More Randomized Algorithms

Randomization So Far

 Analyzed simple probabilistic processes
 Birthday paradox
 Pokemon collector problem
 Random walks
 Designing and analyzed simple randomized algorithms
e Karger's min cut
 Randomized selection

 Randomized quicksort

 Joday: Use randomization to design approximation
algorithms for NP complete problems:

e Max-3-SAT and Max cut

Admin

e Next class in a week!
 Assignment 9 out Friday

 Any questions?

Randomized Approximation Algorithms

e« Sometimes it's hard to get the correct answer to a problem
using an efficient algorithm

 (Can we give guarantees on the algorithm’s performance,
even It they fall short of giving the correct answer?

Approximation Algorithm: gives an answer with a guarantee
of the quality of that answer compared to the optimal answer

First example:

We can’t satisty all clauses of a 3-SAT instance in polynomial
time. If the optimal algorithm satisfies k clauses in the 3SAT

instance, how many can we satisty in polynomial time??
Tk/8

We'll use a randomized algorithm to get this bound

Randomized Approximation:
Max 3-SAT

Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

| —

Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

| —

Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

| —

Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

———

* Flip a fair coin for each variable

Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

———

* Flip a fair coin for each variable

e |f heads, set variable to true

Max 3-SAT

* Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 V.XS Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

* Flip a fair coin for each variable
 |f heads, set variable to true

e |f talls, set variable to false

Max 3-SAT

* Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 V.XS Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

* Flip a fair coin for each variable
 |f heads, set variable to true

e |f talls, set variable to false

Max 3-SAT

* Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 sz Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

* Flip a fair coin for each variable
 |f heads, set variable to true

e |f talls, set variable to false

 What is the expected number of clauses satistied by a
random assignment?

Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

» Define indicate random variables Z; = 1 if clause C; is
satisfied, and zero otherwise

Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

» Define indicate random variables Z; = 1 if clause C; is
satisfied, and zero otherwise

« Let Z be random variable equal to the # of clauses satisfied

Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

» Define indicate random variables Z; = 1 if clause C; is
satisfied, and zero otherwise

« Let Z be random variable equal to the # of clauses satisfied

k n
E[Z] =E[) Z]=) E[Z]
=1 =1

Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

» Define indicate random variables Z; = 1 if clause C; is
satisfied, and zero otherwise

« Let Z be random variable equal to the # of clauses satisfied
k n
E[Z] =E[) Z]=) E[Z]
i=1 i=1

« E[Z] = Pr|[clause C; is satisfied] =

1 —Pr|[clause C; is not satisfied]

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause

« Whenis C; not satisfied?

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?

« If each variable in C; is set so that its literal evaluates to false

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

3
1 1
Probability of this happening is <5> = g

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

3
1 1
Probability of this happening is <5> = g

1
Probability that clause C; is not satisfied is thus —

3

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

3
1 1
Probability of this happening is <5> = g

1
Probability that clause C; is not satisfied is thus —

3

7
E[Z;] = Pr[clause C; is satisfied] = Py

Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

3
1 1
Probability of this happening is <5> = g

1
Probability that clause C; is not satisfied is thus —

3

7
E[Z;] = Pr[clause C; is satisfied] = Py

k
7 Tk
ElZ]=) —=—
~g8 8

Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 8

 Arandom variable is at least its expectation some of the time

Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 3
 Arandom variable is at least its expectation some of the time

 Conclusion. For every instance of 3-SAI, there is a truth
assignment that satisfies at least a 7/8th fraction of clauses.

Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 8

 Arandom variable is at least its expectation some of the

 Conclusion. For every instance of 3-SAI, there is a truth

time

assignment that satisfies at least a 7/8th fraction of clat

SES.

* Thisis a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement

has nothing to do with the randomization that led us to it

Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 8

 Arandom variable is at least its expectation some of the time

 Conclusion. For every instance of 3-SAI, there is a truth

assignment that satisfies at least a 7/8th fraction of clat

SES.

* Thisis a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement

has nothing to do with the randomization that led us to it

 Widespread principle in combinatorics:

Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 3
 Arandom variable is at least its expectation some of the time

 Conclusion. For every instance of 3-SAI, there is a truth
assignment that satisfies at least a 7/8th fraction of clauses.

* This is a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement
has nothing to do with the randomization that led us to it

 Widespread principle in combinatorics:

 Probabilistic method. [Paul Erd6s] Prove the existence
of a non-obvious property by showing that a random
construction produces it with positive probability!

(7/8)-Approximation: Las Vegas

Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial

* Thatis, a Las Vegas style approximation algorithm

(7/8)-Approximation: Las Vegas

e (Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial
* Thatis, a Las Vegas style approximation algorithm

 Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least 7/8th of the clauses.

(7/8)-Approximation: Las Vegas

e (Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial
* Thatis, a Las Vegas style approximation algorithm

 Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least 7/8th of the clauses.

e Suppose we can show that the probability that a random
assignment satisfies at least 7/8th of the clauses is at least p

(7/8)-Approximation: Las Vegas

e (Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial
* Thatis, a Las Vegas style approximation algorithm

 Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least 7/8th of the clauses.

e Suppose we can show that the probability that a random
assignment satisfies at least 7/8th of the clauses is at least p

 Then the expected number of tries we need until success is
1/p

(7/8)-Approximation: Las Vegas

e (Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial
* Thatis, a Las Vegas style approximation algorithm

 Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least 7/8th of the clauses.

e Suppose we can show that the probability that a random
assignment satisfies at least 7/8th of the clauses is at least p

 Then the expected number of tries we need until success is
1/p

« Aslong as p is polynomial, expected running time is polynomial

Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

k
]
Expected number of satisfies clauses E|Z] = Zj - Pj = gk
j=0

Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

k
]
Expected number of satisfies clauses E|Z] = Zj - Pj = gk
j=0

Define p = Z p;. Thenl —p = Z p;
j>T7k/8 j<Tki8

Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

k
]
Expected number of satisfies clauses E|Z] = Zj - Pj = gk
j=0

Define p = Z p;. Thenl —p = Z p;
j>T7k/8 j<Tki8

« How do we use the expectation to get a lower bound on p?

Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

k
]
Expected number of satisfies clauses E|Z] = Zj - Pj = gk
j=0

Define p = Z p;. Thenl —p = Z p;

J>Tk/3 j<Tki8
« How do we use the expectation to get a lower bound on p?
* Rewrite the expectation as:

BZl=—k=Y jop+ X i

i<Tk/S i>Tk/IS

Analyzing the Approximation

. Claim. Probability that a random assignment satisfies at least 7/8
ths of the clauses is at least 1/(8k).

Define p = Z p;. Thenl —p = Z p;
j>Tk/8 j<Tk/8

« How do we use the expectation to get a lower bound on p?

Analyzing the Approximation

. Claim. Probability that a random assignment satisfies at least 7/8
ths of the clauses is at least 1/(8k).

Define p = Z p;. Thenl —p = Z p;
j>Tk/8 j<Tk/8

« How do we use the expectation to get a lower bound on p?

 BZl=k= Y int X

i<TkI8 j>7k/8

Analyzing the Approximation

. Claim. Probability that a random assignment satisfies at least 7/8
ths of the clauses is at least 1/(8k).

Define p = Z p;. Thenl —p = Z p;
J=Tk/3 j<Tk/8

« How do we use the expectation to get a lower bound on p?

 BZl=k= Y int X

<78 i>ThS
<) i1+) kep
i<TkIS i>Tki8

Analyzing the Approximation

. Claim. Probability that a random assignment satisfies at least 7/8
ths of the clauses is at least 1/(8k).

Define p = Z p;. Thenl —p = Z p;
J=Tk/3 j<Tk/8

« How do we use the expectation to get a lower bound on p?

 BZl=k= Y int X

i<Tk/8 i>7k/8
LS Q1+ D kep
i<TkI8 i>Tki8
< k1 1 +k
<% -3 %

. Which givesus p > —
7= %k

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?

. 38k

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?

. 38k

e Conclusion.

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?
. 8k
 Conclusion.

e Max-number of clauses that can be satisfied?

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?
. 8k
 Conclusion.

e Max-number of clauses that can be satisfied?

e k

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

« How many tries before we are succeed in expectation?
. 8k

 Conclusion.

 Max-number of clauses that can be satisfied”
¢ k

 Thereis a randomized algorithm with polynomial running time
that is 7/8th approximation algorithm to MAX 3-SAT

(7/8)-Approximation

« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

. 38k

e Conclusion.

e k

e Thereis arandomized a
that is 7/8th approximat

gorithm with po

How many tries before we are succeed in expectation”

Max-number of clauses that can be satisfied?

ynomial running time

ion algorithm to MAX 3-GAT
Fun fact: It is NP hard to approximation MAX 3-SAT with an

approximation factor 7/8 + €, for any € > 0 [Hastad 97]

Randomized Approximation:
Max Cut

Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

* [nterestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple

Classes ago

Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

* [nterestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple

Classes ago

* But global max-cut is NP-hard

Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

* [nterestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple
classes ago

* But global max-cut is NP-hard

 We will design an approximation algorithm for this problem
using randomization

Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

* [nterestingly: many polynomial-time (some randomized)

algorithms for the min-cut variant, as we discussed a couple
classes ago

* But global max-cut is NP-hard

 We will design an approximation algorithm for this problem
using randomization

A 1/2-approximation to max-cut will produce a cut whose size
is at least 1/2 of the optimal (largest cut in the graph)

Motivation

Motivation

 We're asking to partition the graph into two pieces,
minimizing edges within each piece

Motivation

 We're asking to partition the graph into two pieces,
minimizing edges within each piece

e |f we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

Motivation

 We're asking to partition the graph into two pieces,
minimizing edges within each piece

e |f we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

* This (and similar) problems are really important in data
science and machine learning

Motivation

 We're asking to partition the graph into two pieces,
minimizing edges within each piece

e |f we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

* This (and similar) problems are really important in data
science and machine learning

* [t's a huge pain that this is NP-hard. But, at least we can
approximate it!

A Really Simple Algorithm

* [or each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut

* |fit lands tails, place the node into the other part of the cut

A Really Simple Algorithm

* [or each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

* Question. In expectation, how large of a cut will this algorithm
produce”

A Really Simple Algorithm

* [or each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

* Question. In expectation, how large of a cut will this algorithm
produce”

« Foreach edge e let C, be an indicator random variable where

A Really Simple Algorithm

* [or each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

* Question. In expectation, how large of a cut will this algorithm
produce”

« Foreach edge e let C, be an indicator random variable where

« C,=1 ifedge e crosses the cut

A Really Simple Algorithm

* [or each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

* Question. In expectation, how large of a cut will this algorithm
produce”

« Foreach edge e let C, be an indicator random variable where
« C,=1 ifedge e crosses the cut

« C,= 0 otherwise

A Really Simple Algorithm

For each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

Question. In expectation, how large of a cut will this algorithm
produce”

For each edge e let C, be an indicator random variable where
« C,=1 ifedge e crosses the cut

« C,= 0 otherwise

Then the total number of cross edges X of the cut produces is
given by the sum of the indicator random variables, we want E[X]

A Really Simple Algorithm

For each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

Question. In expectation, how large of a cut will this algorithm
produce”

For each edge e let C, be an indicator random variable where
« C,=1 ifedge e crosses the cut

« C,= 0 otherwise

Then the total number of cross edges X of the cut produces is
given by the sum of the indicator random variables, we want E[X]

_X=)C,

eck

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2
‘ E[X] — Z 5 — E (\\\ //) {\\\\ //
€

 What is the maximum number of edges that can cross any cut?

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

E[X] =E]| 2 C.] = Z E[C,] = 2 Prle crosses the cut]
e Prle crossesthe cut] = 1/2

ElX]=) —=— () [
P ; 2 2 \\\ // N //

 What is the maximum number of edges that can cross any cut?

e OPT<m

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

E[X] =E]| 2 C.] = Z E[C,] = Z Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2

EX]=) ===
. § .
 What is the maximum number of edges that can cross any cut?
e OPT<m

* Thus, our randomized algorithm has
an expected approximation ratio at least 1/2, as it produces a
Ccut
of size at least 1/2 of OPT in expectation

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm
« Running time: O(n)

 Takeaway:

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm
« Running time: O(n)
 Takeaway:

 [tis NP-hard to find the max-cut, but

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm

« Running time: O(n)

 Takeaway:

* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm

« Running time: O(n)

 Takeaway:

* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm

« Running time: O(n)

 Takeaway:

* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

« Can one do better than 1/27?

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm

« Running time: O(n)

 Takeaway:

* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

« Can one do better than 1/27?

« Can get =~ .878 using extremely advanced techniques
[Goemans, Williamson 95]

Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm
« Running time: O(n)
 Takeaway:
* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

« Can one do better than 1/27?

« Can get =~ .878 using extremely advanced techniques
[Goemans, Williamson 95]

« Might be optimal. Better than .941 is NP-hard

Acknowledgments

e Some of the material in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://

www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

 MIT course notes, 6.042/18.062J Mathematics for Computer Science
April 26, 2005, Devadas and Lehman

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

