More Randomized Algorithms



Randomization So Far

 Analyzed simple probabilistic processes
 Birthday paradox
 Pokemon collector problem
 Random walks
 Designing and analyzed simple randomized algorithms
e Karger's min cut
 Randomized selection

 Randomized quicksort

 Joday: Use randomization to design approximation
algorithms for NP complete problems:

e Max-3-SAT and Max cut



Admin

e Next class in a week!
 Assignment 9 out Friday

 Any questions?



Randomized Approximation Algorithms

e« Sometimes it's hard to get the correct answer to a problem
using an efficient algorithm

 (Can we give guarantees on the algorithm’s performance,
even It they fall short of giving the correct answer?

Approximation Algorithm: gives an answer with a guarantee
of the quality of that answer compared to the optimal answer

First example:

We can’t satisty all clauses of a 3-SAT instance in polynomial
time. If the optimal algorithm satisfies k clauses in the 3SAT

instance, how many can we satisty in polynomial time??
Tk/8

We'll use a randomized algorithm to get this bound



Randomized Approximation:
Max 3-SAT



Max 3-SAT

 Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 Vx5 Vx6) A ...

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true
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Max 3-SAT

* Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

« Remark. NP-hard problem.
(_'X3 sz Vx6) A ...

e What if we: A “clause” in 3-SAT consists of 3 variables,
| at least one of which must be true

* Flip a fair coin for each variable
 |f heads, set variable to true

e |f talls, set variable to false

 What is the expected number of clauses satistied by a
random assignment?
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Max 3-SAT

« Claim. Given a 3-SAT formula with k clauses, the expected
number of clauses satisfied by a random assignment is 7k/8

* Proof.

» Define indicate random variables Z; = 1 if clause C; is
satisfied, and zero otherwise

« Let Z be random variable equal to the # of clauses satisfied
k n
E[Z] =E[ ) Z]= ) E[Z]
i=1 i=1

« E[Z] = Pr|[clause C; is satisfied] =

1 —Pr|[clause C; is not satisfied]
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Probability Clause is Not Satisfied

 Let C; be an arbitrary clause
« Whenis C; not satisfied?
« If each variable in C; is set so that its literal evaluates to false

 Each variable’s truth assignment is set independently

3
1 1
Probability of this happening is <5> = g

1
Probability that clause C; is not satisfied is thus —

3

7
E[Z;] = Pr[clause C; is satisfied] = Py

k
7 Tk
ElZ]= ) —=—
~g8 8
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Surprising Conclusion

Expected number of clauses satisfied is thus E[Z] = —

) 3
 Arandom variable is at least its expectation some of the time

 Conclusion. For every instance of 3-SAI, there is a truth
assignment that satisfies at least a 7/8th fraction of clauses.

* This is a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement
has nothing to do with the randomization that led us to it

 Widespread principle in combinatorics:

 Probabilistic method. [Paul Erd6s] Prove the existence
of a non-obvious property by showing that a random
construction produces it with positive probability!
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e (Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least
1 /8th clauses

 But has expected running time that is polynomial
* Thatis, a Las Vegas style approximation algorithm

 Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least 7/8th of the clauses.

e Suppose we can show that the probability that a random
assignment satisfies at least 7/8th of the clauses is at least p

 Then the expected number of tries we need until success is
1/p

« Aslong as p is polynomial, expected running time is polynomial
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Analyzing the Approximation

 Claim. Probability that a random assignment satisfies at least
'1/8th of the clauses is at least 1/(8k).

. Forj=1,2,...,k, let p; denote the probability that a random
assignment satisfies exactly j clauses

k
]
Expected number of satisfies clauses E|Z] = Zj - Pj = gk
j=0

Define p = Z p;. Thenl —p = Z p;

J>Tk/3 j<Tki8
« How do we use the expectation to get a lower bound on p?
* Rewrite the expectation as:

BZl=—k=Y jop+ X i

i<Tk/S i>Tk/IS
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Analyzing the Approximation

. Claim. Probability that a random assignment satisfies at least 7/8
ths of the clauses is at least 1/(8k).

Define p = Z p;. Thenl —p = Z p;
J=Tk/3 j<Tk/8

« How do we use the expectation to get a lower bound on p?

 BZl=k= Y int X

i<Tk/8 i>7k/8
LS Q1+ D kep
i<TkI8 i>Tki8
< k1 1 +k
<% -3 %

. Which givesus p > —
7= %k
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 Max-number of clauses that can be satisfied”
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 Thereis a randomized algorithm with polynomial running time
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« Thus with probability at least 1/(8k) we succeed in finding an
assignment that satisfies at least 7/8th fraction of the clauses

. 38k

e Conclusion.

e k

e Thereis arandomized a
that is 7/8th approximat

gorithm with po

How many tries before we are succeed in expectation”

Max-number of clauses that can be satisfied?

ynomial running time

ion algorithm to MAX 3-GAT
Fun fact: It is NP hard to approximation MAX 3-SAT with an

approximation factor 7/8 + €, for any € > 0 [Hastad 97]
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Max-Cut

 Global max-cut problem. Given an undirected graph
G = (V,E), find acut (A, B) of maximum cardinality (that is,
max # of edges crossing it).

* [nterestingly: many polynomial-time (some randomized)

algorithms for the min-cut variant, as we discussed a couple
classes ago

* But global max-cut is NP-hard

 We will design an approximation algorithm for this problem
using randomization

A 1/2-approximation to max-cut will produce a cut whose size
is at least 1/2 of the optimal (largest cut in the graph)
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Motivation

 We're asking to partition the graph into two pieces,
minimizing edges within each piece

e |f we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

* This (and similar) problems are really important in data
science and machine learning

* [t's a huge pain that this is NP-hard. But, at least we can
approximate it!
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For each vertex, toss a fair coin
* |fitlands heads, place the node into one part of the cut
* |fit lands tails, place the node into the other part of the cut

Question. In expectation, how large of a cut will this algorithm
produce”

For each edge e let C, be an indicator random variable where
« C,=1 ifedge e crosses the cut

« C,= 0 otherwise

Then the total number of cross edges X of the cut produces is
given by the sum of the indicator random variables, we want E[ X ]

_X=)C,

eck



Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]




Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2




Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2




Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

. E[X] = E[Z C.] = ZE[Ce] = 2 Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2
‘ E[X] — Z 5 — E (\\\ //) {\\\\ //
€

 What is the maximum number of edges that can cross any cut?




Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

E[X] =E]| 2 C.] = Z E[C,] = 2 Prle crosses the cut]
e Prle crossesthe cut] = 1/2

ElX]= ) —=— () [
P ; 2 2 \\\ // N //

 What is the maximum number of edges that can cross any cut?

e OPT<m




Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

E[X] =E]| 2 C.] = Z E[C,] = Z Pr|e crosses the cut]

« Pr|e crosses the cut] = 1/2

EX]= ) ===
. § .
 What is the maximum number of edges that can cross any cut?
e OPT<m

* Thus, our randomized algorithm has
an expected approximation ratio at least 1/2, as it produces a
Ccut
of size at least 1/2 of OPT in expectation
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Expected Approximation Ratio

* Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

* Monte-Carlo algorithm
« Running time: O(n)
 Takeaway:
* |tis NP-hard to find the max-cut, but

* |tis not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

« Can one do better than 1/27?

« Can get =~ .878 using extremely advanced techniques
[Goemans, Williamson 95]

« Might be optimal. Better than .941 is NP-hard
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