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• Updated problem 4b to be more to the 

point—make sure you have the most recent 
version 

• Assignment 8 due Friday 
• Don’t update your Macs just yet probably



• To entertain your family you have them shuffle deck of  cards 
and then turn over one card at a time. Before each card is 
turned, you predict its identity. You have no psychic abilities or 
memory to remember cards 

• Your strategy: guess uniformly at random 

• How many predictions do you expect to be correct? 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•  

• Thus, 
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Card Guessing: Memoryless



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that 
have not been turned over 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Card Guessing: Memoryfull



• The th harmonic number, denoted  is defined as 

 

• Theorem.   

• Proof Idea. Upper and lower bound area under the curve 

n Hn
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1
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Hn = Θ(log n)

Harmonic Numbers



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that 
have not been turned over 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Probability and 
Recurrences



• Let’s say a sequence random variables  is  with 
probability , and  with probability  

• (Recall: these are called Bernoulli random variables) 

• In expectation, what is the value of the first  such that ? 

• Number of coin flips until heads  

• Number if times I roll a die until I get a 1  

• One way to solve it is to just do the sum: 

•

X1, X2, … 1
p 0 1 − p
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∑
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Bernoulli Expectation
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Bernoulli Expectation (using the sum)



• Let’s say a sequence random variables  is  with probability , 
and  with probability  

• In expectation, what is the value of the first  such that ? 

• Let’s rewrite this recursively.   What is  ? 

FindBernoulli(p): 

 

If  

     Return  

If  

      Return  FindBernoulli(p)

X1, X2, … 1 p
0 1 − p

i Xi = 1

E(FindBernoulli(p))

X ← {1 with prob. p
0 with prob. (1 − p)

X = 1

1

X = 0

1+

Bernoulli Expectation



FindBernoulli(p): 

 

If  

     Return  

If  

      Return  FindBernoulli(p) 

 

X ← {1 with prob. p
0 with prob. (1 − p)

X = 1

1

X = 0

1+

E(F) = p + (1 − p)(1 + E(F))

E(F) = 1/p

Bernoulli Expectation



• Let  be a random variable indicating # flips until heads (with prob )  

•
 

• We can then write 

•
  

•
 

•

Xp p

E(Xp) =
∞

∑
i=1

i(1 − p)i−1p

E(Xp) =
∞

∑
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i(1 − p)i−1p = p +
∞

∑
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∞

∑
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(1 + i′ )(1 − p)i′ p

E(Xp) = p + (1 − p)
∞

∑
i′ =1

(1 + i′ )(1 − p)i′ −1p = p + (1 − p)E(Xp + 1)

E(Xp) = p + (1 − p)(E(Xp) + 1)

Bernoulli Expectation Formal Recursion
You don’t need to do this 
proof every time you use 

recursion.  But, it can 
help if you’re unsure of 

correctness



Coupon/Pokemon 
Collector Problem 



Gotta' Catch 'Em All
• Suppose there are  different types of Pokemon cards 

• In each trial we purchase a pack that contains a Pokemon 
card 

• We repeat until we have at least one of each type of card, 
how many packs does it take in expectation to collect all? 

• Let  be the r.v. equal to the number of packs bought until 
you first have a card of each type.  Goal: compute   

• We break  into smaller random variables 

• Idea: we make progress every time we get a card we don’t 
already have

n

X
E[X]

X



Pokemon Collector Problem
• Let  denote the "length of the th phase", that is, the number 

of packs bought during the th phase ( th phase ends as 
soon as we see the th distinct card) 

•
Thus,  

• Each phase can be though of as flipping a biased coin until 
we see a head, where seeing a head = getting a new card

Xi i
i i

i

X =
n

∑
1=1

Xi

…
P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn



•  is the expected number of coin flips until success (expectation 
of a geometric r.v.) 
 
 
 
 
 
 

• We know,  where  is the probability of success/ 
probability of seeing a heads during a coin flip in the th phase 

• Before the th phase starts, we don't have  Pokemon 

• Each of the  Pokemon are equally likely to be in a pack 

•

E[Xi]

E[Xi] = 1/pi pi
i

i n − i + 1

n

pi =
n − i + 1

n

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn

Pokemon Collector Problem



• We know,  where  is the probability of success/ 
probability of seeing a heads during a coin flip in the th phase 
 
 
 
 
 

•  

•  

•  

E[Xi] = 1/pi pi
i

pi =
n − i + 1

n
E[Xi] = Expected[number of flips until first heads] = 1/pi

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn
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∑
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Pokemon Collector Problem



Random Walks and 
Recurrences 



• A drunkard stumbles out of a bar. Each second, he either staggers 1 
step to the left or staggers 1 step to the right, with equal probability. 
His home lies  steps to his left, and a canal lies  steps to his right.  

• Questions.  What is the probability that the drunkard arrives safely 
at home instead of falling into the canal? What is the expected 
duration of his journey, however it ends?

• The drunkard’s meandering path is called a random walk 

• Random walks are important as they model various phenomenon: 

• In Physics, random walks model gas diffusion 

• Google search engine uses random walks through the graph of 
web links to determine the relative importance of website 

• In finance theory, random walks can serve as a model for the 
fluctuation of market prices.

x y

Random Walks



• We have  students labelled  and a professor 
labelled  sitting around in a circle 

• Initially the professor has a candy bowl 

• He withdraws a piece of candy and then passes the bowl 
either to the left or right, with equal probability 

• Each person who receives the bowl takes a piece of candy 
if they do not already have one; then passes it on randomly 

• The last person to receive the candy wins the game 

• Which player is most likely to win? 

• Guess?  Seems like  and  are almost always going to be 
eliminated right away.  Seems like  is most likely to win—
but by how much?

n 1,…, n
0

1 n
n/2

Pass the Candy

0
n

n

n − 1
1

2

n/2



• Suppose the players  are arranged in a line 
instead and  initially has a the candy 

• As before, whenever a player gets the bowl they take a 
candy and pass it left or right with equal probability 

• What is the probability that  gets the candy before ? 

• Let  be the probability that  gets the candy before .   

• Base case.  Suppose , then  

• Suppose .  In the first step there are two possibilities: 
the bowl either moves left to  or right to  

A, S1, …, Sk, B
S1

A B
Pk A B

k = 1 P1 = 1/2
k > 1

A S2

Simpler Problem

S1

n

…A BS2 Sk



•  
 
 
 
 
 
 

• Recurrence.      and   (Base case) 

• Solve it using guess and check, and prove by induction 

•  

•   (Verify this is correct by induction)

Pk =
1
2

⋅ 1 +
1
2

⋅ Pk−1 ⋅ Pk P1 =
1
2

P2 =
1

2 − P1
=

2
3

, P3 =
1

1 − P2
=

3
4

Pk =
k

k + 1

Simpler Problem

S1

n

…A BS2 Sk

New starting configuration

Pr(S1 gets candy before B) = Pk−1

If  gets candy, we are back in the 
initial configuration and  gets the 
candy before  with probability .

S1
A

B Pk



• Consider player  on the right side of the professor.  Only way 
 can win is the candy travels clockwise all the way around to 

player  before  ever touches it 

• Thus, if we cut the circle and arrange on a line as shown,  
wins if and only if  gets the bowl before  

• This fits our previous simpler problem model where we want to 
know the probability that  gets candy before  and    

•  

 

• Student  wins with probability   ! 

• We can extend this argument to show each student wins with 
probability  --- we would never have guessed this!

n
n

n − 1 n

n
n − 1 n

B A k = n − 2
Pr(n − 1 gets candy before n) = 1−Pr(n gets candy before n − 1)

= 1 −
n − 2

(n − 2) + 1
=

1
n

n 1/n

1/n

Back to the Candy Game
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 wins only if  gets candy before n n − 1 n

0
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Randomized Algorithm I:   
Karger's Min-Cut



• Global min-cut problem.   
Given an undirected, unweighted graph , find a cut 

 of minimum cardinality (that is, min # of edges crossing it). 

• Applications.  Network reliability, network design, circuit design, etc. 

• Poly-time network-flow solution (by reduction to min  cut). 

• Replace every undirected edge  with  and , 
each of capacity 1 

• Fix any  and compute min  cut for every other node 
  

•  executions of min  cut 

• Gives impression that finding global min cut is harder than finding a 
min  cut, which is not true 

• Deceptively simple and efficient randomized algorithm [Karger 1992]

G = (V, E)
(A, B)

s-t

(u, v) u → v v → u

s ∈ V s-t
t ∈ V − {s}

(n − 1) s-t

s-t

Randomized Min Cut



• Uses a primitive called edge contraction 

• Contract edge  in , denoted  

• Replace  and  by single new super-node  

• Preserve edges, updating endpoints of  and  to  
• Keep parallel edges, but delete self-loops 

• An edge can be contracted in  time, assuming the 
graph is represented as an adjacency list

e G G ← G/e
u v w

u v w

O(n)

Karger’s Min Cut

u v w
⇒

contract u-v

a b c

e
f

ca b

f

d



• Algorithm tries to guess the min cut by  
randomly contracting edges 

• Running time     (why?) 
• Correctness: 

How often, if ever, does it return the min cut?

O(n2)

Karger’s Min Cut

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1


If the minimum cut has size/cardinality  

• Each vertex must have degree at least , and thus the graph 
must have at least  edges 

• Any cut in the contracted graph is a cut in the original graph 

• Let  be any cut, if algorithm never contracts 
an edge crossing this cut, then it will produce the cut 

k
k

nk/2

C = (S, V − S)
C

Observations:

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1


• Let  be any arbitrary min cut of cardinality  

• If we pick an edge in  uniformly at random, what is the 
probability of picking an edge in  

•  

• Pr(picking an edge in  =   

• The probability we don’t screw up in the 1st step    

• After the first edge is contracted, the algorithm proceeds 
recursively (with independent random choices) on the 
( )-vertex graph

C k

G
C

m ≥ nk/2

C)
k
m

≤
k

nk/2
=

2
n

≥ 1 −
2
n

n − 1

Karger’s Analysis



• Let  denote the probability that the algorithm returns the 
correct min cut on an -vertex graph, then 

•  , with base case   

• Expanding the recurrence:  

•    

• Terms cancel out to get:  

P(n)
n

P(n) ≥ (1 −
2
n ) ⋅ P(n − 1) P(2) = 1

P(n) ≥
n − 2

n
⋅

n − 3
n − 1

⋅
n − 4
n − 2

……
2
4

⋅
1
3

P(n) ≥
2

n(n − 1)
= (n

2)
−1

Karger’s Analysis



• Thus, a single execution of Karger’s min cut algorithm finds 

the min cut with probability at least , which is low 

• But, we can amplify our success probability! 

• Run the algorithm  times (using independent random 
choices) and pick the best min-cut among them 

• What is probability we don’t find the min cut after  
repetitions? 

•
 

1/(n
2)

R

R

(1 − 1/(n
2))

R

Amplifying Success Probability



• If we execute  times, the probability of failure is 

•
 

• If we run the algorithm  times, we can make the 

failure probability polynomially small:  

• Karger’s algorithm finds the min-cut with high probability (w.h.p.)

R = (n
2)

(1 − 1/(n
2))

(n
2)

≤
1
e

R = (n
2)c ln n

( 1
e )

c ln n

=
1
nc Useful Inequality:  for (1 −

1
x )

x

≤
1
e

x ≥ 1

An algorithm is correct with high probability (w.h.p.) with respect to input 

size  if it fails with probability at most  for any constant .n
1
nc

c > 1

Amplifying Success Probability



trial 1

trial 2

trial 3

trial 4

trial 5
(finds min cut)

trial 6

...
Reference: Thore Husfeldt

Example Execution

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1


• Thus, Karger’s algorithm finds the min-cut with high probability 
(w.h.p.) 

• Running time: we perform  iterations, each  time 

•  time  

• Faster than naive-flow-techniques, nothing to get excited about 

• Improves to  by guessing cleverly! [Karger-Stein 1996] 

• Idea: Improve the guessing algorithm using the observation: 

• As the graph shrinks, the probability of contracting an edge in 
the minimum cut increases 

• At first the probability is very small:  but by the time there 
are three nodes, we have a  chance of screwing up!

Θ(n2 log n) O(n2)

O(n4 log n)

O(n2 log3 n)

2/n
2/3

Karger’s Running Time



• Notice: Karger’s algorithm had one-sided error: 

• Might produce a cut that is not min cut 

• You can increase the success rate of a Monte Carlo algorithm 
with one-sided errors by iterating it multiple times and taking 
the best solution 

• If the probability of success is  , then running it 
 times gives a high probability of success 

• If you're more intelligent about how you iterate the algorithm, 
you can often do much better than this 

• Next, we’ll see an example of a Las Vegas algorithm 

• Randomized selection and quick sort 

1/f(n)
O( f(n)log n)

Takeaways



Randomized Algorithm II 
Randomized Selection



• Problem.  Find the th smallest/largest element in an unsorted 
array 

• Recall our selection algorithm 

Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else if : Select  

• Else: Select 

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection



• Recall: we called the pivot “good” if it reduced the array size 
by at least a constant  

• Which would give a recurrence  for 
some constant  

• Expands to a decreasing geometric series  

• In the deterministic algorithm, how did we find a good pivot? 

• Split array into groups of  

• And computed the median of group medians  

• The pivot guaranteed that   

• Here is a silly idea: What if we pick the pivot uniformly at 
random?

T(n) ≤ T(αn) + O(n)
α < 1

T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot



• Normally, we’d write a recurrence relation for a recursive 
function 

• But the array size in later recursive call depends on the 
random choice of pivots in earlier calls 

• We use a different accounting trick for running time 

• Randomized selection makes at most one recursive call each 
time: 

• Group multiple recursive call in “phases” 

• Sum of work done by all calls is equal to the sum of the 
work done in all the phases

Analyzing Rand. Selection



• Idea: let a “phase” of the algorithm be the time it takes for the 
array size to drop by a constant factor (say ) 

• If array shrinks by a constant factor in each phase and linear work 
done in each phase, what would be the running time? 

•    

• If we want a th, th split, what range should our pivot be in? 

• Middle half of the array (if  size array, then pivot in )  

• What is the probability of picking such a pivot? 

•  

• Phase ends as soon as we pick a pivot in the middle half 

• Expected # of recursive calls until phase ends?  

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases



• Let the algorithm be in phase  when the size of the array is 

• At least  but not greater that  

• Expected number of iterations within a phase:  

• Let  be the expected number of steps spent in phase  

•  be the total number of steps taken by the algorithm 

• Within a phase, the algorithm does work linear in the size of the array in 

one iterations and thus,   

• Expected running time: 

 

j

n ( 3
4 )

j

n ( 3
4 )

j+1

2

Xj j

X = X0 + X1 + X2…

E[Xj] ≤ 2cn ( 3
4 )

j

E[X] = ∑
j

E[Xj] ≤ 2cn∑
j

( 3
4 )

j

≤ 8cn = O(n)

Expected Running Time



Randomized Algorithm III 
Randomized QuickSort



• Recall deterministic Quicksort 

• Depending on the choice pivot, could be  

• What if we pick the pivot uniformly at random? 

• Can get expected running time as  

O(n2)

O(n log n)

Randomized Quicksort

Quicksort :

If  Sort  directly 
Else: choose a pivot element   

Partition around  

Quicksort  

Quicksort

(A)
|A | < 3 : (A)

p ← A
A<p, A>p ← p

(A<p)
(A>p)



• Before we analyze quick sort with uniform random pivot 

• Consider the following modification 

• Pick pivot  randomly 

• Partition array around  

• If  is a bad pivot (say, 
), we throw it our and 

pick another pivot 

• Else, we recursively call Quicksort on the partitions  

• We know that expected number of trials before we get a good 
pivot is  and a good pivot gives a  split  

• This immediately gives us expected running time as 

p

p

p
max{ |A<p | , |A>p |} > (3/4) |A |

2 1/4,3/4

O(n log n)

Modified Rand. Quicksort



• Suppose we don’t throw out bad pivots (its wasteful anyway) 

• Can we still show the expected running time is the same 

• Intuitively bad pivots don’t hurt asymptotically, because 
they only occur  the time 

• We analyze quicksort using another accounting trick 

• Only two types of work:  

• Work making recursive calls (lower order term, turns out) 

• Work partitioning the elements 

• How many recursive calls in the worst case?  

•   

1/2

O(n)

Randomized Quicksort



• We thus need to bound the work partitioning elements 

• Partitioning an array of size  around a pivot element  takes 
exactly  comparisons 

• We won't look at partitions made in each recursive calls, 
which depend on the choice of random pivot 

• Idea: Account for the total work done by the partition step by 
summing up the total number of comparisons made 

• Two ways to count total comparisons: 

• Look at the size of arrays across recursive calls and sum 

• Look at all pairs of elements and count total # of times 
they are compared (easier to do in this case)

n p
n − 1

Randomized Quicksort



• Just for analysis, let  denote the sorted version of input 
array , that is,  is the th smallest element in  

• Define random variable  as the number of times Quicksort 
compares  and   

• Observation:  or , why? 

• ,  only compared when one of them is the 
current pivot; pivots are excluded from future recursive 
calls 

•
Let  be the total number of comparisons 

made by randomized Quicksort

B
A B[i] i A

Xij
B[i] B[ j]

Xij = 0 Xij = 1

B[i] B[ j]

T =
n

∑
i=1

n

∑
j=i+1

Xij

Counting Total Comparisons



•
Goal:   

•    

• When is ? That is, when are  and  compared? 

• Consider a particular recursive call. Let rank of pivot  be . 

• Case 1. One of them is the pivot:  or  

• Case 2. Pivot is between them:   and  

• Case 3. Both less than the pivot:   

• Case 4. Both greater than the pivot:  

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[ j]

p r

r = i r = j

r > i r < j

r > i, j

r < i, j

Expected Running Time



• Case 1.  or  

•  and  are compared once and one of them is 
excluded from all future calls 

• Case 2.  and  

•  and  are both compared to the pivot but not to each 
other, after which they are in different recursive calls: will never 
be compared again 

• Case 3.  and Case 4.  

•  and  are not compared to each other, they are both in 
the same subarray and may be compared in the future 

• Takeaway: ,  are compared for the 1st time when one of 
them is chosen as pivot from  & never again

r = i r = j

B[i] B[ j]

r > i r < j

B[i] B[ j]

r > i, j r < i, j

B[i] B[ j]

B[i] B[ j]
B[i], B[i + 1], …, B[ j]

Comparisons for Each Case



• (one of them is picked as pivot from 
 

•   

•
 

Pr[Xij = 1] = Pr
B[i], B[i + 1], …, B[ j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

Expected Running Time



•  and  are compared iff one of them is the first pivot 
chosen from the range  

•   

•
  

• For fixed , inner sum is 

 

• Thus, expected running time 
 

B[i] B[ j]
B[i], B[i + 1], …, B[ j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

i
1
2

+
1
3

+
1
4

+ …
1

n − i + 1
≤

n

∑
ℓ=2

1
ℓ

= O(log n)

E[T] = O(n log n + n) = O(n log n)

Expected Running Time

From # of recursive calls



• Las Vegas algorithms like Quicksort and Selection are always 
correct but their running time guarantees hold in expectation  

• We can actually prove that the number of comparisons made 
by Quicksort is  with high probability

• This means the the probability that the running time of 
quicksort is more than a constant factor away from its 
expectation is very small (polynomially small in )

• Called concentration bounds

• Can prove by yet another accounting trick: 

• Counting how many times a pivot and non-pivot elements 
are compared during the execution

O(n log n)

n

Quick Sort Summary
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