
More Probability:
Recurrences

Admin
• Updated problem 4b to be more to the

point—make sure you have the most recent
version

• Assignment 8 due Friday
• Don’t update your Macs just yet probably

• To entertain your family you have them shuffle deck of cards
and then turn over one card at a time. Before each card is
turned, you predict its identity. You have no psychic abilities or
memory to remember cards

• Your strategy: guess uniformly at random

• How many predictions do you expect to be correct?

• Let denote the r.v. equal to the number of correct predictions
and denote the indicator variable that the th guess is correct

•
Thus, and

•

• Thus,

n

X
Xi i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing: Memoryless

• Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

• Your strategy: guess uniformly at random among cards that
have not been turned over

• Let denote the r.v. equal to the number of correct predictions
and denote the indicator variable that the th guess is correct

•
Thus, and

•

•
Thus,

X
Xi i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

Card Guessing: Memoryfull

• The th harmonic number, denoted is defined as

• Theorem.

• Proof Idea. Upper and lower bound area under the curve

n Hn

Hn =
n

∑
i=1

1
i

Hn = Θ(log n)

Harmonic Numbers

• Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

• Your strategy: guess uniformly at random among cards that
have not been turned over

• Let denote the r.v. equal to the number of correct predictions
and denote the indicator variable that the th guess is correct

•
Thus, and

•

•
Thus,

X
Xi i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

= Θ(log n)

Card Guessing: Memoryfull

Probability and
Recurrences

• Let’s say a sequence random variables is with
probability , and with probability

• (Recall: these are called Bernoulli random variables)

• In expectation, what is the value of the first such that ?

• Number of coin flips until heads

• Number if times I roll a die until I get a 1

• One way to solve it is to just do the sum:

•

X1, X2, … 1
p 0 1 − p

i Xi = 1

(p = 1/2)

(p = 1/6)

∞

∑
i=1

i(1 − p)i−1p

Bernoulli Expectation

∞

∑
i=1

i(1 − p)i−1p =
∞

∑
i=1

i

∑
k=1

(1 − p)i−1p =

∞

∑
k=1

∞

∑
i=k

(1 − p)i−1p =
∞

∑
k=1

p(1 − p)k−1
∞

∑
i=0

(1 − p)i =

∞

∑
k=1

p(1 − p)k−1 1
1 − (1 − p)

=
∞

∑
k=1

(1 − p)k−1 =
∞

∑
k=0

(1 − p)k =
1
p

Bernoulli Expectation (using the sum)

• Let’s say a sequence random variables is with probability ,
and with probability

• In expectation, what is the value of the first such that ?

• Let’s rewrite this recursively. What is ?

FindBernoulli(p):

If

 Return

If

 Return FindBernoulli(p)

X1, X2, … 1 p
0 1 − p

i Xi = 1

E(FindBernoulli(p))

X ← {1 with prob. p
0 with prob. (1 − p)

X = 1

1

X = 0

1+

Bernoulli Expectation

FindBernoulli(p):

If

 Return

If

 Return FindBernoulli(p)

X ← {1 with prob. p
0 with prob. (1 − p)

X = 1

1

X = 0

1+

E(F) = p + (1 − p)(1 + E(F))

E(F) = 1/p

Bernoulli Expectation

• Let be a random variable indicating # flips until heads (with prob)

•

• We can then write

•

•

•

Xp p

E(Xp) =
∞

∑
i=1

i(1 − p)i−1p

E(Xp) =
∞

∑
i=1

i(1 − p)i−1p = p +
∞

∑
i=2

i(1 − p)i−1p = p +
∞

∑
i′ =1

(1 + i′)(1 − p)i′ p

E(Xp) = p + (1 − p)
∞

∑
i′ =1

(1 + i′)(1 − p)i′ −1p = p + (1 − p)E(Xp + 1)

E(Xp) = p + (1 − p)(E(Xp) + 1)

Bernoulli Expectation Formal Recursion
You don’t need to do this
proof every time you use

recursion. But, it can
help if you’re unsure of

correctness

Coupon/Pokemon
Collector Problem

Gotta' Catch 'Em All
• Suppose there are different types of Pokemon cards

• In each trial we purchase a pack that contains a Pokemon
card

• We repeat until we have at least one of each type of card,
how many packs does it take in expectation to collect all?

• Let be the r.v. equal to the number of packs bought until
you first have a card of each type. Goal: compute

• We break into smaller random variables

• Idea: we make progress every time we get a card we don’t
already have

n

X
E[X]

X

Pokemon Collector Problem
• Let denote the "length of the th phase", that is, the number

of packs bought during the th phase (th phase ends as
soon as we see the th distinct card)

•
Thus,

• Each phase can be though of as flipping a biased coin until
we see a head, where seeing a head = getting a new card

Xi i
i i

i

X =
n

∑
1=1

Xi

…
P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn

• is the expected number of coin flips until success (expectation
of a geometric r.v.)

• We know, where is the probability of success/
probability of seeing a heads during a coin flip in the th phase

• Before the th phase starts, we don't have Pokemon

• Each of the Pokemon are equally likely to be in a pack

•

E[Xi]

E[Xi] = 1/pi pi
i

i n − i + 1

n

pi =
n − i + 1

n

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn

Pokemon Collector Problem

• We know, where is the probability of success/
probability of seeing a heads during a coin flip in the th phase

•

•

•

E[Xi] = 1/pi pi
i

pi =
n − i + 1

n
E[Xi] = Expected[number of flips until first heads] = 1/pi

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

n
n − i + 1

=
n

∑
i=1

n
i

= nHn = Θ(n log n)

Pokemon Collector Problem

Random Walks and
Recurrences

• A drunkard stumbles out of a bar. Each second, he either staggers 1
step to the left or staggers 1 step to the right, with equal probability.
His home lies steps to his left, and a canal lies steps to his right.

• Questions. What is the probability that the drunkard arrives safely
at home instead of falling into the canal? What is the expected
duration of his journey, however it ends?

• The drunkard’s meandering path is called a random walk

• Random walks are important as they model various phenomenon:

• In Physics, random walks model gas diffusion

• Google search engine uses random walks through the graph of
web links to determine the relative importance of website

• In finance theory, random walks can serve as a model for the
fluctuation of market prices.

x y

Random Walks

• We have students labelled and a professor
labelled sitting around in a circle

• Initially the professor has a candy bowl

• He withdraws a piece of candy and then passes the bowl
either to the left or right, with equal probability

• Each person who receives the bowl takes a piece of candy
if they do not already have one; then passes it on randomly

• The last person to receive the candy wins the game

• Which player is most likely to win?

• Guess? Seems like and are almost always going to be
eliminated right away. Seems like is most likely to win—
but by how much?

n 1,…, n
0

1 n
n/2

Pass the Candy

0
n

n

n − 1
1

2

n/2

• Suppose the players are arranged in a line
instead and initially has a the candy

• As before, whenever a player gets the bowl they take a
candy and pass it left or right with equal probability

• What is the probability that gets the candy before ?

• Let be the probability that gets the candy before .

• Base case. Suppose , then

• Suppose . In the first step there are two possibilities:
the bowl either moves left to or right to

A, S1, …, Sk, B
S1

A B
Pk A B

k = 1 P1 = 1/2
k > 1

A S2

Simpler Problem

S1

n

…A BS2 Sk

•

• Recurrence. and (Base case)

• Solve it using guess and check, and prove by induction

•

• (Verify this is correct by induction)

Pk =
1
2

⋅ 1 +
1
2

⋅ Pk−1 ⋅ Pk P1 =
1
2

P2 =
1

2 − P1
=

2
3

, P3 =
1

1 − P2
=

3
4

Pk =
k

k + 1

Simpler Problem

S1

n

…A BS2 Sk

New starting configuration

Pr(S1 gets candy before B) = Pk−1

If gets candy, we are back in the
initial configuration and gets the
candy before with probability .

S1
A

B Pk

• Consider player on the right side of the professor. Only way
 can win is the candy travels clockwise all the way around to

player before ever touches it

• Thus, if we cut the circle and arrange on a line as shown,
wins if and only if gets the bowl before

• This fits our previous simpler problem model where we want to
know the probability that gets candy before and

•

• Student wins with probability !

• We can extend this argument to show each student wins with
probability --- we would never have guessed this!

n
n

n − 1 n

n
n − 1 n

B A k = n − 2
Pr(n − 1 gets candy before n) = 1−Pr(n gets candy before n − 1)

= 1 −
n − 2

(n − 2) + 1
=

1
n

n 1/n

1/n

Back to the Candy Game

0

n

…n n − 11 n − 2

 wins only if gets candy before n n − 1 n

0
n

n − 1
1

2

n/2

Randomized Algorithm I:
Karger's Min-Cut

• Global min-cut problem.
Given an undirected, unweighted graph , find a cut

 of minimum cardinality (that is, min # of edges crossing it).

• Applications. Network reliability, network design, circuit design, etc.

• Poly-time network-flow solution (by reduction to min cut).

• Replace every undirected edge with and ,
each of capacity 1

• Fix any and compute min cut for every other node

• executions of min cut

• Gives impression that finding global min cut is harder than finding a
min cut, which is not true

• Deceptively simple and efficient randomized algorithm [Karger 1992]

G = (V, E)
(A, B)

s-t

(u, v) u → v v → u

s ∈ V s-t
t ∈ V − {s}

(n − 1) s-t

s-t

Randomized Min Cut

• Uses a primitive called edge contraction

• Contract edge in , denoted

• Replace and by single new super-node

• Preserve edges, updating endpoints of and to
• Keep parallel edges, but delete self-loops

• An edge can be contracted in time, assuming the
graph is represented as an adjacency list

e G G ← G/e
u v w

u v w

O(n)

Karger’s Min Cut

u v w
⇒

contract u-v

a b c

e
f

ca b

f

d

• Algorithm tries to guess the min cut by
randomly contracting edges

• Running time (why?)
• Correctness:

How often, if ever, does it return the min cut?

O(n2)

Karger’s Min Cut

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

If the minimum cut has size/cardinality

• Each vertex must have degree at least , and thus the graph
must have at least edges

• Any cut in the contracted graph is a cut in the original graph

• Let be any cut, if algorithm never contracts
an edge crossing this cut, then it will produce the cut

k
k

nk/2

C = (S, V − S)
C

Observations:

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

• Let be any arbitrary min cut of cardinality

• If we pick an edge in uniformly at random, what is the
probability of picking an edge in

•

• Pr(picking an edge in =

• The probability we don’t screw up in the 1st step

• After the first edge is contracted, the algorithm proceeds
recursively (with independent random choices) on the
()-vertex graph

C k

G
C

m ≥ nk/2

C)
k
m

≤
k

nk/2
=

2
n

≥ 1 −
2
n

n − 1

Karger’s Analysis

• Let denote the probability that the algorithm returns the
correct min cut on an -vertex graph, then

• , with base case

• Expanding the recurrence:

•

• Terms cancel out to get:

P(n)
n

P(n) ≥ (1 −
2
n) ⋅ P(n − 1) P(2) = 1

P(n) ≥
n − 2

n
⋅

n − 3
n − 1

⋅
n − 4
n − 2

……
2
4

⋅
1
3

P(n) ≥
2

n(n − 1)
= (n

2)
−1

Karger’s Analysis

• Thus, a single execution of Karger’s min cut algorithm finds

the min cut with probability at least , which is low

• But, we can amplify our success probability!

• Run the algorithm times (using independent random
choices) and pick the best min-cut among them

• What is probability we don’t find the min cut after
repetitions?

•

1/(n
2)

R

R

(1 − 1/(n
2))

R

Amplifying Success Probability

• If we execute times, the probability of failure is

•

• If we run the algorithm times, we can make the

failure probability polynomially small:

• Karger’s algorithm finds the min-cut with high probability (w.h.p.)

R = (n
2)

(1 − 1/(n
2))

(n
2)

≤
1
e

R = (n
2)c ln n

(1
e)

c ln n

=
1
nc Useful Inequality: for (1 −

1
x)

x

≤
1
e

x ≥ 1

An algorithm is correct with high probability (w.h.p.) with respect to input

size if it fails with probability at most for any constant .n
1
nc

c > 1

Amplifying Success Probability

trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

Example Execution

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

• Thus, Karger’s algorithm finds the min-cut with high probability
(w.h.p.)

• Running time: we perform iterations, each time

• time

• Faster than naive-flow-techniques, nothing to get excited about

• Improves to by guessing cleverly! [Karger-Stein 1996]

• Idea: Improve the guessing algorithm using the observation:

• As the graph shrinks, the probability of contracting an edge in
the minimum cut increases

• At first the probability is very small: but by the time there
are three nodes, we have a chance of screwing up!

Θ(n2 log n) O(n2)

O(n4 log n)

O(n2 log3 n)

2/n
2/3

Karger’s Running Time

• Notice: Karger’s algorithm had one-sided error:

• Might produce a cut that is not min cut

• You can increase the success rate of a Monte Carlo algorithm
with one-sided errors by iterating it multiple times and taking
the best solution

• If the probability of success is , then running it
 times gives a high probability of success

• If you're more intelligent about how you iterate the algorithm,
you can often do much better than this

• Next, we’ll see an example of a Las Vegas algorithm

• Randomized selection and quick sort

1/f(n)
O(f(n)log n)

Takeaways

Randomized Algorithm II
Randomized Selection

• Problem. Find the th smallest/largest element in an unsorted
array

• Recall our selection algorithm

Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else if : Select

• Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Recall: we called the pivot “good” if it reduced the array size
by at least a constant

• Which would give a recurrence for
some constant

• Expands to a decreasing geometric series

• In the deterministic algorithm, how did we find a good pivot?

• Split array into groups of

• And computed the median of group medians

• The pivot guaranteed that

• Here is a silly idea: What if we pick the pivot uniformly at
random?

T(n) ≤ T(αn) + O(n)
α < 1

T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot

• Normally, we’d write a recurrence relation for a recursive
function

• But the array size in later recursive call depends on the
random choice of pivots in earlier calls

• We use a different accounting trick for running time

• Randomized selection makes at most one recursive call each
time:

• Group multiple recursive call in “phases”

• Sum of work done by all calls is equal to the sum of the
work done in all the phases

Analyzing Rand. Selection

• Idea: let a “phase” of the algorithm be the time it takes for the
array size to drop by a constant factor (say)

• If array shrinks by a constant factor in each phase and linear work
done in each phase, what would be the running time?

•

• If we want a th, th split, what range should our pivot be in?

• Middle half of the array (if size array, then pivot in)

• What is the probability of picking such a pivot?

•

• Phase ends as soon as we pick a pivot in the middle half

• Expected # of recursive calls until phase ends?

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases

• Let the algorithm be in phase when the size of the array is

• At least but not greater that

• Expected number of iterations within a phase:

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• Within a phase, the algorithm does work linear in the size of the array in

one iterations and thus,

• Expected running time:

j

n (3
4)

j

n (3
4)

j+1

2

Xj j

X = X0 + X1 + X2…

E[Xj] ≤ 2cn (3
4)

j

E[X] = ∑
j

E[Xj] ≤ 2cn∑
j

(3
4)

j

≤ 8cn = O(n)

Expected Running Time

Randomized Algorithm III
Randomized QuickSort

• Recall deterministic Quicksort

• Depending on the choice pivot, could be

• What if we pick the pivot uniformly at random?

• Can get expected running time as

O(n2)

O(n log n)

Randomized Quicksort

Quicksort :

If Sort directly
Else: choose a pivot element

Partition around

Quicksort

Quicksort

(A)
|A | < 3 : (A)

p ← A
A<p, A>p ← p

(A<p)
(A>p)

• Before we analyze quick sort with uniform random pivot

• Consider the following modification

• Pick pivot randomly

• Partition array around

• If is a bad pivot (say,
), we throw it our and

pick another pivot

• Else, we recursively call Quicksort on the partitions

• We know that expected number of trials before we get a good
pivot is and a good pivot gives a split

• This immediately gives us expected running time as

p

p

p
max{ |A<p | , |A>p |} > (3/4) |A |

2 1/4,3/4

O(n log n)

Modified Rand. Quicksort

• Suppose we don’t throw out bad pivots (its wasteful anyway)

• Can we still show the expected running time is the same

• Intuitively bad pivots don’t hurt asymptotically, because
they only occur the time

• We analyze quicksort using another accounting trick

• Only two types of work:

• Work making recursive calls (lower order term, turns out)

• Work partitioning the elements

• How many recursive calls in the worst case?

•

1/2

O(n)

Randomized Quicksort

• We thus need to bound the work partitioning elements

• Partitioning an array of size around a pivot element takes
exactly comparisons

• We won't look at partitions made in each recursive calls,
which depend on the choice of random pivot

• Idea: Account for the total work done by the partition step by
summing up the total number of comparisons made

• Two ways to count total comparisons:

• Look at the size of arrays across recursive calls and sum

• Look at all pairs of elements and count total # of times
they are compared (easier to do in this case)

n p
n − 1

Randomized Quicksort

• Just for analysis, let denote the sorted version of input
array , that is, is the th smallest element in

• Define random variable as the number of times Quicksort
compares and

• Observation: or , why?

• , only compared when one of them is the
current pivot; pivots are excluded from future recursive
calls

•
Let be the total number of comparisons

made by randomized Quicksort

B
A B[i] i A

Xij
B[i] B[j]

Xij = 0 Xij = 1

B[i] B[j]

T =
n

∑
i=1

n

∑
j=i+1

Xij

Counting Total Comparisons

•
Goal:

•

• When is ? That is, when are and compared?

• Consider a particular recursive call. Let rank of pivot be .

• Case 1. One of them is the pivot: or

• Case 2. Pivot is between them: and

• Case 3. Both less than the pivot:

• Case 4. Both greater than the pivot:

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[j]

p r

r = i r = j

r > i r < j

r > i, j

r < i, j

Expected Running Time

• Case 1. or

• and are compared once and one of them is
excluded from all future calls

• Case 2. and

• and are both compared to the pivot but not to each
other, after which they are in different recursive calls: will never
be compared again

• Case 3. and Case 4.

• and are not compared to each other, they are both in
the same subarray and may be compared in the future

• Takeaway: , are compared for the 1st time when one of
them is chosen as pivot from & never again

r = i r = j

B[i] B[j]

r > i r < j

B[i] B[j]

r > i, j r < i, j

B[i] B[j]

B[i] B[j]
B[i], B[i + 1], …, B[j]

Comparisons for Each Case

• (one of them is picked as pivot from

•

•

Pr[Xij = 1] = Pr
B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

Expected Running Time

• and are compared iff one of them is the first pivot
chosen from the range

•

•

• For fixed , inner sum is

• Thus, expected running time

B[i] B[j]
B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

i
1
2

+
1
3

+
1
4

+ …
1

n − i + 1
≤

n

∑
ℓ=2

1
ℓ

= O(log n)

E[T] = O(n log n + n) = O(n log n)

Expected Running Time

From # of recursive calls

• Las Vegas algorithms like Quicksort and Selection are always
correct but their running time guarantees hold in expectation

• We can actually prove that the number of comparisons made
by Quicksort is with high probability

• This means the the probability that the running time of
quicksort is more than a constant factor away from its
expectation is very small (polynomially small in)

• Called concentration bounds

• Can prove by yet another accounting trick:

• Counting how many times a pivot and non-pivot elements
are compared during the execution

O(n log n)

n

Quick Sort Summary

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Hamiltonian cycle reduction images from Michael Sipser’s Theory of
Computation Book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

