More Probability: Recurrences

Admin

- Updated problem 4b to be more to the point-make sure you have the most recent version
- Assignment 8 due Friday
- Don't update your Macs just yet probably

Card Guessing: Memoryless

- To entertain your family you have them shuffle deck of n cards and then turn over one card at a time. Before each card is turned, you predict its identity. You have no psychic abilities or memory to remember cards
- Your strategy: guess uniformly at random
- How many predictions do you expect to be correct?
- Let X denote the r.v. equal to the number of correct predictions and X_{i} denote the indicator variable that the i th guess is correct
- Thus, $X=\sum_{i=1}^{n} X_{i}$ and $\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]$
- $\mathrm{E}\left[X_{i}\right]=0 \cdot \operatorname{Pr}\left(X_{i}=0\right)+1 \cdot \operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=1\right)=1 / n$
- Thus, $\mathrm{E}[X]=1$

Card Guessing: Memoryfull

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned
- Your strategy: guess uniformly at random among cards that have not been turned over
- Let X denote the r.v. equal to the number of correct predictions and X_{i} denote the indicator variable that the i th guess is correct
. Thus, $X=\sum_{i=1}^{n} X_{i}$ and $\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]$
- $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n-i+1}$
- Thus, $\mathrm{E}[X]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}$

Harmonic Numbers

- The nth harmonic number, denoted H_{n} is defined as
$H_{n}=\sum_{i=1}^{n} \frac{1}{i}$
- Theorem. $H_{n}=\Theta(\log n)$
- Proof Idea. Upper and lower bound area under the curve

$$
\hat{\imath} \quad H_{n} \leq 1+\int_{1}^{n} \frac{d x}{x}=\ln n+1
$$

Card Guessing: Memoryfull

- Suppose we play the same game but now assume you have the ability to remember cards that have already been turned
- Your strategy: guess uniformly at random among cards that have not been turned over
- Let X denote the r.v. equal to the number of correct predictions and X_{i} denote the indicator variable that the i th guess is correct
- Thus, $X=\sum_{i=1}^{n} X_{i}$ and $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$
- $E\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n-i+1}$
. Thus, $E[X]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i}=\Theta(\log n)$

Probability and Recurrences

Bernoulli Expectation

- Let's say a sequence random variables X_{1}, X_{2}, \ldots is 1 with probability p, and 0 with probability $1-p$
- (Recall: these are called Bernoulli random variables)
- In expectation, what is the value of the first i such that $X_{i}=1$?
- Number of coin flips until heads $(p=1 / 2)$
- Number if times I roll a die until I get a $1(p=1 / 6)$
- One way to solve it is to just do the sum:
- $\sum_{i=1}^{\infty} i(1-p)^{i-1} p$

Bernoulli Expectation (using the sum)

$$
\begin{aligned}
& \sum_{i=1}^{\infty} i(1-p)^{i-1} p=\sum_{i=1}^{\infty} \sum_{k=1}^{i}(1-p)^{i-1} p= \\
& \sum_{k=1}^{\infty} \sum_{i=k}^{\infty}(1-p)^{i-1} p=\sum_{k=1}^{\infty} p(1-p)^{k-1} \sum_{i=0}^{\infty}(1-p)^{i}= \\
& \sum_{k=1}^{\infty} p(1-p)^{k-1} \frac{1}{1-(1-p)}=\sum_{k=1}^{\infty}(1-p)^{k-1}=\sum_{k=0}^{\infty}(1-p)^{k}=\frac{1}{p}
\end{aligned}
$$

Bernoulli Expectation

- Let's say a sequence random variables X_{1}, X_{2}, \ldots is 1 with probability p, and 0 with probability $1-p$
- In expectation, what is the value of the first i such that $X_{i}=1$?
- Let's rewrite this recursively. What is $\mathrm{E}($ FindBernoulli $(p))$?

FindBernoulli(p):
$X \leftarrow\left\{\begin{array}{l}1 \text { with prob. } p \\ 0 \text { with prob. }(1-p)\end{array}\right.$
If $X=1$
Return 1
If $X=0$
Return 1+FindBernoulli(p)

Bernoulli Expectation

$$
\begin{aligned}
& \text { FindBernoulli(p): } \\
& \begin{array}{l}
X \leftarrow\left\{\begin{array}{l}
1 \text { with prob. } p \\
0 \text { with prob. }(1-p)
\end{array}\right. \\
\text { If } X=1
\end{array} \\
& \quad \text { Return } 1 \\
& \text { If } X=0 \\
& \quad \text { Return } 1+\text { FindBernoulli(p) } \\
& \mathrm{E}(F)=p+(1-p)(1+\mathrm{E}(F)) \\
& \mathrm{E}(F)=1 / p
\end{aligned}
$$

Bernoulli Expectation Formal Recursion

- Let X^{p} be a random variable indicating \# flips until heads (with prob p)
- $\mathrm{E}\left(X^{p}\right)=\sum_{i=1}^{\infty} i(1-p)^{i-1} p$
- We can then write
- $\mathrm{E}\left(X^{p}\right)=\sum_{i=1}^{\infty} i(1-p)^{i-1} p=p+\sum_{i=2}^{\infty} i(1-p)^{i-1} p=p+\sum_{i^{\prime}=1}^{\infty}\left(1+i^{\prime}\right)(1-p)^{i^{\prime}} p$
- $\mathrm{E}\left(X^{p}\right)=p+(1-p) \sum_{i^{\prime}=1}^{\infty}\left(1+i^{\prime}\right)(1-p)^{i^{\prime}-1} p=p+(1-p) \mathrm{E}\left(X^{p}+1\right)$
- $\mathrm{E}\left(X^{p}\right)=p+(1-p)\left(\mathrm{E}\left(X^{p}\right)+1\right)$

Coupon/Pokemon
Collector Problem

Gotta' Catch 'Em All

- Suppose there are n different types of Pokemon cards
- In each trial we purchase a pack that contains a Pokemon card
- We repeat until we have at least one of each type of card, how many packs does it take in expectation to collect all?
- Let X be the r.v. equal to the number of packs bought until you first have a card of each type. Goal: compute $E[X]$
- We break X into smaller random variables
- Idea: we make progress every time we get a card we don't already have

Pokemon Collector Problem

- Let X_{i} denote the "length of the i th phase", that is, the number of packs bought during the i th phase (i th phase ends as soon as we see the i th distinct card)
- Thus, $X=\sum_{1=1}^{n} X_{i}$

- Each phase can be though of as flipping a biased coin until we see a head, where seeing a head = getting a new card

Pokemon Collector Problem

- $E\left[X_{i}\right]$ is the expected number of coin flips until success (expectation of a geometric r.v.)

- We know, $E\left[X_{i}\right]=1 / p_{i}$ where p_{i} is the probability of success/ probability of seeing a heads during a coin flip in the i th phase
- Before the i th phase starts, we don't have $n-i+1$ Pokemon
- Each of the n Pokemon are equally likely to be in a pack
- $p_{i}=\frac{n-i+1}{n}$

Pokemon Collector Problem

- We know, $E\left[X_{i}\right]=1 / p_{i}$ where p_{i} is the probability of success/ probability of seeing a heads during a coin flip in the i th phase

- $p_{i}=\frac{n-i+1}{n}$
- $E\left[X_{i}\right]=$ Expected[number of flips until first heads $]=1 / p_{i}$
- $E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{n}{n-i+1}=\sum_{i=1}^{n} \frac{n}{i}=n H_{n}=\Theta(n \log n)$

Random Walks and Recurrences

Random Walks

- A drunkard stumbles out of a bar. Each second, he either staggers 1 step to the left or staggers 1 step to the right, with equal probability. His home lies x steps to his left, and a canal lies y steps to his right.
- Questions. What is the probability that the drunkard arrives safely at home instead of falling into the canal? What is the expected duration of his journey, however it ends?
- The drunkard's meandering path is called a random walk
- Random walks are important as they model various phenomenon:
- In Physics, random walks model gas diffusion
- Google search engine uses random walks through the graph of web links to determine the relative importance of website
- In finance theory, random walks can serve as a model for the fluctuation of market prices.

Pass the Candy

- We have n students labelled $1, \ldots, n$ and a professor labelled 0 sitting around in a circle
- Initially the professor has a candy bowl
- He withdraws a piece of candy and then passes the bowl either to the left or right, with equal probability
- Each person who receives the bowl takes a piece of candy if they do not already have one; then passes it on randomly
- The last person to receive the candy wins the game
- Which player is most likely to win?
- Guess? Seems like 1 and n are almost always going to be eliminated right away. Seems like $n / 2$ is most likely to winbut by how much?

Simpler Problem

- Suppose the players $A, S_{1}, \ldots, S_{k}, B$ are arranged in a line instead and S_{1} initially has a the candy
- As before, whenever a player gets the bowl they take a candy and pass it left or right with equal probability
- What is the probability that A gets the candy before B ?
- Let P_{k} be the probability that A gets the candy before B.
- Base case. Suppose $k=1$, then $P_{1}=1 / 2$
- Suppose $k>1$. In the first step there are two possibilities: the bowl either moves left to A or right to S_{2}

$$
\begin{aligned}
P_{k}= & \operatorname{Pr}(\text { first step is left }) \\
& \cdot \operatorname{Pr}(A \text { gets candy before } B \mid \text { first step is left }) \\
& +\operatorname{Pr}(\text { first step is right }) \\
\quad \cdot & \operatorname{Pr}(A \text { gets candy before } B \mid \text { first step is right }) \\
= & \frac{1}{2} \cdot 1+\frac{1}{2} \cdot \operatorname{Pr}(A \text { gets candy before } B \mid \text { first step is right })
\end{aligned}
$$

Simpler Problem

- $P_{k}=\operatorname{Pr}$ (first step is left)
$\cdot \operatorname{Pr}(A$ gets candy before $B \mid$ first step is left $)$
$+\operatorname{Pr}($ first step is right)
$\cdot \operatorname{Pr}(A$ gets candy before $B \mid$ first step is right $)$
$=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot \operatorname{Pr}(A$ gets candy before $B \mid$ first step is right $)$
- Recurrence. $P_{k}=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot P_{k-1} \cdot P_{k} \quad$ and $P_{1}=\frac{1}{2}$ (Base case)
- Solve it using guess and check, and prove by induction
- $P_{2}=\frac{1}{2-P_{1}}=\frac{2}{3}, P_{3}=\frac{1}{1-P_{2}}=\frac{3}{4}$
- $P_{k}=\frac{k}{k+1}$ (Verify this is correct by induction)

New starting configuration
$\operatorname{Pr}\left(S_{1}\right.$ gets candy before $\left.B\right)=P_{k-1}$
If S_{1} gets candy, we are back in the initial configuration and A gets the candy before B with probability P_{k}.

Back to the Candy Game

- Consider player n on the right side of the professor. Only way n can win is the candy travels clockwise all the way around to player $n-1$ before n ever touches it
- Thus, if we cut the circle and arrange on a line as shown, n wins if and only if $n-1$ gets the bowl before n
- This fits our previous simpler problem model where we want to know the probability that B gets candy before A and $k=n-2$
- $\operatorname{Pr}(n-1$ gets candy before $n)=1-\operatorname{Pr}(n$ gets candy before $n-1)$

$$
=1-\frac{n-2}{(n-2)+1}=\frac{1}{n}
$$

- Student n wins with probability $1 / n$!
- We can extend this argument to show each student wins with probability $1 / n$--- we would never have guessed this!

n wins only if $n-1$ gets candy before n

Randomized Algorithm I: Karger's Min-Cut

Randomized Min Cut

- Global min-cut problem.

Given an undirected, unweighted graph $G=(V, E)$, find a cut
(A, B) of minimum cardinality (that is, min \# of edges crossing it).

- Applications. Network reliability, network design, circuit design, etc.
- Poly-time network-flow solution (by reduction to min s - t cut).
- Replace every undirected edge (u, v) with $u \rightarrow v$ and $v \rightarrow u$, each of capacity 1
- Fix any $s \in V$ and compute min s - t cut for every other node $t \in V-\{s\}$
- ($n-1$) executions of min s - t cut
- Gives impression that finding global min cut is harder than finding a min $s-t$ cut, which is not true
- Deceptively simple and efficient randomized algorithm [Karger 1992]

Karger's Min Cut

- Uses a primitive called edge contraction
- Contract edge e in G, denoted $G \leftarrow G / e$
- Replace u and v by single new super-node w
- Preserve edges, updating endpoints of u and v to w
- Keep parallel edges, but delete self-loops
- An edge can be contracted in $O(n)$ time, assuming the graph is represented as an adjacency list

\longrightarrow
contract $\mathbf{u}-\mathbf{v}$

Karger's Min Cut

- Algorithm tries to guess the min cut by randomly contracting edges
- Running time $O\left(n^{2}\right)$ (why?)
- Correctness:

How often, if ever, does it return the min cut?

```
GuessMinCut(G):
    for }i\leftarrown\mathrm{ downto 2
        pick a random edge e in G
        G\leftarrowG/e
    return the only cut in G
```


Observations:

If the minimum cut has size/cardinality k

- Each vertex must have degree at least k, and thus the graph must have at least $n k / 2$ edges
- Any cut in the contracted graph is a cut in the original graph
- Let $C=(S, V-S)$ be any cut, if algorithm never contracts an edge crossing this cut, then it will produce the cut C

Karger's Analysis

- Let C be any arbitrary min cut of cardinality k
- If we pick an edge in G uniformly at random, what is the probability of picking an edge in C
- $m \geq n k / 2$
- $\operatorname{Pr}($ picking an edge in $C)=\frac{k}{m} \leq \frac{k}{n k / 2}=\frac{2}{n}$
- The probability we don't screw up in the 1 st step $\geq 1-\frac{2}{n}$
- After the first edge is contracted, the algorithm proceeds recursively (with independent random choices) on the ($n-1$)-vertex graph

Karger's Analysis

- Let $P(n)$ denote the probability that the algorithm returns the correct min cut on an n-vertex graph, then
- $P(n) \geq\left(1-\frac{2}{n}\right) \cdot P(n-1)$, with base case $P(2)=1$
- Expanding the recurrence:

$$
\text { . } P(n) \geq \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \ldots \ldots \frac{2}{4} \cdot \frac{1}{3}
$$

- Terms cancel out to get: $P(n) \geq \frac{2}{n(n-1)}=\binom{n}{2}^{-1}$

Amplifying Success Probability

- Thus, a single execution of Karger's min cut algorithm finds
the min cut with probability at least $1 /\binom{n}{2}$, which is low
- But, we can amplify our success probability!
- Run the algorithm R times (using independent random choices) and pick the best min-cut among them
- What is probability we don't find the min cut after R repetitions?
- $\left(1-1 /\binom{n}{2}\right)^{R}$

Amplifying Success Probability

- If we execute $R=\binom{n}{2}$ times, the probability of failure is
- $\left(1-1 /\binom{n}{2}\right)^{\binom{n}{2}} \leq \frac{1}{e}$
- If we run the algorithm $R=\binom{n}{2} c \ln n$ times, we can make the failure probability polynomially small: $\left(\frac{1}{e}\right)^{c \ln n}=\frac{1}{n^{c}}$
- Karger's algorithm finds the min-cut with high probability (w.h.p.)

An algorithm is correct with high probability (w.h.p.) with respect to input size n if it fails with probability at most $\frac{1}{n^{c}}$ for any constant $c>1$.

Example Execution

trial 1

trial 2
trial 3

man *
trial 5
trial 5
(finds min cut) 0,0
0
0
trial 6

Karger's Running Time

- Thus, Karger's algorithm finds the min-cut with high probability
(w.h.p.)
- Running time: we perform $\Theta\left(n^{2} \log n\right)$ iterations, each $O\left(n^{2}\right)$ time
- $O\left(n^{4} \log n\right)$ time
- Faster than naive-flow-techniques, nothing to get excited about
- Improves to $O\left(n^{2} \log ^{3} n\right)$ by guessing cleverly! [Karger-Stein 1996]
- Idea: Improve the guessing algorithm using the observation:
- As the graph shrinks, the probability of contracting an edge in the minimum cut increases
- At first the probability is very small: $2 / n$ but by the time there are three nodes, we have a $2 / 3$ chance of screwing up!

Takeaways

- Notice: Karger's algorithm had one-sided error:
- Might produce a cut that is not min cut
- You can increase the success rate of a Monte Carlo algorithm with one-sided errors by iterating it multiple times and taking the best solution
- If the probability of success is $1 / f(n)$, then running it $O(f(n) \log n)$ times gives a high probability of success
- If you're more intelligent about how you iterate the algorithm, you can often do much better than this
- Next, we'll see an example of a Las Vegas algorithm
- Randomized selection and quick sort

Randomized Algorithm II Randomized Selection

Randomized Selection

- Problem. Find the k th smallest/largest element in an unsorted array
- Recall our selection algorithm

Select (A, k)
If $|A|=1$: return $A[1]$
Else:

- Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p
- Else if $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

Selection with a Good Pivot

- Recall: we called the pivot "good" if it reduced the array size by at least a constant
- Which would give a recurrence $T(n) \leq T(\alpha n)+O(n)$ for some constant $\alpha<1$
- Expands to a decreasing geometric series $T(n)=O(n)$
- In the deterministic algorithm, how did we find a good pivot?
- Split array into groups of 5
- And computed the median of group medians
- The pivot guaranteed that $n \rightarrow 7 n / 10$
- Here is a silly idea: What if we pick the pivot uniformly at random?

Analyzing Rand. Selection

- Normally, we'd write a recurrence relation for a recursive function
- But the array size in later recursive call depends on the random choice of pivots in earlier calls
- We use a different accounting trick for running time
- Randomized selection makes at most one recursive call each time:
- Group multiple recursive call in "phases"
- Sum of work done by all calls is equal to the sum of the work done in all the phases

Analyzing in Phases

- Idea: let a "phase" of the algorithm be the time it takes for the array size to drop by a constant factor (say $n \rightarrow(3 / 4) \cdot n)$
- If array shrinks by a constant factor in each phase and linear work done in each phase, what would be the running time?
- $T(n)=c\left(n+3 n / 4+(3 / 4)^{2} n+\ldots+1\right)=O(n)$
- If we want a $1 / 4$ th, $3 / 4$ th split, what range should our pivot be in?
- Middle half of the array (if n size array, then pivot in $[n / 4,3 n / 4]$)
- What is the probability of picking such a pivot?
- $1 / 2$
- Phase ends as soon as we pick a pivot in the middle half
- Expected \# of recursive calls until phase ends? 2

Expected Running Time

- Let the algorithm be in phase j when the size of the array is
- At least $n\left(\frac{3}{4}\right)^{j}$ but not greater that $n\left(\frac{3}{4}\right)^{j+1}$
- Expected number of iterations within a phase: 2
- Let X_{j} be the expected number of steps spent in phase j
- $X=X_{0}+X_{1}+X_{2} \ldots$ be the total number of steps taken by the algorithm
- Within a phase, the algorithm does work linear in the size of the array in
one iterations and thus, $E\left[X_{j}\right] \leq 2 c n\left(\frac{3}{4}\right)^{j}$
- Expected running time:
$E[X]=\sum_{j} E\left[X_{j}\right] \leq 2 c n \sum_{j}\left(\frac{3}{4}\right)^{j} \leq 8 c n=O(n)$

Randomized Algorithm III Randomized QuickSort

Randomized Quicksort

- Recall deterministic Quicksort
- Depending on the choice pivot, could be $O\left(n^{2}\right)$
- What if we pick the pivot uniformly at random?
- Can get expected running time as $O(n \log n)$

Quicksort(A):
If $|A|<3: \operatorname{Sort}(A)$ directly
Else: choose a pivot element $p \leftarrow A$
$A_{<p}, A_{>p} \leftarrow$ Partition around p
Quicksort $\left(A_{<p}\right)$
Quicksort $\left(A_{>p}\right)$

Modified Rand. Quicksort

- Before we analyze quick sort with uniform random pivot
- Consider the following modification
- Pick pivot p randomly
- Partition array around p
- If p is a bad pivot (say,
$\left.\max \left\{\left|A_{<p}\right|,\left|A_{>p}\right|\right\}>(3 / 4)|A|\right)$, we throw it our and pick another pivot
- Else, we recursively call Quicksort on the partitions
- We know that expected number of trials before we get a good pivot is 2 and a good pivot gives a $1 / 4,3 / 4$ split
- This immediately gives us expected running time as $O(n \log n)$

Randomized Quicksort

- Suppose we don't throw out bad pivots (its wasteful anyway)
- Can we still show the expected running time is the same
- Intuitively bad pivots don't hurt asymptotically, because they only occur $1 / 2$ the time
- We analyze quicksort using another accounting trick
- Only two types of work:
- Work making recursive calls (lower order term, turns out)
- Work partitioning the elements
- How many recursive calls in the worst case?
- $O(n)$

Randomized Quicksort

- We thus need to bound the work partitioning elements
- Partitioning an array of size n around a pivot element p takes exactly $n-1$ comparisons
- We won't look at partitions made in each recursive calls, which depend on the choice of random pivot
- Idea: Account for the total work done by the partition step by summing up the total number of comparisons made
- Two ways to count total comparisons:
- Look at the size of arrays across recursive calls and sum
- Look at all pairs of elements and count total \# of times they are compared (easier to do in this case)

Counting Total Comparisons

- Just for analysis, let B denote the sorted version of input array A, that is, $B[i]$ is the i th smallest element in A
- Define random variable $X_{i j}$ as the number of times Quicksort compares $B[i]$ and $B[j]$
- Observation: $X_{i j}=0$ or $X_{i j}=1$, why?
- $B[i], B[j]$ only compared when one of them is the current pivot; pivots are excluded from future recursive calls
- Let $T=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}$ be the total number of comparisons
made by randomized Quicksort

Expected Running Time

- Goal: $E[T]=E\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$
- $E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]$
- When is $X_{i j}=1$? That is, when are $B[i]$ and $B[j]$ compared?
- Consider a particular recursive call. Let rank of pivot p be r.
- Case 1. One of them is the pivot: $r=i$ or $r=j$
- Case 2. Pivot is between them: $r>i$ and $r<j$
- Case 3. Both less than the pivot: $r>i, j$
- Case 4. Both greater than the pivot: $r<i, j$

Comparisons for Each Case

- Case 1. $r=i$ or $r=j$
- $B[i]$ and $B[j]$ are compared once and one of them is excluded from all future calls
- Case 2. $r>i$ and $r<j$
- $B[i]$ and $B[j]$ are both compared to the pivot but not to each other, after which they are in different recursive calls: will never be compared again
- Case 3. $r>i, j$ and Case 4. $r<i, j$
- $B[i]$ and $B[j]$ are not compared to each other, they are both in the same subarray and may be compared in the future
- Takeaway: $B[i], B[j]$ are compared for the 1 st time when one of them is chosen as pivot from $B[i], B[i+1], \ldots, B[j] \&$ never again

Expected Running Time

- $\operatorname{Pr}\left[X_{i j}=1\right]=\operatorname{Pr}$ (one of them is picked as pivot from
$B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}$
- $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$

Expected Running Time

- $B[i]$ and $B[j]$ are compared iff one of them is the first pivot
chosen from the range $B[i], B[i+1], \ldots, B[j]$
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{j-i+1}$
- $E[T]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$
- For fixed i, inner sum is
$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n-i+1} \leq \sum_{\ell=2}^{n} \frac{1}{\ell}=O(\log n)$
- Thus, expected running time

$$
E[T]=O(n \log n+n)=O(n \log n)
$$

Quick Sort Summary

- Las Vegas algorithms like Quicksort and Selection are always correct but their running time guarantees hold in expectation
- We can actually prove that the number of comparisons made by Quicksort is $O(n \log n)$ with high probability
- This means the the probability that the running time of quicksort is more than a constant factor away from its expectation is very small (polynomially small in n)
- Called concentration bounds
- Can prove by yet another accounting trick:
- Counting how many times a pivot and non-pivot elements are compared during the execution

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:// www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/teaching/ algorithms/book/Algorithms-JeffE.pdf)
- Hamiltonian cycle reduction images from Michael Sipser's Theory of Computation Book

