Min Cut, Quicksort, and Quickselect

Admin

- Lecture at normal time on Monday, same zoom link
- Try to have your camera on when possible
- If I disconnect, please just hang on for a couple minutes; l'll probably join again

Randomized Min Cut

- Global min-cut problem.

Given an undirected, unweighted graph $G=(V, E)$, find a cut
(A, B) of minimum cardinality (that is, min \# of edges crossing it).

- Applications. Network reliability, network design, circuit design, etc.
- Poly-time network-flow solution (by reduction to min s - t cut).
- Replace every undirected edge (u, v) with $u \rightarrow v$ and $v \rightarrow u$, each of capacity 1
- Fix any $s \in V$ and compute min s - t cut for every other node $t \in V-\{s\}$
- ($n-1$) executions of min s - t cut
- Gives impression that finding global min cut is harder than finding a min $s-t$ cut, which is not true
- Deceptively simple and efficient randomized algorithm [Karger 1992]

Karger's Min Cut

- Uses a primitive called edge contraction
- Contract edge e in G, denoted $G \leftarrow G / e$
- Replace u and v by single new super-node w
- Preserve edges, updating endpoints of u and v to w
- Keep parallel edges, but delete self-loops
- An edge can be contracted in $O(n)$ time, assuming the graph is represented as an adjacency list

\longrightarrow
contract $\mathbf{u}-\mathbf{v}$

Karger's Min Cut

- Algorithm tries to guess the min cut by randomly contracting edges
- Running time $O\left(n^{2}\right)$ (why?)
- Correctness:

How often, if ever, does it return the min cut?

```
GuessMinCut(G):
    for }i\leftarrown\mathrm{ downto 2
        pick a random edge e in G
        G\leftarrowG/e
    return the only cut in G
```


Observations:

- Any cut in the contracted graph is a cut in the original graph
- Let $C=(S, V-S)$ be any cut, if algorithm never contracts an edge crossing this cut, then it will produce the cut C

What can we say about how many edges there are?
If the minimum cut has size/cardinality k :

- Each vertex must have degree at least k, and thus the graph must have at least $n k / 2$ edges

Karger's Analysis

- Let C be any arbitrary min cut of cardinality k
- If we pick an edge in G uniformly at random, what is the probability of picking an edge in C
- $m \geq n k / 2$
- $\operatorname{Pr}($ picking an edge in $C)=\frac{k}{m} \leq \frac{k}{n k / 2}=\frac{2}{n}$
- The probability we don't contract a cut edge in the 1 st step $\geq 1-\frac{2}{n}$
- After the first edge is contracted, the algorithm proceeds recursively (with independent random choices) on the ($n-1$)-vertex graph

Karger's Analysis

- Let $P(n)$ denote the probability that the algorithm returns the correct min cut on an n-vertex graph, then
- $P(n) \geq\left(1-\frac{2}{n}\right) \cdot P(n-1)$, with base case $P(2)=1$
- Expanding the recurrence:
. $P(n) \geq \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \ldots \ldots \cdot \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}$
- Terms cancel out to get: $P(n) \geq \frac{2}{n(n-1)}=\binom{n}{2}^{-1}$

Amplifying Success Probability

- Thus, a single execution of Karger's min cut algorithm finds
the min cut with probability at least $1 /\binom{n}{2}$, which is low
- But, we can amplify our success probability!
- Run the algorithm R times (using independent random choices) and pick the best min-cut among them
- What is probability we don't find the min cut after R repetitions?
- $\left(1-1 /\binom{n}{2}\right)^{R}$

Amplifying Success Probability

- If we execute $R=\binom{n}{2}$ times, the probability of failure is
- $\left(1-1 /\binom{n}{2}\right)^{\binom{n}{2}} \leq \frac{1}{e}$
- If we run the algorithm $R=\binom{n}{2} c \ln n$ times, we can make the failure probability polynomially small: $\left(\frac{1}{e}\right)^{c \ln n}=\frac{1}{n^{c}}$
- Karger's algorithm finds the min-cut with high probability (w.h.p.)

An algorithm is correct with high probability (w.h.p.) with respect to input size n if it fails with probability at most $\frac{1}{n^{c}}$ for any constant $c>1$.

Example Execution

trial 1

trial 2
trial 3

man *
trial 5
trial 5
(finds min cut) 0,0
0
0
trial 6

Karger's Running Time

- Thus, Karger's algorithm finds the min-cut with high probability
(w.h.p.)
- Running time: we perform $\Theta\left(n^{2} \log n\right)$ iterations, each $O\left(n^{2}\right)$ time
- $O\left(n^{4} \log n\right)$ time
- Faster than naive-flow-techniques, nothing to get excited about
- Improves to $O\left(n^{2} \log ^{3} n\right)$ by guessing cleverly! [Karger-Stein 1996]
- Idea: Improve the guessing algorithm using the observation:
- As the graph shrinks, the probability of contracting an edge in the minimum cut increases
- At first the probability is very small: $2 / n$ but by the time there are three nodes, we have a $2 / 3$ chance of screwing up!

Takeaways

- Notice: Karger's algorithm had one-sided error:
- Might produce a cut that is not min cut
- You can increase the success rate of a "Monte Carlo" algorithm with one-sided errors by iterating it multiple times and taking the best solution
- If the probability of success is $1 / f(n)$, then running it $O(f(n) \log n)$ times gives a high probability of success
- If you're more intelligent about how you iterate the algorithm, you can often do much better than this
- Next, we'll see an example of a "Las Vegas" algorithm
- Randomized selection and quick sort

Randomized Algorithm II Randomized Selection

Randomized Selection

- Problem. Find the k th smallest/largest element in an unsorted array
- Recall our selection algorithm

Select (A, k)
If $|A|=1$: return $A[1]$
Else:

- Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p
- Else if $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

Selection with a Good Pivot

- Recall: we called the pivot "good" if it reduced the array size by at least a constant
- Which would give a recurrence $T(n) \leq T(\alpha n)+O(n)$ for some constant $\alpha<1$
- Expands to a decreasing geometric series $T(n)=O(n)$
- In the deterministic algorithm, how did we find a good pivot?
- Split array into groups of 5
- And computed the median of group medians
- The pivot guaranteed that $n \rightarrow 7 n / 10$
- Here is a silly idea: What if we pick the pivot uniformly at random?
- Seems like the pivot is "usually" around the midpoint
- What is the expected running time?

Randomized Selection

- Problem. Find the k th smallest/largest element in an unsorted array
- Recall our selection algorithm

Select (A, k) :
If $|A|=1$: return $A[1]$
Else:

- Choose a pivot $p \leftarrow A[1, \ldots, n]$ at random; let r be the rank of p
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p
- Else if $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

Analyzing Rand. Selection

- Normally, we'd write a recurrence relation for a recursive function
- But the array size in later recursive call depends on the random choice of pivots in earlier calls
- We use a different accounting trick for running time
- Randomized selection makes at most one recursive call each time:
- Group multiple recursive call in "phases"
- Sum of work done by all calls is equal to the sum of the work done in all the phases

Analyzing in Phases

- Idea: let a "phase" of the algorithm be the time it takes for the array size to drop by a constant factor (say $n \rightarrow(3 / 4) \cdot n)$
- If array shrinks by a constant factor in each phase and linear work done in each phase, what would be the running time?
- $T(n)=c\left(n+3 n / 4+(3 / 4)^{2} n+\ldots+1\right)=O(n)$
- If we want a $1 / 4$ th, $3 / 4$ th split, what range should our pivot be in?
- Middle half of the array (if n size array, then pivot in $[n / 4,3 n / 4]$)
- What is the probability of picking such a pivot?
- $1 / 2$
- Phase ends as soon as we pick a pivot in the middle half
- Expected \# of recursive calls until phase ends? 2

Expected Running Time

- Let the algorithm be in phase j when the size of the array is
- At least $n\left(\frac{3}{4}\right)^{j}$ but not greater that $n\left(\frac{3}{4}\right)^{j+1}$
- Expected number of iterations within a phase: 2
- Let X_{j} be the expected number of steps spent in phase j
- $X=X_{0}+X_{1}+X_{2} \ldots$ be the total number of steps taken by the algorithm
- Within a phase, the algorithm does work linear in the size of the array in
one iterations and thus, $E\left[X_{j}\right] \leq 2 c n\left(\frac{3}{4}\right)^{j}$
- Expected running time:
$E[X]=\sum_{j} E\left[X_{j}\right] \leq \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j} \leq 8 c n=O(n)$

Pivot Selection

- Deterministic and random both take $O(n)$ time
- What's the advantage of the deterministic algorithm?
- Worst-case guarantee-the random algorithm could be very slow sometimes
- What's the advantage of the random algorithm?
- Much much simpler
- Better constants
- Which should you use?
- Pretty much always random
- Question to ask yourself: how often is the randomized algorithm going to be much worse than $O(n)$?

Monte Carlo vs Las Vegas

- Monte Carlo algorithm: run a certain number of times; algorithm succeeds with some probability
- Las Vegas algorithm: the algorithm always succeeds, but the running time is probabilistic

Randomized Algorithm III Randomized QuickSort

Randomized Quicksort

- Recall deterministic Quicksort
- Depending on the choice pivot, could be $O\left(n^{2}\right)$
- What if we pick the pivot uniformly at random?
- Can get expected running time as $O(n \log n)$

Quicksort(A):
If $|A|<3: \operatorname{Sort}(A)$ directly
Else: choose a pivot element $p \leftarrow A$
$A_{<p}, A_{>p} \leftarrow$ Partition around p
Quicksort $\left(A_{<p}\right)$
Quicksort $\left(A_{>p}\right)$

Modified Rand. Quicksort

- Before we analyze quick sort with uniform random pivot
- Consider the following modification
- Pick pivot p randomly
- Partition array around p
- If p is a bad pivot (say,
$\left.\max \left\{\left|A_{<p}\right|,\left|A_{>p}\right|\right\}>(3 / 4)|A|\right)$, we throw it out and pick another pivot
- Else, we recursively call Quicksort on the partitions
- We know that expected number of trials before we get a good pivot is 2 and a good pivot gives a $1 / 4,3 / 4$ split
- This immediately gives us expected running time as $O(n \log n)$

Randomized Quicksort

- Suppose we don't throw out bad pivots (its wasteful anyway)
- Can we still show the expected running time is the same
- Intuitively bad pivots don't hurt asymptotically, because they only occur $1 / 2$ the time
- We analyze quicksort using another accounting trick
- Only two types of work:
- Work making recursive calls (lower order term, turns out)
- Work partitioning the elements
- How many recursive calls in the worst case?
- $O(n)$

Randomized Quicksort

- We thus need to bound the work partitioning elements
- Partitioning an array of size n around a pivot element p takes exactly $n-1$ comparisons
- We won't look at partitions made in each recursive calls, which depend on the choice of random pivot
- Idea: Account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
- Look at the size of arrays across recursive calls and sum
- Look at all pairs of elements and count total \# of times they are compared (easier to do in this case)

An Aside about Randomized Analysis

- There are often multiple ways to determine a randomized algorithm's cost
- We can split into phases, or count the cost directly. We can calculate each probability, or use linearity of expectation
- Intrinsically some "cleverness" involved in choosing the way that gets you a clean answer
- In this class l'm going to try to ask you problems where there's a clear path to finding the solution (either it follows directly from the question, or l'll ask about problems you've seen before)
- That said, here's a very clever way to calculate Quicksort's running time

Counting Total Comparisons

- Just for analysis, let B denote the sorted version of input array A, that is, $B[i]$ is the i th smallest element in A
- Define random variable $X_{i j}$ as the number of times Quicksort compares $B[i]$ and $B[j]$
- Observation: $X_{i j}=0$ or $X_{i j}=1$, why?
- $B[i], B[j]$ only compared when one of them is the current pivot; pivots are excluded from future recursive calls
- Let $T=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}$ be the total number of comparisons made by randomized Quicksort

Expected Running Time

- Goal: $E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$
- $E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]$
- When is $X_{i j}=1$? That is, when are $B[i]$ and $B[j]$ compared?
- Consider a particular recursive call. Let rank of pivot p be r.
- Case 1. One of them is the pivot: $r=i$ or $r=j$
- Case 2. Pivot is between them: $r>i$ and $r<j$
- Case 3. Both less than the pivot: $r>i, j$
- Case 4. Both greater than the pivot: $r<i, j$

Comparisons for Each Case

- Case 1. $r=i$ or $r=j$
- $B[i]$ and $B[j]$ are compared once and one of them is excluded from all future calls
- Case 2. $r>i$ and $r<j$
- $B[i]$ and $B[j]$ are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again
- Case 3. $r>i, j$ and Case 4. $r<i, j$
- $B[i]$ and $B[j]$ are not compared to each other, they are both in the same subarray and may be compared in the future
- Takeaway: $B[i], B[j]$ are compared for the 1 st time when one of them is chosen as pivot from $B[i], B[i+1], \ldots, B[j] \&$ never again

Expected Running Time

- $\operatorname{Pr}\left[X_{i j}=1\right]=\operatorname{Pr}$ (one of them is picked as pivot from
$B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}$
- $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$

Expected Running Time

- $B[i]$ and $B[j]$ are compared iff one of them is the first pivot
chosen from the range $B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}$
- $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$
- For fixed i, inner sum is
$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n-i+1} \leq \sum_{\ell=2}^{n} \frac{1}{\ell}=O(\log n)$
- Thus, expected number of comparisons is:
$E[T]=O(n \log n+n)=O(n \log n)$

Quick Sort Summary

- Las Vegas algorithms like Quicksort and Selection are always correct but their running time guarantees hold in expectation
- We can actually prove that the number of comparisons made by Quicksort is $O(n \log n)$ with high probability
- This means the the probability that the running time of quicksort is more than a constant factor away from its expectation is very small (polynomially small in n)
- Called concentration bounds

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- Hamiltonian cycle reduction images from Michael Sipser's Theory of Computation Book

