
More Randomized Algorithms

• Analyzed simple probabilistic processes

• Birthday paradox

• Pokemon collector problem

• Random walks

• Designing and analyzed simple randomized algorithms

• Karger's min cut

• Randomized selection

• Randomized quicksort

• Today: Use randomization to design approximation
algorithms for NP complete problems:

• Max-3-SAT and Max cut

Randomization So Far

• Next class in a week!

• Assignment 9 out Friday

• Any questions?

Admin

• Sometimes it’s hard to get the correct answer to a problem
using an efficient algorithm

• Can we give guarantees on the algorithm’s performance,
even if they fall short of giving the correct answer?

• Approximation Algorithm: gives an answer with a guarantee
of the quality of that answer compared to the optimal answer

• First example:
• We can’t satisfy all clauses of a 3-SAT instance in polynomial

time. If the optimal algorithm satisfies clauses in the 3SAT
instance, how many can we satisfy in polynomial time?

•

• We’ll use a randomized algorithm to get this bound

k

7k/8

Randomized Approximation Algorithms

Randomized Approximation:
Max 3-SAT

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

• Flip a fair coin for each variable

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

• Flip a fair coin for each variable

• If heads, set variable to true

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

• Flip a fair coin for each variable

• If heads, set variable to true

• If tails, set variable to false

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

• Flip a fair coin for each variable

• If heads, set variable to true

• If tails, set variable to false

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Maximum 3-satisfiability. Given a 3-SAT formula, find a
truth assignment that satisfies as many clauses as possible.

• Remark. NP-hard problem.

• What if we:

• Flip a fair coin for each variable

• If heads, set variable to true

• If tails, set variable to false

• What is the expected number of clauses satisfied by a
random assignment?

Max 3-SAT

A “clause” in 3-SAT consists of 3 variables,
at least one of which must be true

(¬x3 ∨ x5 ∨ x6) ∧ …

• Claim. Given a 3-SAT formula with clauses, the expected
number of clauses satisfied by a random assignment is

k
7k/8

• Proof.

Max 3-SAT

• Claim. Given a 3-SAT formula with clauses, the expected
number of clauses satisfied by a random assignment is

k
7k/8

• Proof.

• Define indicate random variables if clause is
satisfied, and zero otherwise

Zi = 1 Ci

Max 3-SAT

• Claim. Given a 3-SAT formula with clauses, the expected
number of clauses satisfied by a random assignment is

k
7k/8

• Proof.

• Define indicate random variables if clause is
satisfied, and zero otherwise

Zi = 1 Ci

• Let be random variable equal to the # of clauses satisfiedZ

Max 3-SAT

• Claim. Given a 3-SAT formula with clauses, the expected
number of clauses satisfied by a random assignment is

k
7k/8

• Proof.

• Define indicate random variables if clause is
satisfied, and zero otherwise

Zi = 1 Ci

• Let be random variable equal to the # of clauses satisfiedZ

•
E[Z] = E[

k

∑
i=1

Zi] =
n

∑
i=1

E[Zi]

Max 3-SAT

• Claim. Given a 3-SAT formula with clauses, the expected
number of clauses satisfied by a random assignment is

k
7k/8

• Proof.

• Define indicate random variables if clause is
satisfied, and zero otherwise

Zi = 1 Ci

• Let be random variable equal to the # of clauses satisfiedZ

•
E[Z] = E[

k

∑
i=1

Zi] =
n

∑
i=1

E[Zi]

• =

E[Zi] = Pr[clause Ci is satisfied]

1−Pr[clause Ci is not satisfied]

Max 3-SAT

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently

• Probability of this happening is (1
2)

3

=
1
8

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently

• Probability of this happening is (1
2)

3

=
1
8

• Probability that clause is not satisfied is thus Ci
1
8

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently

• Probability of this happening is (1
2)

3

=
1
8

• Probability that clause is not satisfied is thus Ci
1
8

• E[Zi] = Pr[clause Ci is satisfied] =
7
8

Probability Clause is Not Satisfied

• Let be an arbitrary clause Ci

• When is not satisfied?Ci

• If each variable in is set so that its literal evaluates to false Ci

• Each variable’s truth assignment is set independently

• Probability of this happening is (1
2)

3

=
1
8

• Probability that clause is not satisfied is thus Ci
1
8

• E[Zi] = Pr[clause Ci is satisfied] =
7
8

•
 E[Z] =

k

∑
i=1

7
8

=
7k
8

Probability Clause is Not Satisfied

• Expected number of clauses satisfied is thus E[Z] =
7k
8

• A random variable is at least its expectation some of the time

Surprising Conclusion

• Expected number of clauses satisfied is thus E[Z] =
7k
8

• A random variable is at least its expectation some of the time

• Conclusion. For every instance of 3-SAT, there is a truth
assignment that satisfies at least a th fraction of clauses.7/8

Surprising Conclusion

• Expected number of clauses satisfied is thus E[Z] =
7k
8

• A random variable is at least its expectation some of the time

• Conclusion. For every instance of 3-SAT, there is a truth
assignment that satisfies at least a th fraction of clauses.7/8

• This is a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement
has nothing to do with the randomization that led us to it

Surprising Conclusion

• Expected number of clauses satisfied is thus E[Z] =
7k
8

• A random variable is at least its expectation some of the time

• Conclusion. For every instance of 3-SAT, there is a truth
assignment that satisfies at least a th fraction of clauses.7/8

• This is a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement
has nothing to do with the randomization that led us to it

• Widespread principle in combinatorics:

Surprising Conclusion

• Expected number of clauses satisfied is thus E[Z] =
7k
8

• A random variable is at least its expectation some of the time

• Conclusion. For every instance of 3-SAT, there is a truth
assignment that satisfies at least a th fraction of clauses.7/8

• This is a non-obvious fact about 3-SAT—the existence of an
assignment satisfying that many clauses—whose statement
has nothing to do with the randomization that led us to it

• Widespread principle in combinatorics:

• Probabilistic method. [Paul Erdös] Prove the existence
of a non-obvious property by showing that a random
construction produces it with positive probability!

Surprising Conclusion

• Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm

(7/8)-Approximation: Las Vegas

• Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm

• Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least th of the clauses.7/8

(7/8)-Approximation: Las Vegas

• Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm

• Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least th of the clauses.7/8

• Suppose we can show that the probability that a random
assignment satisfies at least th of the clauses is at least 7/8 p

(7/8)-Approximation: Las Vegas

• Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm

• Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least th of the clauses.7/8

• Suppose we can show that the probability that a random
assignment satisfies at least th of the clauses is at least 7/8 p

• Then the expected number of tries we need until success is
 1/p

(7/8)-Approximation: Las Vegas

• Can we turn this into an approximation algorithm that is
guaranteed to return a truth assignment that satisfies at least

th clauses7/8
• But has expected running time that is polynomial

• That is, a Las Vegas style approximation algorithm

• Simple and standard trick. Repeat until you get what you are
looking for: that is, randomly generate truth assignments until
one of them satisfies at least th of the clauses.7/8

• Suppose we can show that the probability that a random
assignment satisfies at least th of the clauses is at least 7/8 p

• Then the expected number of tries we need until success is
 1/p

• As long as is polynomial, expected running time is polynomialp

(7/8)-Approximation: Las Vegas

• Claim. Probability that a random assignment satisfies at least
th of the clauses is at least .7/8 1/(8k)

• For , let denote the probability that a random
assignment satisfies exactly clauses

j = 1,2,…, k pj
j

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
th of the clauses is at least .7/8 1/(8k)

• For , let denote the probability that a random
assignment satisfies exactly clauses

j = 1,2,…, k pj
j

•
Expected number of satisfies clauses E[Z] =

k

∑
j=0

j ⋅ pj =
7
8

k

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
th of the clauses is at least .7/8 1/(8k)

• For , let denote the probability that a random
assignment satisfies exactly clauses

j = 1,2,…, k pj
j

•
Expected number of satisfies clauses E[Z] =

k

∑
j=0

j ⋅ pj =
7
8

k

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
th of the clauses is at least .7/8 1/(8k)

• For , let denote the probability that a random
assignment satisfies exactly clauses

j = 1,2,…, k pj
j

•
Expected number of satisfies clauses E[Z] =

k

∑
j=0

j ⋅ pj =
7
8

k

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
th of the clauses is at least .7/8 1/(8k)

• For , let denote the probability that a random
assignment satisfies exactly clauses

j = 1,2,…, k pj
j

•
Expected number of satisfies clauses E[Z] =

k

∑
j=0

j ⋅ pj =
7
8

k

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p
• Rewrite the expectation as:

 E[Z] =
7
8

k = ∑
j<7k/8

j ⋅ pj + ∑
j≥7k/8

j ⋅ pj

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
ths of the clauses is at least .

7/8
1/(8k)

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
ths of the clauses is at least .

7/8
1/(8k)

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p

•
 E[Z] =

7
8

k = ∑
j<7k/8

j ⋅ pj + ∑
j≥7k/8

j ⋅ pj

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
ths of the clauses is at least .

7/8
1/(8k)

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p

•
 E[Z] =

7
8

k = ∑
j<7k/8

j ⋅ pj + ∑
j≥7k/8

j ⋅ pj

•

≤ ∑
j<7k/8

j ⋅ 1 + ∑
j≥7k/8

k ⋅ pj

≤ (7k
8

−
1
8) ⋅ 1 + kp

Analyzing the Approximation

• Claim. Probability that a random assignment satisfies at least
ths of the clauses is at least .

7/8
1/(8k)

•
Define . Then p = ∑

j≥7k/8

pj 1 − p = ∑
j<7k/8

pj

• How do we use the expectation to get a lower bound on ? p

•
 E[Z] =

7
8

k = ∑
j<7k/8

j ⋅ pj + ∑
j≥7k/8

j ⋅ pj

•

≤ ∑
j<7k/8

j ⋅ 1 + ∑
j≥7k/8

k ⋅ pj

≤ (7k
8

−
1
8) ⋅ 1 + kp

• Which gives us p ≥
1
8k

Analyzing the Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.

• Max-number of clauses that can be satisfied?

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.

• Max-number of clauses that can be satisfied?

• k

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.

• Max-number of clauses that can be satisfied?

• k
• There is a randomized algorithm with polynomial running time

that is th approximation algorithm to MAX 3-SAT7/8

(7/8)-Approximation

• Thus with probability at least we succeed in finding an
assignment that satisfies at least th fraction of the clauses

1/(8k)
7/8

• How many tries before we are succeed in expectation?

• 8k
• Conclusion.

• Max-number of clauses that can be satisfied?

• k
• There is a randomized algorithm with polynomial running time

that is th approximation algorithm to MAX 3-SAT7/8
• Fun fact: It is NP hard to approximation MAX 3-SAT with an

approximation factor , for any [Håstad 97]7/8 + ε ϵ > 0

(7/8)-Approximation

Randomized Approximation:
Max Cut

• Global max-cut problem. Given an undirected graph
, find a cut of maximum cardinality (that is,

max # of edges crossing it).
G = (V, E) (A, B)

Max-Cut

• Global max-cut problem. Given an undirected graph
, find a cut of maximum cardinality (that is,

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple
classes ago

Max-Cut

• Global max-cut problem. Given an undirected graph
, find a cut of maximum cardinality (that is,

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple
classes ago

• But global max-cut is NP-hard

Max-Cut

• Global max-cut problem. Given an undirected graph
, find a cut of maximum cardinality (that is,

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple
classes ago

• But global max-cut is NP-hard

• We will design an approximation algorithm for this problem
using randomization

Max-Cut

• Global max-cut problem. Given an undirected graph
, find a cut of maximum cardinality (that is,

max # of edges crossing it).
G = (V, E) (A, B)

• Interestingly: many polynomial-time (some randomized)
algorithms for the min-cut variant, as we discussed a couple
classes ago

• But global max-cut is NP-hard

• We will design an approximation algorithm for this problem
using randomization

• A 1/2-approximation to max-cut will produce a cut whose size
is at least of the optimal (largest cut in the graph)1/2

Max-Cut

Motivation

• We’re asking to partition the graph into two pieces,
minimizing edges within each piece

Motivation

• We’re asking to partition the graph into two pieces,
minimizing edges within each piece

• If we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

Motivation

• We’re asking to partition the graph into two pieces,
minimizing edges within each piece

• If we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

• This (and similar) problems are really important in data
science and machine learning

Motivation

• We’re asking to partition the graph into two pieces,
minimizing edges within each piece

• If we put an edge between incompatible/different/etc. items,
this is like asking us to partition the vertices into two similar/
compatible groups

• This (and similar) problems are really important in data
science and machine learning

• It’s a huge pain that this is NP-hard. But, at least we can
approximate it!

Motivation

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

• For each edge let be an indicator random variable wheree Ce

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

• For each edge let be an indicator random variable wheree Ce

• if edge crosses the cutCe = 1 e

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

• For each edge let be an indicator random variable wheree Ce

• if edge crosses the cutCe = 1 e

• otherwiseCe = 0

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

• For each edge let be an indicator random variable wheree Ce

• if edge crosses the cutCe = 1 e

• otherwiseCe = 0

• Then the total number of cross edges of the cut produces is
given by the sum of the indicator random variables, we want

X
E[X]

A Really Simple Algorithm

• For each vertex, toss a fair coin

• If it lands heads, place the node into one part of the cut

• If it lands tails, place the node into the other part of the cut

• Question. In expectation, how large of a cut will this algorithm
produce?

• For each edge let be an indicator random variable wheree Ce

• if edge crosses the cutCe = 1 e

• otherwiseCe = 0

• Then the total number of cross edges of the cut produces is
given by the sum of the indicator random variables, we want

X
E[X]

•
 X = ∑

e∈E

Ce

A Really Simple Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

• Pr[e crosses the cut] = 1/2

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

• Pr[e crosses the cut] = 1/2

•
 E[X] = ∑

e

1
2

=
m
2

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

• Pr[e crosses the cut] = 1/2

•
 E[X] = ∑

e

1
2

=
m
2

• What is the maximum number of edges that can cross any cut?

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

• Pr[e crosses the cut] = 1/2

•
 E[X] = ∑

e

1
2

=
m
2

• What is the maximum number of edges that can cross any cut?

• OPT ≤ m

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

•
E[X] = E[∑

e

Ce] = ∑
e

E[Ce] = ∑
e

Pr[e crosses the cut]

• Pr[e crosses the cut] = 1/2

•
 E[X] = ∑

e

1
2

=
m
2

• What is the maximum number of edges that can cross any cut?

• OPT ≤ m
• Thus, our randomized algorithm has

an expected approximation ratio at least , as it produces a
cut
of size at least of in expectation

1/2

1/2 OPT

Analyzing the Max-Cut Algorithm

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

• It is not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

• It is not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

• It is not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

• Can one do better than ?1/2

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

• It is not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

• Can one do better than ?1/2
• Can get using extremely advanced techniques

[Goemans, Williamson 95]
≈ .878

Expected Approximation Ratio

• Thus, our randomized algorithm, in expectation, has an
approximation ratio 1/2

• Monte-Carlo algorithm

• Running time: O(n)
• Takeaway:

• It is NP-hard to find the max-cut, but

• It is not hard at all (in expectation) to find a cut that is at least
half the size of the max-cut!

• Can one do better than ?1/2
• Can get using extremely advanced techniques

[Goemans, Williamson 95]
≈ .878

• Might be optimal. Better than is NP-hard.941

Expected Approximation Ratio

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• MIT course notes, 6.042/18.062J Mathematics for Computer Science
April 26, 2005, Devadas and Lehman

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

