More Randomized Algorithms

Randomization So Far

- Analyzed simple probabilistic processes
- Birthday paradox
- Pokemon collector problem
- Random walks
- Designing and analyzed simple randomized algorithms
- Karger's min cut
- Randomized selection
- Randomized quicksort
- Today: Use randomization to design approximation algorithms for NP complete problems:
- Max-3-SAT and Max cut

Admin

- Next class in a week!
- Assignment 9 out Friday
- Any questions?

Randomized Approximation Algorithms

- Sometimes it's hard to get the correct answer to a problem using an efficient algorithm
- Can we give guarantees on the algorithm's performance, even if they fall short of giving the correct answer?
- Approximation Algorithm: gives an answer with a guarantee of the quality of that answer compared to the optimal answer
- First example:
- We can't satisfy all clauses of a 3-SAT instance in polynomial time. If the optimal algorithm satisfies k clauses in the 3SAT instance, how many can we satisfy in polynomial time?
- $7 k / 8$
- We'll use a randomized algorithm to get this bound

Randomized Approximation: Max 3-SAT

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:
- Flip a fair coin for each variable

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:
- Flip a fair coin for each variable
- If heads, set variable to true

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

- Flip a fair coin for each variable
- If heads, set variable to true
- If tails, set variable to false

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:

$$
\left(\neg x_{3} \vee x_{5} \vee x_{6}\right) \wedge \ldots
$$

A "clause" in 3-SAT consists of 3 variables, at least one of which must be true

- Flip a fair coin for each variable
- If heads, set variable to true
- If tails, set variable to false

Max 3-SAT

- Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.
- Remark. NP-hard problem.
- What if we:
- Flip a fair coin for each variable
- If heads, set variable to true
- If tails, set variable to false
- What is the expected number of clauses satisfied by a random assignment?

Max 3-SAT

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$
- Proof

Max 3-SAT

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$
- Proof
- Define indicate random variables $Z_{i}=1$ if clause C_{i} is satisfied, and zero otherwise

Max 3-SAT

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$
- Proof
- Define indicate random variables $Z_{i}=1$ if clause C_{i} is satisfied, and zero otherwise
- Let Z be random variable equal to the \# of clauses satisfied

Max 3-SAT

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$
- Proof
- Define indicate random variables $Z_{i}=1$ if clause C_{i} is satisfied, and zero otherwise
- Let Z be random variable equal to the \# of clauses satisfied
- $E[Z]=E\left[\sum_{i=1}^{k} Z_{i}\right]=\sum_{i=1}^{n} E\left[Z_{i}\right]$

Max 3-SAT

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$
- Proof
- Define indicate random variables $Z_{i}=1$ if clause C_{i} is satisfied, and zero otherwise
- Let Z be random variable equal to the \# of clauses satisfied
- $E[Z]=E\left[\sum_{i=1}^{k} Z_{i}\right]=\sum_{i=1}^{n} E\left[Z_{i}\right]$
- $E\left[Z_{i}\right]=\operatorname{Pr}\left[\right.$ clause C_{i} is satisfied $]=$
$1-\operatorname{Pr}\left[\right.$ clause C_{i} is not satisfied $]$

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false
- Each variable's truth assignment is set independently

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false
- Each variable's truth assignment is set independently
- Probability of this happening is $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false
- Each variable's truth assignment is set independently
- Probability of this happening is $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
- Probability that clause C_{i} is not satisfied is thus $\frac{1}{8}$

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false
- Each variable's truth assignment is set independently
- Probability of this happening is $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
- Probability that clause C_{i} is not satisfied is thus $\frac{1}{8}$
- $E\left[Z_{i}\right]=\operatorname{Pr}\left[\right.$ clause C_{i} is satisfied $]=\frac{7}{8}$

Probability Clause is Not Satisfied

- Let C_{i} be an arbitrary clause
- When is C_{i} not satisfied?
- If each variable in C_{i} is set so that its literal evaluates to false
- Each variable's truth assignment is set independently
- Probability of this happening is $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
- Probability that clause C_{i} is not satisfied is thus $\frac{1}{8}$
- $E\left[Z_{i}\right]=\operatorname{Pr}\left[\right.$ clause C_{i} is satisfied $]=\frac{7}{8}$
. $E[Z]=\sum_{i=1}^{k} \frac{7}{8}=\frac{7 k}{8}$

Surprising Conclusion

- Expected number of clauses satisfied is thus $E[Z]=\frac{7 k}{8}$
- A random variable is at least its expectation some of the time

Surprising Conclusion

- Expected number of clauses satisfied is thus $E[Z]=\frac{7 k}{8}$
- A random variable is at least its expectation some of the time
- Conclusion. For every instance of 3-SAT, there is a truth assignment that satisfies at least a 7/8th fraction of clauses.

Surprising Conclusion

- Expected number of clauses satisfied is thus $E[Z]=\frac{7 k}{8}$
- A random variable is at least its expectation some of the time
- Conclusion. For every instance of 3-SAT, there is a truth assignment that satisfies at least a 7/8th fraction of clauses.
- This is a non-obvious fact about 3-SAT-the existence of an assignment satisfying that many clauses-whose statement has nothing to do with the randomization that led us to it

Surprising Conclusion

- Expected number of clauses satisfied is thus $E[Z]=\frac{7 k}{8}$
- A random variable is at least its expectation some of the time
- Conclusion. For every instance of 3-SAT, there is a truth assignment that satisfies at least a 7/8th fraction of clauses.
- This is a non-obvious fact about 3-SAT-the existence of an assignment satisfying that many clauses-whose statement has nothing to do with the randomization that led us to it
- Widespread principle in combinatorics:

Surprising Conclusion

- Expected number of clauses satisfied is thus $E[Z]=\frac{7 k}{8}$
- A random variable is at least its expectation some of the time
- Conclusion. For every instance of 3-SAT, there is a truth assignment that satisfies at least a 7/8th fraction of clauses.
- This is a non-obvious fact about 3-SAT-the existence of an assignment satisfying that many clauses-whose statement has nothing to do with the randomization that led us to it
- Widespread principle in combinatorics:
- Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

(7/8)-Approximation: Las Vegas

- Can we turn this into an approximation algorithm that is guaranteed to return a truth assignment that satisfies at least 7/8th clauses
- But has expected running time that is polynomial
- That is, a Las Vegas style approximation algorithm

(7/8)-Approximation: Las Vegas

- Can we turn this into an approximation algorithm that is guaranteed to return a truth assignment that satisfies at least 7/8th clauses
- But has expected running time that is polynomial
- That is, a Las Vegas style approximation algorithm
- Simple and standard trick. Repeat until you get what you are looking for: that is, randomly generate truth assignments until one of them satisfies at least 7/8th of the clauses.

(7/8)-Approximation: Las Vegas

- Can we turn this into an approximation algorithm that is guaranteed to return a truth assignment that satisfies at least 7/8th clauses
- But has expected running time that is polynomial
- That is, a Las Vegas style approximation algorithm
- Simple and standard trick. Repeat until you get what you are looking for: that is, randomly generate truth assignments until one of them satisfies at least 7/8th of the clauses.
- Suppose we can show that the probability that a random assignment satisfies at least 7/8th of the clauses is at least p

(7/8)-Approximation: Las Vegas

- Can we turn this into an approximation algorithm that is guaranteed to return a truth assignment that satisfies at least 7/8th clauses
- But has expected running time that is polynomial
- That is, a Las Vegas style approximation algorithm
- Simple and standard trick. Repeat until you get what you are looking for: that is, randomly generate truth assignments until one of them satisfies at least 7/8th of the clauses.
- Suppose we can show that the probability that a random assignment satisfies at least 7/8th of the clauses is at least p
- Then the expected number of tries we need until success is 1/p

(7/8)-Approximation: Las Vegas

- Can we turn this into an approximation algorithm that is guaranteed to return a truth assignment that satisfies at least 7/8th clauses
- But has expected running time that is polynomial
- That is, a Las Vegas style approximation algorithm
- Simple and standard trick. Repeat until you get what you are looking for: that is, randomly generate truth assignments until one of them satisfies at least 7/8th of the clauses.
- Suppose we can show that the probability that a random assignment satisfies at least 7/8th of the clauses is at least p
- Then the expected number of tries we need until success is $1 / p$
- As long as p is polynomial, expected running time is polynomial

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least $7 / 8$ th of the clauses is at least $1 /(8 k)$.
- For $j=1,2, \ldots, k$, let p_{j} denote the probability that a random assignment satisfies exactly j clauses

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least $7 / 8$ th of the clauses is at least $1 /(8 k)$.
- For $j=1,2, \ldots, k$, let p_{j} denote the probability that a random assignment satisfies exactly j clauses
- Expected number of satisfies clauses $E[Z]=\sum_{j=0}^{k} j \cdot p_{j}=\frac{7}{8} k$

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least $7 / 8$ th of the clauses is at least $1 /(8 k)$.
- For $j=1,2, \ldots, k$, let p_{j} denote the probability that a random assignment satisfies exactly j clauses
- Expected number of satisfies clauses $E[Z]=\sum_{j=0}^{k} j \cdot p_{j}=\frac{7}{8} k$
. Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least $7 / 8$ th of the clauses is at least $1 /(8 k)$.
- For $j=1,2, \ldots, k$, let p_{j} denote the probability that a random assignment satisfies exactly j clauses
- Expected number of satisfies clauses $E[Z]=\sum_{j=0}^{k} j \cdot p_{j}=\frac{7}{8} k$
. Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least $7 / 8$ th of the clauses is at least $1 /(8 k)$.
- For $j=1,2, \ldots, k$, let p_{j} denote the probability that a random assignment satisfies exactly j clauses
- Expected number of satisfies clauses $E[Z]=\sum_{j=0}^{k} j \cdot p_{j}=\frac{7}{8} k$
. Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?
- Rewrite the expectation as:

$$
E[Z]=\frac{7}{8} k=\sum_{j<7 k / 8} j \cdot p_{j}+\sum_{j \geq 7 k / 8} j \cdot p_{j}
$$

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least 7/8 ths of the clauses is at least $1 /(8 k)$.
- Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least 7/8 ths of the clauses is at least $1 /(8 k)$.
- Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?
- $E[Z]=\frac{7}{8} k=\sum_{j<7 k / 8} j \cdot p_{j}+\sum_{j \geq 7 k / 8} j \cdot p_{j}$

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least 7/8 ths of the clauses is at least $1 /(8 k)$.
- Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?
- $E[Z]=\frac{7}{8} k=\sum_{j<7 k / 8} j \cdot p_{j}+\sum_{j \geq 7 k / 8} j \cdot p_{j}$
. $\leq \sum_{j<7 k / 8} j \cdot 1+\sum_{j \geq 7 k / 8} k \cdot p_{j}$

$$
\leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \cdot 1+k p
$$

Analyzing the Approximation

- Claim. Probability that a random assignment satisfies at least 7/8 ths of the clauses is at least $1 /(8 k)$.
- Define $p=\sum_{j \geq 7 k / 8} p_{j}$. Then $1-p=\sum_{j<7 k / 8} p_{j}$
- How do we use the expectation to get a lower bound on p ?
- $E[Z]=\frac{7}{8} k=\sum_{j<7 k / 8} j \cdot p_{j}+\sum_{j \geq 7 k / 8} j \cdot p_{j}$
. $\leq \sum_{j<7 k / 8} j \cdot 1+\sum_{j \geq 7 k / 8} k \cdot p_{j}$

$$
\leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \cdot 1+k p
$$

- Which gives us $p \geq \frac{1}{8 k}$

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$
- Conclusion.

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$
- Conclusion.
- Max-number of clauses that can be satisfied?

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$
- Conclusion.
- Max-number of clauses that can be satisfied?
- k

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$
- Conclusion.
- Max-number of clauses that can be satisfied?
- k
- There is a randomized algorithm with polynomial running time that is 7/8th approximation algorithm to MAX 3-SAT

(7/8)-Approximation

- Thus with probability at least $1 /(8 k)$ we succeed in finding an assignment that satisfies at least 7/8th fraction of the clauses
- How many tries before we are succeed in expectation?
- $8 k$
- Conclusion.
- Max-number of clauses that can be satisfied?
- k
- There is a randomized algorithm with polynomial running time that is 7/8th approximation algorithm to MAX 3-SAT
- Fun fact: It is NP hard to approximation MAX 3-SAT with an approximation factor $7 / 8+\varepsilon$, for any $\epsilon>0$ [Håstad 97]

Randomized Approximation: Max Cut

Max-Cut

- Global max-cut problem. Given an undirected graph
$G=(V, E)$, find a cut (A, B) of maximum cardinality (that is, max \# of edges crossing it).

Max-Cut

- Global max-cut problem. Given an undirected graph
$G=(V, E)$, find a cut (A, B) of maximum cardinality (that is, max \# of edges crossing it).
- Interestingly: many polynomial-time (some randomized) algorithms for the min-cut variant, as we discussed a couple classes ago

Max-Cut

- Global max-cut problem. Given an undirected graph
$G=(V, E)$, find a cut (A, B) of maximum cardinality (that is, max \# of edges crossing it).
- Interestingly: many polynomial-time (some randomized) algorithms for the min-cut variant, as we discussed a couple classes ago
- But global max-cut is NP-hard

Max-Cut

- Global max-cut problem. Given an undirected graph
$G=(V, E)$, find a cut (A, B) of maximum cardinality (that is, max \# of edges crossing it).
- Interestingly: many polynomial-time (some randomized) algorithms for the min-cut variant, as we discussed a couple classes ago
- But global max-cut is NP-hard
- We will design an approximation algorithm for this problem using randomization

Max-Cut

- Global max-cut problem. Given an undirected graph
$G=(V, E)$, find a cut (A, B) of maximum cardinality (that is, max \# of edges crossing it).
- Interestingly: many polynomial-time (some randomized) algorithms for the min-cut variant, as we discussed a couple classes ago
- But global max-cut is NP-hard
- We will design an approximation algorithm for this problem using randomization
- A 1/2-approximation to max-cut will produce a cut whose size is at least $1 / 2$ of the optimal (largest cut in the graph)

Motivation

Motivation

- We're asking to partition the graph into two pieces, minimizing edges within each piece

Motivation

- We're asking to partition the graph into two pieces, minimizing edges within each piece
- If we put an edge between incompatible/different/etc. items,
 this is like asking us to partition the vertices into two similar/ compatible groups

Motivation

- We're asking to partition the graph into two pieces, minimizing edges within each piece
- If we put an edge between incompatible/different/etc. items,
 this is like asking us to partition the vertices into two similar/ compatible groups
- This (and similar) problems are really important in data science and machine learning

Motivation

- We're asking to partition the graph into two pieces, minimizing edges within each piece
- If we put an edge between incompatible/different/etc. items, this is like asking us to partition the vertices into two similar/ compatible groups
- This (and similar) problems are really important in data science and machine learning
- It's a huge pain that this is NP-hard. But, at least we can approximate it!

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?
- For each edge e let C_{e} be an indicator random variable where

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?
- For each edge e let C_{e} be an indicator random variable where
- $C_{e}=1$ if edge e crosses the cut

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?
- For each edge e let C_{e} be an indicator random variable where
- $C_{e}=1$ if edge e crosses the cut
- $C_{e}=0$ otherwise

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?
- For each edge e let C_{e} be an indicator random variable where
- $C_{e}=1$ if edge e crosses the cut
- $C_{e}=0$ otherwise
- Then the total number of cross edges X of the cut produces is given by the sum of the indicator random variables, we want $E[X]$

A Really Simple Algorithm

- For each vertex, toss a fair coin
- If it lands heads, place the node into one part of the cut
- If it lands tails, place the node into the other part of the cut
- Question. In expectation, how large of a cut will this algorithm produce?
- For each edge e let C_{e} be an indicator random variable where
- $C_{e}=1$ if edge e crosses the cut
- $C_{e}=0$ otherwise
- Then the total number of cross edges X of the cut produces is given by the sum of the indicator random variables, we want $E[X]$
- $X=\sum_{e \in E} C_{e}$

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$
- $\operatorname{Pr}[e$ crosses the cut $]=1 / 2$

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$
- $\operatorname{Pr}[e$ crosses the cut $]=1 / 2$
. $E[X]=\sum_{e} \frac{1}{2}=\frac{m}{2}$

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$
- $\operatorname{Pr}[e$ crosses the cut $]=1 / 2$
- $E[X]=\sum_{e} \frac{1}{2}=\frac{m}{2}$
- What is the maximum number of edges that can cross any cut?

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$
- $\operatorname{Pr}[e$ crosses the cut $]=1 / 2$
- $E[X]=\sum_{e} \frac{1}{2}=\frac{m}{2}$
- What is the maximum number of edges that can cross any cut?
- OPT $\leq m$

Analyzing the Max-Cut Algorithm

Expected number of edges crossing the cut is then

- $E[X]=E\left[\sum_{e} C_{e}\right]=\sum_{e} E\left[C_{e}\right]=\sum_{e} \operatorname{Pr}[e$ crosses the cut $]$
- $\operatorname{Pr}[e$ crosses the cut $]=1 / 2$
- $E[X]=\sum_{e} \frac{1}{2}=\frac{m}{2}$
- What is the maximum number of edges that can cross any cut?
- OPT $\leq m$
- Thus, our randomized algorithm has
an expected approximation ratio at least $1 / 2$, as it produces a cut
of size at least $1 / 2$ of OPT in expectation

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but
- It is not hard at all (in expectation) to find a cut that is at least half the size of the max-cut!

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but
- It is not hard at all (in expectation) to find a cut that is at least half the size of the max-cut!

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but
- It is not hard at all (in expectation) to find a cut that is at least half the size of the max-cut!
- Can one do better than $1 / 2$?

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but
- It is not hard at all (in expectation) to find a cut that is at least half the size of the max-cut!
- Can one do better than $1 / 2$?
- Can get $\approx .878$ using extremely advanced techniques [Goemans, Williamson 95]

Expected Approximation Ratio

- Thus, our randomized algorithm, in expectation, has an approximation ratio 1/2
- Monte-Carlo algorithm
- Running time: $O(n)$
- Takeaway:
- It is NP-hard to find the max-cut, but
- It is not hard at all (in expectation) to find a cut that is at least half the size of the max-cut!
- Can one do better than $1 / 2$?
- Can get $\approx .878$ using extremely advanced techniques [Goemans, Williamson 95]
- Might be optimal. Better than . 941 is NP-hard

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- MIT course notes, 6.042/18.062J Mathematics for Computer Science April 26, 2005, Devadas and Lehman

