
Min Cut, Quicksort, and
Quickselect

• Lecture at normal time on Monday, same zoom link

• Try to have your camera on when possible

• If I disconnect, please just hang on for a couple minutes; I’ll
probably join again

Admin

• Global min-cut problem.
Given an undirected, unweighted graph , find a cut

 of minimum cardinality (that is, min # of edges crossing it).

• Applications. Network reliability, network design, circuit design, etc.

• Poly-time network-flow solution (by reduction to min cut).

• Replace every undirected edge with and ,
each of capacity 1

• Fix any and compute min cut for every other node

• executions of min cut

• Gives impression that finding global min cut is harder than finding a
min cut, which is not true

• Deceptively simple and efficient randomized algorithm [Karger 1992]

G = (V, E)
(A, B)

s-t

(u, v) u → v v → u

s ∈ V s-t
t ∈ V − {s}

(n − 1) s-t

s-t

Randomized Min Cut

• Uses a primitive called edge contraction

• Contract edge in , denoted

• Replace and by single new super-node

• Preserve edges, updating endpoints of and to
• Keep parallel edges, but delete self-loops

• An edge can be contracted in time, assuming the
graph is represented as an adjacency list

e G G ← G/e
u v w

u v w

O(n)

Karger’s Min Cut

u v w
⇒

contract u-v

a b c

e
f

ca b

f

d

• Algorithm tries to guess the min cut by
randomly contracting edges

• Running time (why?)
• Correctness:

How often, if ever, does it return the min cut?

O(n2)

Karger’s Min Cut

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

• Any cut in the contracted graph is a cut in the original graph

• Let be any cut, if algorithm never contracts
an edge crossing this cut, then it will produce the cut

What can we say about how many edges there are?
If the minimum cut has size/cardinality :

• Each vertex must have degree at least , and thus the graph
must have at least edges

C = (S, V − S)
C

k
k

nk/2

Observations:

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

• Let be any arbitrary min cut of cardinality

• If we pick an edge in uniformly at random, what is the probability of picking an
edge in

•

• Pr(picking an edge in =

• The probability we don’t contract a cut edge in the 1st step

• After the first edge is contracted, the algorithm proceeds recursively (with
independent random choices) on the ()-vertex graph

C k

G
C

m ≥ nk/2

C)
k
m

≤
k

nk/2
=

2
n

≥ 1 −
2
n

n − 1

Karger’s Analysis

• Let denote the probability that the algorithm returns the correct min cut
on an -vertex graph, then

• , with base case

• Expanding the recurrence:

•

• Terms cancel out to get:

P(n)
n

P(n) ≥ (1 −
2
n) ⋅ P(n − 1) P(2) = 1

P(n) ≥
n − 2

n
⋅

n − 3
n − 1

⋅
n − 4
n − 2

⋅
n − 5
n − 3

……
4
6

⋅
3
5

⋅
2
4

⋅
1
3

P(n) ≥
2

n(n − 1)
= (n

2)
−1

Karger’s Analysis

• Thus, a single execution of Karger’s min cut algorithm finds

the min cut with probability at least , which is low

• But, we can amplify our success probability!

• Run the algorithm times (using independent random
choices) and pick the best min-cut among them

• What is probability we don’t find the min cut after
repetitions?

•

1/(n
2)

R

R

(1 − 1/(n
2))

R

Amplifying Success Probability

• If we execute times, the probability of failure is

•

• If we run the algorithm times, we can make the

failure probability polynomially small:

• Karger’s algorithm finds the min-cut with high probability (w.h.p.)

R = (n
2)

(1 − 1/(n
2))

(n
2)

≤
1
e

R = (n
2)c ln n

(1
e)

c ln n

=
1
nc

An algorithm is correct with high probability (w.h.p.) with respect to input

size if it fails with probability at most for any constant .n
1
nc

c > 1

Amplifying Success Probability

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

Example Execution

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

• Thus, Karger’s algorithm finds the min-cut with high probability
(w.h.p.)

• Running time: we perform iterations, each time

• time

• Faster than naive-flow-techniques, nothing to get excited about

• Improves to by guessing cleverly! [Karger-Stein 1996]

• Idea: Improve the guessing algorithm using the observation:

• As the graph shrinks, the probability of contracting an edge in
the minimum cut increases

• At first the probability is very small: but by the time there
are three nodes, we have a chance of screwing up!

Θ(n2 log n) O(n2)

O(n4 log n)

O(n2 log3 n)

2/n
2/3

Karger’s Running Time

• Notice: Karger’s algorithm had one-sided error:

• Might produce a cut that is not min cut

• You can increase the success rate of a “Monte Carlo”
algorithm with one-sided errors by iterating it multiple times
and taking the best solution

• If the probability of success is , then running it
 times gives a high probability of success

• If you're more intelligent about how you iterate the algorithm,
you can often do much better than this

• Next, we’ll see an example of a “Las Vegas” algorithm

• Randomized selection and quick sort

1/f(n)
O(f(n)log n)

Takeaways

Randomized Algorithm II
Randomized Selection

• Problem. Find the th smallest/largest element in an unsorted
array

• Recall our selection algorithm

Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else if : Select

• Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Recall: we called the pivot “good” if it reduced the array size
by at least a constant

• Which would give a recurrence for
some constant

• Expands to a decreasing geometric series

• In the deterministic algorithm, how did we find a good pivot?

• Split array into groups of

• And computed the median of group medians

• The pivot guaranteed that

• Here is a silly idea: What if we pick the pivot uniformly at
random?

• Seems like the pivot is “usually” around the midpoint

• What is the expected running time?

T(n) ≤ T(αn) + O(n)
α < 1

T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot

• Problem. Find the th smallest/largest element in an unsorted array

• Recall our selection algorithm

Select :

If : return

Else:

• Choose a pivot at random; let be the rank of

• Partition(

• If , return

• Else if : Select

• Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p

r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Normally, we’d write a recurrence relation for a recursive
function

• But the array size in later recursive call depends on the
random choice of pivots in earlier calls

• We use a different accounting trick for running time

• Randomized selection makes at most one recursive call each
time:

• Group multiple recursive call in “phases”

• Sum of work done by all calls is equal to the sum of the
work done in all the phases

Analyzing Rand. Selection

• Idea: let a “phase” of the algorithm be the time it takes for the
array size to drop by a constant factor (say)

• If array shrinks by a constant factor in each phase and linear work
done in each phase, what would be the running time?

•

• If we want a th, th split, what range should our pivot be in?

• Middle half of the array (if size array, then pivot in)

• What is the probability of picking such a pivot?

•

• Phase ends as soon as we pick a pivot in the middle half

• Expected # of recursive calls until phase ends?

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases

• Let the algorithm be in phase when the size of the array is

• At least but not greater that

• Expected number of iterations within a phase:

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• Within a phase, the algorithm does work linear in the size of the array in

one iterations and thus,

• Expected running time:

j

n (3
4)

j

n (3
4)

j+1

2

Xj j

X = X0 + X1 + X2…

E[Xj] ≤ 2cn (3
4)

j

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn (3
4)

j

= 2cn∑
j

(3
4)

j

≤ 8cn = O(n)

Expected Running Time

• Deterministic and random both take time

• What’s the advantage of the deterministic algorithm?

• Worst-case guarantee—the random algorithm could be very slow sometimes

• What’s the advantage of the random algorithm?

• Much much simpler

• Better constants

• Which should you use?

• Pretty much always random

• Question to ask yourself: how often is the randomized algorithm going to be
much worse than ?

O(n)

O(n)

Pivot Selection

• Monte Carlo algorithm: run a certain number of times;
algorithm succeeds with some probability

• Las Vegas algorithm: the algorithm always succeeds, but the
running time is probabilistic

Monte Carlo vs Las Vegas

Randomized Algorithm III
Randomized QuickSort

• Recall deterministic Quicksort

• Depending on the choice pivot, could be

• What if we pick the pivot uniformly at random?

• Can get expected running time as

O(n2)

O(n log n)

Randomized Quicksort

Quicksort :

If Sort directly
Else: choose a pivot element

Partition around

Quicksort

Quicksort

(A)
|A | < 3 : (A)

p ← A
A<p, A>p ← p

(A<p)
(A>p)

• Before we analyze quick sort with uniform random pivot

• Consider the following modification

• Pick pivot randomly

• Partition array around

• If is a bad pivot (say,
), we throw it out and

pick another pivot

• Else, we recursively call Quicksort on the partitions

• We know that expected number of trials before we get a good
pivot is and a good pivot gives a split

• This immediately gives us expected running time as

p

p

p
max{ |A<p | , |A>p |} > (3/4) |A |

2 1/4,3/4

O(n log n)

Modified Rand. Quicksort

• Suppose we don’t throw out bad pivots (its wasteful anyway)

• Can we still show the expected running time is the same

• Intuitively bad pivots don’t hurt asymptotically, because
they only occur the time

• We analyze quicksort using another accounting trick

• Only two types of work:

• Work making recursive calls (lower order term, turns out)

• Work partitioning the elements

• How many recursive calls in the worst case?

•

1/2

O(n)

Randomized Quicksort

• We thus need to bound the work partitioning elements

• Partitioning an array of size around a pivot element takes
exactly comparisons

• We won't look at partitions made in each recursive calls,
which depend on the choice of random pivot

• Idea: Account for the total work done by the partition step by
summing up the total number of comparisons made

• Two ways to count total comparisons:

• Look at the size of arrays across recursive calls and sum

• Look at all pairs of elements and count total # of times
they are compared (easier to do in this case)

n p
n − 1

Randomized Quicksort

• There are often multiple ways to determine a randomized algorithm’s cost

• We can split into phases, or count the cost directly. We can calculate each
probability, or use linearity of expectation

• Intrinsically some “cleverness” involved in choosing the way that gets you a clean
answer

• In this class I’m going to try to ask you problems where there’s a clear path to finding
the solution (either it follows directly from the question, or I’ll ask about problems
you’ve seen before)

• That said, here’s a very clever way to calculate Quicksort’s running time

An Aside about Randomized Analysis

• Just for analysis, let denote the sorted version of input
array , that is, is the th smallest element in

• Define random variable as the number of times Quicksort
compares and

• Observation: or , why?

• , only compared when one of them is the
current pivot; pivots are excluded from future recursive
calls

•
Let be the total number of comparisons

made by randomized Quicksort

B
A B[i] i A

Xij
B[i] B[j]

Xij = 0 Xij = 1

B[i] B[j]

T =
n

∑
i=1

n

∑
j=i+1

Xij

Counting Total Comparisons

•
Goal:

•

• When is ? That is, when are and compared?

• Consider a particular recursive call. Let rank of pivot be .

• Case 1. One of them is the pivot: or

• Case 2. Pivot is between them: and

• Case 3. Both less than the pivot:

• Case 4. Both greater than the pivot:

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[j]

p r

r = i r = j

r > i r < j

r > i, j

r < i, j

Expected Running Time

• Case 1. or

• and are compared once and one of them is
excluded from all future calls

• Case 2. and

• and are both compared to the pivot but not to each
other, after which they are in different recursive calls: will never
be compared again

• Case 3. and Case 4.

• and are not compared to each other, they are both in
the same subarray and may be compared in the future

• Takeaway: , are compared for the 1st time when one of
them is chosen as pivot from & never again

r = i r = j

B[i] B[j]

r > i r < j

B[i] B[j]

r > i, j r < i, j

B[i] B[j]

B[i] B[j]
B[i], B[i + 1], …, B[j]

Comparisons for Each Case

• (one of them is picked as pivot from

•

•

Pr[Xij = 1] = Pr
B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

Expected Running Time

• and are compared iff one of them is the first pivot
chosen from the range

•

•

• For fixed , inner sum is

• Thus, expected number of comparisons is:

B[i] B[j]
B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

i
1
2

+
1
3

+
1
4

+ …
1

n − i + 1
≤

n

∑
ℓ=2

1
ℓ

= O(log n)

E[T] = O(n log n + n) = O(n log n)

Expected Running Time

• Las Vegas algorithms like Quicksort and Selection are always
correct but their running time guarantees hold in expectation

• We can actually prove that the number of comparisons made
by Quicksort is with high probability

• This means the the probability that the running time of
quicksort is more than a constant factor away from its
expectation is very small (polynomially small in)

• Called concentration bounds

O(n log n)

n

Quick Sort Summary

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Hamiltonian cycle reduction images from Michael Sipser’s Theory of
Computation Book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

