
More Probability
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• Moved Tai office hours (6-8 Wed) to 6-8 

Thur (will update on website after class) 
• Assignment 9 out Nov 27, Assignment 10 

out Dec 4



• "Suppose you’re on a game show, and you’re given the choice of three 
doors. Behind one door is a car, behind the others, goats. You pick a door, 
say number 1, and the host, who knows what’s behind the doors, opens 
another door, say number 3, which has a goat. He says to you, ”Do you 
want to pick door number 2?” Is it to your advantage to switch your 
choice of doors?" --- Craig. F. Whitaker Columbia, MD

Monty Hall Problem



• The car is equally likely to be hidden behind any of the 3 
doors 

• The player is equally to pick any of the 3 doors, regardless of 
the car's location 

• After the player picks a door, the host must open a different 
door with a goat behind it and offer the choice to switch 

• If the host has a choice of which door to open, he is equally 
likely to select each of them

Clarifying the Problem



• Sample space: set of all possible outcomes 

• An outcome involves 3 things:   

• door concealing the car 

• door initially chosen by the player 

• door that host opens to reveal a goat 

• Every possible combination of this is an outcome 

• We can visualize these as a tree diagram

• Sample space  is then:S

Find the Sample Space



• Question.   What is the probability that ____ ?

• Model as an event (subset of the sample space) 

• Event that player wins by switching: 

•  

• Exactly half of the outcomes 

• Switching leads to win with probability half? 

• No!  

{(A, B, C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), (C, B, A)}

Define Events of Interest



• Each outcome is not equally likely! 

• To determine probability, assign edge probabilities (conditional on previous parts of tree!) 

• , , , etc. 

• Sum of probabilities of all outcomes is 1 

• (Notice) probability is just a function 

• Notations.    

• Definition (Probability space).   
A sample space  together with a probability  
function  
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Determine Outcome Probabilities



• We now have a probability of each outcome 

• Probability of an event is the sum of the probabilities of the 
outcomes it contains, i.e.,   

• (switching wins) =  

• It is better to switch! 

• Takeaway:  resist the intuitively appealing answer
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Compute Event Probabilities
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Event (Switching Wins) = 



• Suppose that there are  students in a lecture hall 

• Assume for each student, any of the 365 possible days 
are equally likely as their birthday 

• Assume birthday are mutually independent  

• Question.  What is the likelihood that no two students have 
the same birthday? 

• Let  be the event that the th persons birthday is different 
from the previous  people 

•  (all  different birthdays)  

m

n =

Ai i
i − 1

Pr m

The Birthday Paradox

=  

= 

Pr(A1 ∩ A2 ∩ … ∩ Am)

Pr(A1) ⋅ Pr(A2 |A1) ⋅ Pr(A3 |A1 ∩ A2)…Pr(An |A1 ∩ … ∩ An−1)



•  (all  different birthdays)  

 

 

•  for probability to be  

• For , we get   

• Thus, with around  people in this class, we have a % 
chance of two people having the same birthday

Pr m

= 1 ⋅ (1 −
1
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e−j/n ≈ e−m2/2n

m ≈ 2n ln 2 1/2

n = 365 m = 22.49
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The Birthday Paradox

Useful Inequality: 

 for (1 − x) ≤ ( 1
e )

x

x ≥ 1



Source: Wikipedia



• Definition.  A random variable  is a function from a sample space  (with 
a probability measure) to some value set (e.g. real numbers, integers, etc.) 

• So for example:  

• I flip a coin 10 times.  Let  be the number of heads 

•  

•  

•  ? 

•

X S

X

Pr[X = 0] = 1/210

Pr[X = 10] = 1/210

Pr[X = 4]

Pr[X = 4] = (10
4 ) 1

24

1
26

=
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512

Random Variables



• Event either does or does not happen, what if we want to 
capture magnitude of a probabilistic event 

• Suppose I flip  independent fair coins, then the number 
of heads is a random variable 

• Number that comes up when we roll a fair die is a 
random variable  

• If an algorithm flips some coins then the running time of 
the algorithm is a random variable 

• A random variable from  to  is called an indicator 
random variable or Bernoulli random variable

n

S {0,1}

Random Variable



• Every time you do the experiment, associated random 
variable takes a different value 

• How can we characterize the average behavior of a 
random variable? 

• Definition.  Expected value of a random variable  
defined on a sample space  is   

                    

• Let  be the number that comes up when we roll a fair, six-
sided die, then the expected value of  is  

        

R
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Expectation
To get the E to look 
good in latex, use 
\mathrm{E} or \E

(We won’t use it like  in this 
class, but if you really want to, 

it’s \mathbb)

𝔼



• We can group together all outcomes for which the random 
variable takes the same value 

• Alternate Definition.  Expected value of a random variable  
defined on a sample space  is   

                    

• If  is an arbitrary event with , the conditional 
expectation of  given  is  

                    

• (Law of total expectation)
•      If  is a finite partition of the sample space then 

                  

R
S

E(R) = ∑
x

x ⋅ Pr(R = x)

A Pr[A] > 0
X A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

{A1, A2, …}

E(X) = ∑
i

E(X |Ai) ⋅ Pr(Ai)

Expectation



• Very important tool in randomized algorithm  

• Expectation of random variables obey a wonderful rule 

• Informally, it says that the expectation of a sum is the sum 
of the expectations. 

• Formally, for any random variables  and any 
coefficients   
 

  

• Note.  Always true!  Linearity of expectation does not 
require independence of random variables.

X1, X2, …, Xn
α1, α2, …, αn

E[
n

∑
i=1

(αi ⋅ Xi)] =
n

∑
i=1

(αi ⋅ E[Xi])

Linearity of Expectation



• There is a dinner party where  men check their hats. The hats are 
mixed up during dinner, so that afterward each man receives a 
random hat. In particular, each man gets his own hat with probability 

. What is the expected number of men who get their own hat? 

• Let  be the random variable denoting the number of men who get 
their hat back.  Goal: compute . 

• Usual trick.  Express random variable  as a sum of indicator 

random variables  where  is  if th person gets their hat 

back, else it is . 

•
Use linearity of expectation.  

• What is ? 

•
, so 

n

1/n
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∑
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∑
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n
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E(Ri) = 1

Hat Check Problem



• What is ? 

•  if  gets his hat;  otherwise 
• By definition, 

   

•  

• Sample space: all  permutations of hats (they are given back 
in a certain order 

• Event we care about: the th hat given back belong to  

• Outcomes in this event: fix  in the th position.  All other hats 
can be in any order—-in fact, the number of outcomes is equal 
to the number of ways to order all other hats 

• So  outcomes in this event.  Each occurs with 
probability  

•

E(Ri)
Ri = 1 i Ri = 0

E(Ri) = 1 ⋅ Pr(i gets i's hat) + 0 ⋅ Pr(i gets another hat)
E(Ri) = Pr(i gets i's hat)

n!

i i
i i

(n − 1)!
1/n!

E(Ri) = (n − 1)!/n! = 1/n

Hat Check Problem



• When every outcome is equally likely 

• Let  be the random variable of the experiment 

•   

•
 

• Example, fair coin toss: heads and tails are equally likely

X

Pr[X = x] =
1

|S |

E[X] =
1

|S |
⋅ ∑

x∈S

Pr(X = x)

Uniform Distribution



• To entertain your family you have them shuffle deck of  cards 
and then turn over one card at a time. Before each card is 
turned, you predict its identity. You have no psychic abilities or 
memory to remember cards 

• Your strategy: guess uniformly at random 

• How many predictions do you expect to be correct? 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•  

• Thus, 

n

X
Xi i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
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n
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E[Xi]

E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing: Memoryless



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that 
have not been turned over 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Card Guessing: Memoryfull



• The th harmonic number, denoted  is defined as 

 

• Theorem.   

• Proof Idea. Upper and lower bound area under the curve 

n Hn

Hn =
n

∑
i=1

1
i

Hn = Θ(log n)

Harmonic Numbers



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that 
have not been turned over 

• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  
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Card Guessing: Memoryfull
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