More Probability



Admin

 Moved Tai office hours (6-8 Wed) to 6-8
Thur (will update on website after class)

* Assignment 9 out Nov 27, Assignment 10
out Dec 4



Monty Hall Problem

e "Suppose youre on a game show, and youre given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a door,
say number |, and the host, who knows what's behind the doors, opens
another door, say number 3, which has a goat. He says to you, "Do you
want to pick door number 27" Is it to your advantage to switch your
choice of doors?" --- Craig. k. Whitaker Columbia, MD




Clarifying the Problem

The car is equally likely to be hidden behind any of the 3
doors

he player is equally to pick any of the 3 doors, regardless of
the car's location

After the player picks a door, the host must open a different
door with a goat behind it and offer the choice to switch

It the host has a choice of which door to open, he is equally
Ikely to select each of them




Find the Sample Space

Sample space: set of all possible outcomes

An outcome involves 3 things:

* door concealing the car

e door initially chosen by the player

* door that host opens to reveal a goat

Every possible combination of this is an outcome

We can visualize these as a tree diagram

Sample space S is then:
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Define Events of Interest

* Question. What is the probability that

/

Model as an event (subset of the sample space)

Event that player wins by switching:

Switching leads to win with probability half?

e {(A,B,(0),A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)}

o [Exactly half of the outcomes

e No!
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Determine OQutcome Probabilities

Each outcome is not equally likely!

To determine probability, assign edge probabilities (conditional on previous parts of tree!)

| | |
Pr(A, B, C) = —, Pr(A, A, C) = —, Pr(A, B, C) = —, etc.
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Compute Event Probabilities

 We now have a probability of each outcome

* Probability of an event is the sum of the probabillities of the
outcomes it contains, i.e., Pr(E) = Z Pr(x)
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The Birthday Paradox

Suppose that there are m students in a lecture hall

Assume for each student, any of the n = 365 possible days
are equally likely as their birthday

Assume birthday are mutually independent

Question. What is the likelihood that no two students have
the same birthday?

Let A, be the event that the ith persons birthday is different
from the previous i — 1 people

Pr (all m different birthdays)
= Pr(Al ﬂA2 N ... ﬂAm)




The Birthday Paradox

o Pr (all m different birthdays)

= () (=) () ()

. m ~4/2n1n 2 for probability to be 1/2
e Forn = 365, we getm = 22.49

 Thus, with around 23 people in this class, we have a 50%
Useful Inequality:

(1 —x) < <l> forx > 1

€

chance of two people having the same birthday



Birthday problem

From Wikipedia, the free encyclopedia

For yearly variation in mortality rates, see birthday effect. For the mathematical brain teaser that was asked in the Math Olympiad, see Cheryl's Birthday.

In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of » randomly chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are only 366 possible birthdays, including February 29). However, 99.9% probability
Is reached with just 70 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (excluding February 29) is equally probable
for a birthday.

Actual birth records show that different numbers of people are born on different days. In this case, it can be shown that the number of people required to reach the 50% threshold is 23 or
fewer.['l For example, if half the people were born on one day and the other half on another day, then any two people would have a 50% chance of sharing a birthday.

It may well seem surprising that a group of just 23 individuals is required to reach a probability of 50% that at least two individuals in the group have the same birthday: this result is perhaps
made more plausible by considering that the comparisons of birthday will actually be made between every possible pair of individuals = 23 x 22/2 = 253 comparisons, which is well over half
the number of days in a year (183 at most), as opposed to fixing on one individual and comparing his or her birthday to everyone else's. The birthday problem is not a "paradox" in the literal
logical sense of being self-contradictory, but is merely unintuitive at first glance.

Real-world applications for the birthday problem include a cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of finding a collision
for a hash function, as well as calculating the approximate risk of a hash collision existing within the hashes of a given size of population.

Source: Wikipedia



Random Variables

Definition. A random variable X is a function from a sample space S (with
a probability measure) to some value set (e.g. real numbers, integers, etc.)

* 5o for example:

« |flipacoin10times. Let X be the number of heads
. Pr[X=0]=1/2"

. Pr[X=10] = 1/2'°

« Pr[X=4]7

2426 512

10\ 1 1 105
L PriX=4]=( —



Random Variable

 Event either does or does not happen, what it we want to
capture magnitude ot a probabilistic event

o Suppose | flip n independent fair coins, then the number
of heads is a random variable

 Number that comes up when we roll a fair die is a
random variable

e [f an algorithm flips some coins then the running time of
the algorithm is a random variable

* A random variable from S to {0,1} is called an indicator

random variable or Bernoulli random variable



Expectation

 Everytime you do the experiment, associated random
variable takes a different value

« How can we characterize the average behavior of a
random variable?

« Definition. Expected value of a random variable R
defined on a sample space S is

E(R) = ) R(w) - Pr(w)

wesS

* Let R be the number that comes up when we roll a fair, six-
sided die, then the expected value of R is

N1 1 7
E(R)=Zl-g=g(1+2+3+4+5+6)=5

=1

To get the E to look
good in latex, use
\mathrm{E} or \E

(We won’t use it like It in this

class, but if you really want to,
it’'s \mathbb)




Expectation

We can group together all outcomes for which the random
variable takes the same value

Alternate Definition. Expected value of a random variable R
defined on a sample space S is

E(R) = Zx . Pr(R = x)

X

f A is an arbitrary event with Pr[A] > 0, the conditional
expectation of X given A is

E[X|A] := Zx- PrX = x|A]

(Law of total expectation)

f {A{, A,, ...} is afinite partition of the sample space then

EX) = ) EX|A)-Pr(A)



Linearity of Expectation

* Very important tool in randomized algorithm

 EXxpectation of random variables obey a wondertul rule

* [nformally, it says that the expectation of a sum is the sum
of the expectations.

 Formally, for any random variables X, X,, ..., X, and any

coefficients ay, a,, ..., Q,

E| i (051' ' Xl)] = i (051' ’ E[Xl])
=1 =1

* Note. Always true! Linearity of expectation does not

require independence of random variables.



Hat Check Problem

o Thereis a dinner party where n men check their hats. The hats are

mixed up during dinner, so that afterward each man receives a
random hat. In particular, each man gets his own hat with probability
1/n. What is the expected number of men who get their own hat?

« Let R be the random variable denoting the number of men who get
their hat back. Goal: compute E(R).

« Usual trick. Express random variable R as a sum of indicator

random variables R = Z R, where R, is 1 if ith person gets their hat

i=1
back, else it is 0.

Use linearity of expectation. E(R) = E( Z R) = Z E(R))
i=1 i=1
« Whatis E(R))7?

E(R) = 1/n, so E(R) = Z ER) = 1
=1




Hat Check Problem

« R, = 1ifigets his hat; R; = 0 otherwise

e By definition,
E(R) =1 - Pr(i getsi's hat) + 0 - Pr(i gets another hat)

« E(R;) = Pr(i gets i's hat)

« Sample space: all n! permutations of hats (they are given back
INn a certain order

« Event we care about: the 1th hat given back belong to 1

« Qutcomes in this event: fix 7 in the 1th position. All other hats

can be in any order—-in fact, the number ot outcomes is equal
to the number of ways to order all other hats

e So(n — 1)! outcomes in this event. Each occurs with
probability 1/n!

. ER)=m—-1D!/n!=1/n




Uniform Distribution

« When every outcome is equally likely

« Let X be the random variable of the experiment

PriX = x| =
. PA=AETY

E[X] = ‘;‘ -ZPr(X=x)

xS

« Example, fair coin toss: heads and tails are equally likely




Card Guessing: Memoryless

e [0 entertain your family you have t
and then turn over one card at a ti

nem shuffle deck of n cards
me. Before each card is

turned, you predict its identity. You
memory to remember cards

have no psychic abilities or

e Your strategy: guess uniformly at random

* How many predictions do you exp

ect to be correct?

« Let X denote the r.v. equal to the number of correct predictions

and X. denote the indicator variab

le that the 1th guess is correct

Thus, X = iXi and E[X] = E[iXi] = iE[Xi]
i=1 i=1 i=1

« Thus, E[X] =1




Card Guessing: Memoryfull

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X] = E[iX,-] = i ELX;]
i=1 i=1 i=1

E[X,] = Pr(X; = 1) =

n—i+1

n n 1

. Thus,E[X]=zn_1+1 =Z7




Harmonic Numbers

« The nth harmonic number, denoted H, is defined as
n
1
H,= ) =
i=1

« Theorem. H, = O(logn)

* Proof ldea. Upper and lower bound area under the curve

1 2 3 4 5 6 7 8



Card Guessing: Memoryfull

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = ZXi and E[X] = E[ZXi] = ZE[Xi]
i=1 =1 =1

E[X] = Pr(X;=1) =

n—i+1

n

1 LN |
Thus, E[X] = = — =0(
. Thus, ELX] an—i+1 Z}i (log n)
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 Hamiltonian cycle reduction images from Michael Sipser’'s Theory of
Computation Book


https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

