More Probability:
Recurrences

Admin

 Updated problem 4b to be more to the
point—make sure you have the most recent
VEersion

* Assignment 8 due Friday
 Don't update your Macs just yet probably

Card Guessing: Memoryless

e [0 entertain your family you have t
and then turn over one card at a ti

nem shuffle deck of n cards
me. Before each card is

turned, you predict its identity. You
memory to remember cards

have no psychic abilities or

e Your strategy: guess uniformly at random

* How many predictions do you exp

ect to be correct?

« Let X denote the r.v. equal to the number of correct predictions

and X. denote the indicator variab

le that the 1th guess is correct

Thus, X = iXi and E[X] = E[iXi] = iE[Xi]
i=1 i=1 i=1

« Thus, E[X] =1

Card Guessing: Memoryfull

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X] = E[iX,-] = i ELX;]
i=1 i=1 i=1

E[X,] = Pr(X; = 1) =

n—i+1

n n 1

. Thus,E[X]=zn_1+1 =Z7

Harmonic Numbers

« The nth harmonic number, denoted H, is defined as
n
1
H,=) =
i=1

« Theorem. H, = O(logn)

* Proof ldea. Upper and lower bound area under the curve

1 2 3 4 5 6 7 8

Card Guessing: Memoryfull

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = ZXi and E[X] = E[ZXi] = ZE[Xi]
i=1 =1 =1

E[X] = Pr(X;=1) =

n—i+1

n

1 LN |
Thus, E[X] = = — =0(
. Thus, ELX] an—i+1 Z}i (log n)

Probability and
Recurrences

Bernoulli Expectation

. Let's say a sequence random variables X, X5, ... is 1 with
probability p, and O with probability 1 — p

* (Recall: these are called Bernoulli random variables)
. In expectation, what is the value of the first i such that X; = 17
« Number of coin flips until heads (p = 1/2)

» Number if times | roll a die until | geta 1 (p = 1/6)

« (One way to solve it is to just do the sum:

o0

) il=p)7'p

=1

Bernoulli Expectation (using the sum)

i i(1-p)~'p= i 2 (1-p)~'p=

=1 =1 k=1

i i (1-p)~'p= ip(l -p)! i (I=p) =
k=1 i=k =1 i=0

Bernoulli Expectation

. Let's say a sequence random variables X;, X,, ... is 1 with probability p,
and 0 with probability 1 — p

. In expectation, what is the value of the first i such that X; = 17
o Let’s rewrite this recursively. What is E(FindBernoulli(p)) ?

FindBernoulli(p):

1 with prob. p
X «
0 with prob. (1 — p)

fX =1
Return 1
fX =0

Return 14 FindBernoulli(p)

Bernoulli Expectation

FindBernoulli(p):

1 with prob. p
X
0 with prob. (1 — p)

fX =1
Return 1
fX =0
Return 1+ FindBernoulli(p)

E(F) =p+ (1 —p)1 +EF))
E(F)=1/p

Bernoulli Expectation Formal Recursion

« Let X? be arandom variable indicating # flips until heads (with prob p)

o0

E(XP) =) i(1 —p)~'p

=1

e We can then write

o0

EX?)=p+(1-p)) (1+i)A=p)~'p=p+(1-pEX+1)

1'=1

» EXP) =p+ (1 - p)EX)+1)

You don’t need to do this
proof every time you use
recursion. But, it can
help if you’re unsure of
correctness

EXP) =Y i(l=p)~p=p+ Y il=pyp=p+» (L+i)(1-p)p

Coupon/Pokemon
Collector Problem

+
ﬁ .

Gotta' Catch 'Em All

e SUppose there are n different types of Pokemon cards

* |n each trial we purchase a pack that contains a Pokemon
card

 We repeat until we have at least one of each type of card,
how many packs does it take in expectation to collect all?

« Let X be the r.v. equal to the number of packs bought until
you first have a card of each type. Goal: compute E|X]

o« We break X into smaller random variables

* ldea: we make progress every time we get a card we don't
already have

Pokemon Collector Problem

 Let X. denote the "length of the ith phase”, that is, the number
of packs bought during the 1th phase (ith phase ends as
soon as we see the 1th distinct card)

 Thus, X =) X,
I=1
P, P,Py, P,P,5,P, P,..P
—_ — ————] —_
Xl XZ X3 Xn

 Each phase can be though of as flipping a biased coin until
we see a head, where seeing a head = getting a new card

Pokemon Collector Problem

« E]X.]|is the expected number of coin flips until success (expectation
of a geometric r.v.)

P, P,Py, PP, P, P,..P
—_—) — —_
Xl X2 X3 Xn

. We know, E[X;] = 1/p; where p; is the probability of success/
orobability of seeing a heads during a coin flip in the ith phase

» Before the ith phase starts, we don't have n — i + 1 Pokemon

« Each of the n Pokemon are equally likely to be in a pack

n—i+1

e D=

Pokemon Collector Problem

« We know, E|X;] = 1/p; where p; is the probability of success/
probability of seeing a heads during a coin flip in the ith phase

Pl Pl,PZ Pz,Pz,P3 P P
—_l — — —_T
X X X3 X,
n—i+1
e Pi— .

« E[X] = Expected[number of flips until first heads] = 1/p;

n

. E[X] = E[iXi] — iE[Xi] =) n_'z+ - = Z? — nH, = O(nlog n)
=1 =1 =1

=1

Random WValks and
Recurrences

Random Walks

e A drunkard stumbles out of a bar. Each second, he either staggers 1
step to the left or staggers 1 step to the right, with equal probability.
His home lies x steps to his left, and a canal lies y steps to his right.

 Questions. What is the probability that the drunkard arrives safely
at home instead of falling into the canal”? What is the expected
duration of his journey, however it ends”?

 The drunkard’'s meandering path is called a random walk
 Random walks are important as they model various phenomenon:
e |n Physics, random walks model gas diffusion

 Google search engine uses random walks through the graph of ‘: .
web links to determine the relative importance of website H
:

* In finance theory, random walks can serve as a model for the
fluctuation of market prices.

Pass the Candy

« We have n students labelled 1,..., n and
labelled O sitting around in a circle

e [nitially the professor has a candy bowl

a professor

He withdraws a piece of candy and then passes the bowl

either to the left or right, with equal probability

 Each person who receives the bowl takes a piece of candy
if they do not already have one; then passes it on randomly

 Which player is most likely to win®?

« Guess? Seems like 1 and n are almost a
eliminated right away. Seems like n/2 is
but by how much?

The last person to recelve the candy wins the game

ways going to be

most likely to win—

- ~ o~
e” ~

~ . -
-, -

Simpler Problem

 Suppose the players A, Sy, ..., 5;, B are arranged in a line
instead and §; initially has a the candy

* As before, whenever a player gets the bowl they take a
candy and pass it left or right with equal probability

« What is the probability that A gets the candy before B?
« Let P, be the probability that A gets the candy before B.
. Base case. Suppose k = 1,then P, = 1/2

« Suppose k> 1. Inthe first step there are two possibilities:

the bowl either moves left to A or right to .,

P, = Pr(tirst step is left)
- Pr (A gets candy before B | first step is left)
+ Pr (first step is right)
- Pr (A gets candy before B | first step is right)

1 1
= 5 1+ 5 Pr (A gets candy before B | first step is right)

Simpler Problem

* P, = Pr(firststep is left)
- Pr (A gets candy before B | first step is left)
+ Pr (first step is right)
- Pr (A gets candy before B | first step is right)
1 1
= 5 1+ 5 | Pr (A gets candy before B | first step is right)
e ———
1 B
. Recurrence. P,=—-14+—-P,_,-P, andP;=— (Base case) A 515 ok
2 2 2 ¢
 Solve it using guess and check, and prove by induction
1 9 1 3 New starting configuration
- Ty T T TR T
R -2 Pr(S; gets candy before B) = P,_;
k o o
. P = P (Verity this is correct by induction) If §; gets candy, we are back in the

initial configuration and A gets the

candy before B with probability P;.

Back to the Candy Game

« (Consider player n on the right side of the professor. Only way
n can win is the candy travels clockwise all the way around to
player n — 1 before n ever touches it

o Thus, if we cut the circle and arrange on a line as shown, n
wins if and only if n — 1 gets the bowl before n n/2

e” S~

e This fits our previous simpler problem model where we want to
know the probability that B gets candy before Aandk =n — 2

« Pr(n — 1 gets candy before n) = 1—Pr(n gets candy before n — 1)

n—2 1 2 n -1
) i R Fre
. Student 72 wins with probability 1/7 | t
» We can extend this argument to show each student wins with rll()l—n—zn—l i
probability 1/n --- we would never have guessed this! A

n wins only if n — 1 gets candy before n

Randomized Algorithm |:
Karger's Min-Cut

Randomized Min Cut

 Global min-cut problem.
Given an undirected, unweighted graph G = (V, E), find a cut
(A, B) of minimum cardinality (that is, min # of edges crossing it).

 Applications. Network reliability, network design, circuit design, etc.
« Poly-time network-flow solution (by reduction to min s-f cut).

« Replace every undirected edge (¢, v) withu — vand v — u,
each of capacity 1

. Fixany s € V and compute min s-f cut for every other node
teV—{s}

« (n— 1) executions of min s-f cut

e (ives impression that finding global min cut is harder than finding a
min s-f cut, which is not true

 Deceptively simple and efficient randomized algorithm [Karger 1992]

Karger’s Min Cut

 Uses a primitive called edge contraction

« Contract edge e in G, denoted G «— G/e
« Replace u and v by single new super-node w
e Preserve edges, updating endpoints of # and vto w

 Keep parallel edges, but delete selt-loops

« An edge can be contracted in O(n) time, assuming the
graph is represented as an adjacency list

contract u-v

Karger’s Min Cut

* Algorithm tries to guess the min cut by
randomly contracting edges

. Running time O(n?) (why?)

e (Correctness:
How often, If ever, does it return the min cut?

GUEssMINCuUT(G):
for i « n downto 2
pick a random edge e in G
G «— G/e
return the only cutin G

ST
Fars SNy

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Observations:

f the minimum cut has size/cardinality k

Each vertex must have degree at least k, and thus the graph
must have at least nk/2 edges

Any cut in the contracted graph is a cut in the original graph

Let C = (5, V—23) be any cut, if algorithm never contracts
an edge crossing this cut, then it will produce the cut C

R

Fare SNy

Reference: Thore Husfeldt

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Karger’'s Analysis

Let C be any arbitrary min cut of cardinality k

f we pick an edge in G uniformly at random, what is the
probability of picking an edge in C

e m 2> nkl/2
. Pr(picking an edge in C) = K < K — 2
m nkl2 n
. The probability we don’t screw up in the 1st step > 1 — %

e Atfter the first edge is contracted, the algorithm proceeds

recursively (with independent random choices) on the
(n — 1)-vertex graph

Karger’'s Analysis

« Let P(n) denote the probability that the algorithm returns the
correct min cut on an n-vertex graph, then

. P(n) > (1 — 2) - P(n — 1), with base case P(2) = 1
n

 Expanding the recurrence:
n—2 n—3 n—4

P(n) > :
() 2 n n—1 n-2

-1
2 n
. Terms cancel out to get: P(n) > —
nn—1)

Amplifying Success Probability

 Thus, a single execution of Karger's min cut algorithm finds

n
the min cut with probability at least 1/ (2> which is low

 But, we can amplity our success probability!

« Run the algorithm R times (using independent random
choices) and pick the best min-cut among them

« What is probability we don’t find the min cut after R
repetitions?

R

()

Amplifying Success Probability

n
2

(n) (%) |
1 —1/ < —
. 2 e

n
f we run the algorithm R = (2

f we execute R = () times, the probability of tailure Is

)c In n times, we can make the

1 1

clnn
failure probability polynomially small: | — = — . 1\" 1
e ne Useful Inequality: <1 ——> <—forx>1

X €

e Karger’s algorithm finds the min-cut with high probability (w.h.p.)

An algorithm is correct with high probalbility (w.h.p.) with respect to input

size n if it fails with probability at most — for any constant ¢ > 1.
n

lllll

lllll

lllll

lllll

ttttt
nnnnnnnnnnn

lllll

Example Execution

' DR RRRTROassL
- BPIRR008988ddm o

- IBEEELADOYSKLCrYr/
@@@mmmmm

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Karger's Running Time
* Thus, Karger’s algorithm finds the min-cut with high probability
(w.h.p.)

. Running time: we perform O(n? log n) iterations, each O(n?) time

. O(n*logn) time

* [aster than naive-flow-technigues, nothing to get excited about
. Improves to O(n? log3 n) by guessing cleverly! [Karger-Stein 1996]
* lIdea: Improve the guessing algorithm using the observation:

* Asthe graph shrinks, the probability of contracting an edge in
the minimum cut increases

o At first the probability is very small: 2/n but by the time there
are three nodes, we have a 2/3 chance of screwing up!

Takeaways

Notice: Karger's algorithm had one-sided error:
 Might produce a cut that is not min cut

You can increase the success rate of a Monte Carlo algorithm
with one-sided errors by iterating it multiple times and taking
the best solution

« If the probability of success is 1/f(n) , then running it
O(f(n)log n) times gives a high probability of success

If you're more intelligent about how you iterate the algorithm,
you can often do much better than this

Next, we'll see an example of a Las Vegas algorithm

« Randomized selection and quick sort

Randomized Algorithm ||
Randomized Selection

Randomized Selection

« Problem. Find the kth smallest/largest element in an unsorted
array

* Recall our selection algorithm
Select (A, k):
f |A| = 1: return A[1]
Else:
« Choose a pivot p < All,...,n]; let r be the rank of p

. 1,A_), A, « Partition((A, p)

<p?

e fk==rreturnp

. Elseif k < r: Select (A, k)
. Else: Select(A. .k —7r)

>D?

Selection with a Good Pivot

* Recall: we called the pivot “good” if it reduced the array size
by at least a constant

« Which would give a recurrence T(n) < T(an) + O(n) for
some constant a < 1

« Expands to a decreasing geometric series T(n) = O(n)
* |n the deterministic algorithm, how did we find a good pivot?

. Split array into groups of S

 And computed the median of group medians

« The pivot guaranteed thatn — 7n/10

 Here is a silly idea: What if we pick the pivot uniformly at
random?

Analyzing Rand. Selection

Normally, we'd write a recurrence relation for a recursive

function

But the array size In later recursive call depends on the

random choice of pivots in earlier calls

We use a different accounting trick for running time

Randomized selection makes at most one recursive call each

time;

 Group multiple recursive call in “phases”

e Sum of wor
work done

K done by all calls is equal to the sum of the
in all the phases

Analyzing in Phases

* |dea: let a “phase” of the algorithm be the time it takes for the
array size to drop by a constant factor (say n — (3/4) - n)

* [f array shrinks by a constant factor in each phase and linear work
done in each phase, what would be the running time?

. T(n)=cn+3n/d+@GB/4)°n+...+1)=0®n)
 If we want a 1/4th, 3/4th split, what range should our pivot be in?
« Middle half of the array (if n size array, then pivot in [n/4,3n/4])
 What is the probability of picking such a pivot?
e 1/2
* Phase ends as soon as we pick a pivot in the middle halt

« Expected # of recursive calls until phase ends? 2

Expected Running Time

« Let the algorithm be in phase j when the size of the array is

3 J 3 J+1
At least n <Z> but not greater that n (Z)

« Expected number of iterations within a phase: 2

. Let X] be the expected number of steps spent in phase J

« X =X,+ X+ X,... be the total number of steps taken by the algorithm

* Within a phase, the algorithm does work linear in the size of the array in

3 J
one iterations and thus, E[X;] < 2c¢n (Z)

* EXxpected running time:

J
E[X] = ZE[XJ'] < 2cnz (%) < 8cn = 0O(n)

J J

Randomized Algorithm ||
Randomized QuickSort

Randomized Quicksort

e Recall deterministic Quicksort

. Depending on the choice pivot, could be O(n?)
 What if we pick the pivot uniformly at random?

« Can get expected running time as O(n log n)

Quicksort(A):

f |[A] < 3 : Sort(A) directly

“Ise: choose a pivot element p «— A
Aps
Quicksort(A <p)
Quioksort(A>p)

A, < Partition around p

Modified Rand. Quicksort

* Before we analyze quick sort with uniform random pivot
* (Consider the following modification

« Pick pivot p randomly

« Partition array around p

« |f pisabad pivot (say,
max{ [A_,|,|As,|} > (3/4)|A]), we throw it our and

pick another pivot
* Else, we recursively call Quicksort on the partitions

 We know that expected number of trials before we get a good
pivot is 2 and a good pivot gives a 1/4,3/4 split

« This immediately gives us expected running time as O(nlog n)

Randomized Quicksort

e Suppose we don't throw out bad pivots (its wasteful anyway)
e (Can we still show the expected running time is the same

* [ntuitively bad pivots don't hurt asymptotically, because
they only occur 1/2 the time

 We analyze quicksort using another accounting trick
* Only two types of work:
 Work making recursive calls (lower order term, turns out)
 Work partitioning the elements

« How many recursive calls in the worst case”

« O(n)

Randomized Quicksort

 We thus need to bound the work partitioning elements

« Partitioning an array of size n around a pivot element p takes
exactly n — 1 comparisons

« We won't look at partitions made in each recursive calls,
which depend on the choice of random pivot

* |dea: Account for the total work done by the partition step by
summing up the total number of comparisons made

 [wo ways to count total comparisons:
 |Look at the size of arrays across recursive calls and sum

 |Look at all pairs of elements and count total # of times
they are compared (easier to do in this case)

Counting Total Comparisons

« Just for analysis, let B denote the sorted version of input
array A, that is, Bli] is the ith smallest element in A

» Define random variable X;; as the number of times Quicksort

compares B|i] and B| /]

. Observation: X;; = 0 or X;; = 1, why?

« BJ1], B|j] only compared when one of them is the
current pivot; pivots are excluded from future recursive
calls

n n
Let ' = Z Z X;; be the total number of comparisons
i=1 j=i+1

made by randomized Quicksort

Expected Running Time

~ Goal: E[T]=E Z Z X | = Z Z E[X,]

i=1 j=i+1 i=1 j=i+1
. ElX;] =PrlX; =1}
. Whenis Xij = 1? That is, when are B|i] and B|j] compared?
« (Consider a particular recursive call. Let rank of pivot p be r.
« Case 1.0Oneofthemisthepivot:r =10rr =
« Case 2. Pivotis betweenthem: r > i1andr <]

« Case 3. Both less than the pivot: r > 1,]

« Case 4. Both greater than the pivot: r < 1,J

Comparisons for Each Case

e« Casel.r=t1orr=j

« BJi] and B|J]| are compared once and one of them is
excluded from all future calls

e« Case2.r>t1andr<j

« BJi] and B| /]| are both compared to the pivot but not to each
other, after which they are in ditferent recursive calls: will never
be compared again

« Casel3.r>1,jandCase4.r<1,]J

« BJi] and B[/] are not compared to each other, they are both in
the same subarray and may be compared in the future

- Takeaway: B|i], B[] are compared for the 1st time when one of
them is chosen as pivot from Bli], B[i + 1], ..., B[j] & never again

Expected Running Time

. Pr[Xl-j = 1] = Pr(one of them is picked as pivot from
Bli],Bli + 1], ..., B[]

PriX..= 1] =
. Py =1 j—i+1

: E[T]=Zn: ZHZE[XUFZZHZ Zn: -_l-1+1

i=1 j=i+1 i=1 j=i+1’

Expected Running Time

« BJi] and B|J] are compared iff one of them is the first pivot
chosen from the range Bli], Bli + 1], ..., B|J]

- P ==
: E[T1=i iﬂxy]:zzn: Zn: —
i=1 j=i+1 o) T

e Forfixed i, inner sum is

1 1 1 1

n
| | ... < — = 0O(loen
3 T T i Z;f (logn)

* Thus, expected running time
E|T] = Omlogn + n) = O(nlogn)

N

From # of recursive calls

Quick Sort Summary

 Las Vegas algorithms like Quicksort and Selection are always
correct but their running time guarantees hold in expectation

 We can actually prove that the number of comparisons made
by Quicksort is O(n log n) with high probability

* This means the the probability that the running time of
quicksort is more than a constant factor away from its
expectation is very small (polynomially small in n)

 (Called concentration bounds
 (Can prove by yet another accounting trick:

 (Counting how many times a pivot and non-pivot elements
are compared during the execution

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

 Hamiltonian cycle reduction images from Michael Sipser’'s Theory of
Computation Book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

