 
using randomization

• A 1/2-approximation to max-cut will produce a cut whose size 
is at least  of the optimal (largest cut in the graph)1/2
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• We’re asking to partition the graph into two pieces, 
minimizing edges within each piece

• If we put an edge between incompatible/different/etc. items, 
this is like asking us to partition the vertices into two similar/
compatible groups

• This (and similar) problems are really important in data 
science and machine learning

• It’s a huge pain that this is NP-hard.  But, at least we can 
approximate it!

Motivation
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Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

•  Pr[e crosses the cut] = 1/2

•
 E[X] = ∑

e

1
2

=
m
2

• What is the maximum number of edges that can cross any cut?

• OPT  ≤ m
• Thus, our randomized algorithm has 

an expected approximation ratio at least , as it produces a 
cut 
of size at least  of  in expectation 

1/2

1/2 OPT
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• Thus, our randomized algorithm, in expectation, has an 
approximation ratio  1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:  

• It is NP-hard to find the max-cut, but 

• It is not hard at all (in expectation) to find a cut that is at least 
half the size of the max-cut!

• Can one do better than ?1/2
• Can get  using extremely advanced techniques 

[Goemans, Williamson 95]
≈ .878

• Might be optimal.  Better than  is NP-hard.941
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