Wrapping up NP and Intro
to Probability



Admin

 Move Tai office hours (6-8 Wed) to 6-8 Thur?
 Email me today if that’s an issue

 Assgn 6 back, Assgn 7 out, later today

* Readings on Glow for probability
* Assignment 7 is last before Thanksgiving

o Assignment 8 out Nov 27. Only 9 assignments
this semester.

» Attendance not required in class when we go
remote

 Please come anyway if you can!



Graph-3-Color is NP Complete:
3-SAT <, Graph 3-Color



Graph 3-Color Problem

e 3-COLOR. Given an undirected graph G = (V, E), is it
possible to color the vertices with 3 colors s.t. no
adjacent nodes have the same color.

« We argued previously that 3-COLOR &€ NP.
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3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

e Proof. Given a 3-SAT instance @, define G as follows

« Truth gadget: a triangle with three nodes T, F, and X
(for true, false and other) — they must get ditferent

colors (say true, false, other)

« Variable gadget: triangle made up of variable a, its T F
negation @ and the X node of the truth gadget — \
enforces a, a are colored true/false X,



3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

e Proof. Given a 3-SAT instance @, define G as follows

(fo
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ruth gadget: a triangle with three nodes 7, F, and X

" true, false and other) — they must get different

ors (say true, false, other)

Variable gadget: triangle made up of variable a, its

negation @ and the X node of the truth gadget —

enforces a, a are colored true/false

Clause gadget: joins three literal nodes (from the

variable gadget) to node 1 in the truth gadget using a

subgraph as shown below




3-SAT to 3-Color Problem

« Observation.

 Clause gadget enforces that in a valid 3-coloring, not
all three literals can be colored FALSE

e Ifa,b(orb,c)or(a,c)getthe same color (say,
FALSE) then the right-end-point of the triangle must
be colored the same (shown in blue)

* The remaining literal cannot be colored false!




3-SAT to 3-Color Problem

» Theorem. 3-SAT < 3-COLOR

« Overall G example

+ (Yes, this | icated 1// \\\
(Yes, this is a complicate ~

graph. Complicated graphs
are going to be the hard
®
C

raphs for problems like 3-
olor!)
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3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

 Proof Sketch.

. (=) If D is satisfiable, color the variables based on
the satistying assignment (and because each clause is
satisfied) extend the coloring to the clause gadgets

. (< )If Gis 3-colorable, then we can assign truth
values based on the colors (at least one of the literals
in each clause must be colored true) and thus the
resulting assignment must satisfy @

 Note this problem extends to k-coloring of graphs for
k > 3 and the generalized problem is also hard.



List of NPC Problems So Far

* SAT/ 3-SAT

 |INDEPENDENT SET

 VERTEX COVER

 SET COVER

 CLIQUE

 3-COLOR

* Subset-Sum

 Knapsack

* Next:

* Traveling salesman problem

 Hamiltonian cycle / path



NP Hardness

* Another explanation about what we're
proving and why.

 \WWhat do you start with an instance of”
 \WWhat information do you have”

* \What do you need to prove?



(avbVc)A(bVEVdAA(@Vevd)A(avbvd)

NP Hardness

e |et's say you told me you had an algorithm
that could solve 3-coloring Iin polynomial
time

 Then | come to you with a SAT instance

* |n polynomial time we transtorm the SAT
instance into a graph (using the method
from last slide), and feed that graph into
your algorithm




(avbVc)A(bVEVdAA(@Vevd)A(avbvd)

NP Hardness

e (We proved) If my SAT instance is
satisfiable, your algorithm finds a 3-coloring

e |f my SAT instance is not satisfiable, your
algorithm does not find a 3-coloring

e Same as: if your algorithm finds a 3-
coloring, my SAT instance must be
satisfiable

e Contradiction! SAT (probably) cant be
solved in polynomial time




Traveling Salesman Problem



https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d

Traveling Salesman Problem

 Extremely famous NP complete problem

« Consider a salesman who visits n cities labeled vy, ..., Vv,

« Salesman starts at v; and wants to find a tour, an order in which
to visit all the other cities and return home

 Goal. Travel as little distance as possible

. Formally, let d(i, j) be the distance from city v; to city v; (not
necessarily symmetric or triangle inequality (e.g. airplane prices))

 TSP. Decision version: given a set of distances on n cities and a
bound D), is there a tour (of all the cities) of length at most D?

 Many applications: VLSI design, robotics, cache-efficiency

* Wil prove TSP is NP hard using a similar problem:
HAMILTONIAN CYCLE/PATH



(Directed) Hamiltonian Cycle

« HAMILTONIAN-CYCLE. Given a directed graph G = (V, E) does
there exists a cycle 1 that visits every vertex exactly once?

 We want to prove HAMILTONIAN-CYCLE is NP complete
 HAMILTONIAN-CYCLE € NP
» (ertificate: sequence of vertices in the graph
* Poly-time verifier

« Check if sequence is a valid path in G

 Check if path visits every vertex exactly once @

« HAMILTONIAN-CYCLE is NP hard
o Sufficiently different from other NP hard graph problems

 We (won't) reduce 3SAT to it



3SAI <, Hamiltonian Cycle

This is what the proof looks like. You'll probably see it in 361

In this class we will take it as given that Hamiltonian cycle Is
NP-hard.
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Hamiltonian-Cycle <, TSP



Hamiltonian Cycle to TSP

In Class Exercise. HAMILTONIAN-CYCLE < TSP

Given a directed graph G, convert it to an instance of TSP: that is,
 Citiescy,...,C,
e d(i, j): distance from city i to city j (all pairs of cities need a distance)

« Target D such that G has a hamiltonian cycle iff there exists a tour of n
cities of length at most D

Yes Yes

(G) Instance of TSP

—————  Poly time

Algorithm for TSP

Algorithm for HAM CYCLE



TSP is NP Complete

* Claim. TSP € NP

» Claim. HAMILTONIAN-CYCLE <, TSP

* Proof. Given directed graph G = (V, E), define instance of TSP as:
. City v/ for each node v;
» d(,j)=1if(v,v) € E
. d(,j)=2if(vy,v) € E

« (G has a Hamiltonian cycle iff there is a tour of length at most n

« (=) If G has a hamiltonian cycle, then it defines a tour of length n

« (< ) Suppose there is a tour of length at most n, why does this ordering
correspond to a hamiltonian cycle”



(Directed) Hamiltonian Path

« HAMILTONIAN-PATH. Given a directed graph G = (V, E) does there exists
a path P that visits every vertex exactly once? Such a path is called a
hamiltonian path

* Note: path is allowed to start and end anywhere as long as it visits every
node exactly once

 HAMILTONIAN-PATH € NP
« Certificate: path in G
* \Verifier: check if path visits each node exactly once
 Jo prove HAMILTONIAN PATH is NP hard, we can either
« We can modity our hamiltonian cycle reduction (delete t — )

 More fun: (exercise) Directly reduce from HAMILTONIAN CYCLE



Fun Facts

 Hamiltonian path problem says NP complete even on undirected, two
connected, cubic and planar graphs!

o Still NP complete on general grid graphs, but poly-time solvable on “solid
grid graphs” (a Williams undergrad thesis by Chris Umans)

SIAM [ COAMPUT,
Vol. §. No. 4, December 1976

THE PLANAR HAMILTONIAN CIRCUIT PROBLEM IS NP-
COMPLETE*

M. R. GAREYT, D. S. JOHNSONt AND R. ENDRE TARJAN{

Abstract. We consider the problem of determining whether a planar, cubic, triply-connected
graph G has a Hamiltonian circuit. We show that this problem is NP-complete. Hence the Hamiltonian
circuit problem for this class of graphs, or any larger class containing all such graphs, is probably
computationally intractable.

Key words. algorithms, computational complexity, graph theory, Hamiltonian circuit, NP-
completeness

1. Introduction. A Hamiltonian circuit in a graph' is a path which passes
through every vertex exactly once and returns to its starting point. Many attempts
have been made to characterize the graphs which contain Hamiltonian circuits
(see [2, Chap. 10] for a survey). While providing characterizations in various
special cases, none of these results has led to an efficient algorithm for identifying
such graphs in general. In fact, recent results [S] showing this problem to be
“NP-complete” indicate that no simple, computationally-oriented characteriza-
tion is possible. For this reason, attention has shifted to special cases with more
restricted structure for which such a characterization may still be possible. One
special case of particular interest is that of planar graphs. In 1880 Tait made a
famous conjecture [8] that every cubic, triply-connected, planar graph contains a
Hamiltonian circuit. Though this conjecture received considerable attention (if
true it would have resolved the ““four color conjecture™), it was not until 1946 that
Tutte constructed the first counterexample [9]). We shall show that, not only do
these highly-restricted planar graphs occasionally fail to contain a Hamiltonian
circuit, but it is probably impossible to give an efficient algorithm which disting-
uishes those that do from those that do not.

2. Proof of result. Our proof of this result is based on the recently developed
theory of “NP-complete problems”. This class of problems possesses the follow-
ing important properties:

Hamiltonian Cycles in Solid Grid Graphs
(Extended Abstract)

Christopher Umans*

Computer Science Division
U.C. Berkeley

umans@cs.berkeley.edu

Abstract

A grid graph s a finite node-induced subgraph of
the infinite two-dimensional integer grid. A solid grid
graph s a grid graph without holes. For general grid
graphs, the Hamiltonian cycle problem is known to
be N'P-complete. We give a polynomial-time algo-
rithm for the Hamiltonian cycle problem in solid grid
graphs, resolving a longstanding open question posed
in [IPS82]. In fact, our algorithm can identify Hamil-
tontan cycles in quad-quad graphs, a class of graphs
that properly includes solid grid graphs.

1 Introduction

A grid graph is a finite node-induced subgraph of
the infinite two-dimensional integer grid. A solid grid
graph 1s a grid graph all of whose bounded faces
have area one. The study of Hamiltonian cycles in
grid graphs was initiated by Itai, Papadimitriou and
Szwarcfiter [IPS82], who proved that the problem
for general grid graphs is NP-complete, and gave a
polynomial-time algorithm for rectangular solid grid
oranhs. The anestion of whether a nolvnomial-time

William Lenhart

Computer Science Department
Williams College

lenhart@cs.williams.edu

trails (a relaxation of Hamiltonian cycles) in a broad
subclass of grid graphs called polymino, have even con-
Jectured that for solid grid graphs, deciding Hamil-
tonicity is N"P-complete.

We present a polynomial-time algorithm that finds
Hamiltonian cycles in solid grid graphs using the well-
known technique of cycle merging. Given an input
graph G, we first find a 2-factor, which is a spanning
subgraph for which all vertices have degree two. The
2-factor 1s a set of disjoint cycles that exactly cover
the vertices of (¢; a Hamiltonian cycle is a 2-factor
with a single component. We then repeatedly iden-
tify a transformation of the 2-factor that reduces the
number of components. This process either identifies
a Hamiltonian cycle or terminates with multiple com-
ponents if one does not exist.

Our algorithm can be applied to a generalization
of solid grid graphs which are “locally” solid grid
graphs but may not be fully embeddable in the integer
grid without overlap. We call these graphs quad-quad




constraint satisfaction

SAT
3-SAT
CLIQUE < == INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUSBL?I\IjT-
VERTEX-COVER HAM-CYCLE TSP KNAPSACK

!

SET-COVER



Intro to Probability



Why Probability?

 Randomization is extremely useful in algorithms
e Quicksort
* Hashing
o Simple linear-time median finding

e We'll see others

 Plan: we’'ll start with some things you've likely seen before.
But | want you to have a good foundation.



“Deathbed” Formulas

* You should remember these even on your deathbed

e Extremely useful in probability
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Discrete Probability Review

« A discrete probability space consists of a non-empty, countable set €2,
called the sample space, and a probability mass function Pr : £ — R s.t.

Prlw] >0 Vw € 2 and Z Prlw] =1

weEL)

e E.Q.
A fair coin: £ = {heads, tails} and Pr[heads] = Pr[tails] = 1/2
o A fair six-sided die: & = {1,2,3,4,5,6} and Prlw] = 1/6 Vw € Q2




Discrete Probability Review

* |dea: the sample space consists of all possible outcomes

e |fyou're stuck on a probability question, sometimes it may help to list all
possible outcomes!

e An event is a set of outcomes

 The probability of an event is the weight of all outcomes satisfying that
event




Four Step Method

e Step 1. Find the sample space
e Step 2. Define events of interest
e Step 3. Determine outcome probabilities

o Step 4. Determine event probabilities

When it comes to probability:
Intuition: Bad

Formalism: Good




Example

« Let’s say every baby is a girl or a boy with probability 1/2 each

e |[f someone has four children, is it more likely that they have two girls and
two boys”? Or three of one, and one of the other?

e First: what is the sample space/how many outcomes do we have”? What is
their weight”




Example

« Let’s say every baby is a girl or a boy with probability 1/2 each

f someone has four children, is it more likely that they have two girls and
two boys”? Or three of one, and one of the other?

e First: what is the sample space/how many outcomes do we have”? What is
their weight?

BBBG GGGG GGGG GBBG
BBGB GGGB BBBB BGGB
BGBB GGBG GGBB BGBG
GBBB GBGG GBGB BBGG



Example

« Let’s say every baby is a girl or a boy with probability 1/2 each

f someone has four children, is it more likely that they have two girls and
two boys”? Or three of one, and one of the other?

3/16 =1/2

GGGG GBBG
GGGB BBBB BGGB
GGBG GGBB BGBG
GBGG GBGB BBGG

BBBG
BBGB
BGBB

GBBB



Example

« Let’s say every baby is a girl or a boy with probability 1/2 each

f someone has four children, is it more likely that they have two girls and
two boys”? Or three of one, and one of the other?

6/16 < 1/2

BBBG BGGG GGGG GBBG
BBGB GGGB BBBB BGGB

BGBB GGBG BGBG
GBBB  GBGG BBGG



Example (using math)

« Let’s say every baby is a girl or a boy with probability 1/2 each

e |[f someone has four children, is it more likely that they have two girls and
two boys”? Or three of one, and one of the other?

« Each outcome occurs with probabillity 1/2%

4
<1> = 4 ways to have one girl; 4 ways to have one boy; total = 8/16

4
(2) = 6 ways to have two girls and two boys; total = 6/16



Independence

* [ntuition: two events are independent it they do not affect each other
 We'll see a formal definition in a couple slides

« Example: let's say | flip two coins. The event that the first is a head, and the
event that the second Is a head, are independent.

 Not-independent events: Let's say | flip a coin 10 times. Consider the
following two events:

« Event 1:Flips 1, 2, and 3 are all heads
« Event 2: Flips 2, 3, and 4 are all heads

 These are not independent. If Event 1 is true, Event 2 is more likely. It
Event 1 is false, Event 2 is less likely.



Independent Probabilities

 Definition of independence: A and B are independent events if and only if:
Pr|A and B| = Pr|A] - Pr|B]

. Probability of flipping 10 heads in a row is 1/219

 Probability of flipping a heads, and then rolling a 1 on a die, is 1/12



Conditional Probability

« The probability of event A conditioned on event B is written as Pr[A | B]

« |dea: given that B occurred, what is the probability that A occurs?

_ Pr[A and B]
. Definition: Pr[A | B] =
Pr|B]

« Pr|A] is the fraction of S that is red

. Pr[A | B]is the fraction of A that is purple (overlaps with B)



Conditional Probability: Multiplying and Ind.

Pr|A and B]
Pr|B]

. Definition of conditional probability: Pr[A | B] =

e Thatmeansthat Pr[A and B] = Pr[A | B] - Pr[B] (Product rule)

« We know for independent events A and B that
Pr|A and B] = Pr[A] : Pr[B]. So that means that A and B are
independent if and only if Pr[A | B] = Pr[A]



Monty Hall Problem

e "Suppose youre on a game show, and youre given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a door,
say number |, and the host, who knows what's behind the doors, opens
another door, say number 3, which has a goat. He says to you, "Do you
want to pick door number 27" Is it to your advantage to switch your
choice of doors?" --- Craig. k. Whitaker Columbia, MD




Clarifying the Problem

The car is equally likely to be hidden behind any of the 3
doors

he player is equally to pick any of the 3 doors, regardless of
the car's location

After the player picks a door, the host must open a different
door with a goat behind it and offer the choice to switch

It the host has a choice of which door to open, he is equally
Ikely to select each of them




Find the Sample Space

Sample space: set of all possible outcomes

An outcome involves 3 things:

* door concealing the car

e door initially chosen by the player

* door that host opens to reveal a goat

Every possible combination of this is an outcome

We can visualize these as a tree diagram

Sample space S is then:

car
location

A

player’s
initial
guess

door
revealed

outcome

(A,A,B)
(A,A,C)
(A,B,C)
(A,C,B)
(B,A,C)
(B,B,A)
(B,B,C)
(B,C,A)
(C,A,B)
(C,B,A)
(C,C,A)

(C,C,B)



Define Events of Interest

* Question. What is the probability that

/

Model as an event (subset of the sample space)

Event that player wins by switching:

Switching leads to win with probability half?

e {(A,B,(0),A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)}

o [Exactly half of the outcomes

e No!

car
location

A

player’s
initial
guess

door
revealed

C

outcome

(A,A,B)

(A,A,C)

C(A,B,C))
C(A,C,B))
C(B,A,C))

(B,B,A)

(B,B,C)

(®om)
(cnm )
(com)

(C,C,A)

(C,C,B)



Determine OQutcome Probabilities

 Each outcome is not equally likely!

1 1 1
, Pr(A,B,C)=— Pr(A A C)=— Pr(A B, C) = —, etc.
13 13 9

 Sum of probabilities of all outcomes is 1

* (Notice) probability is just a function function

car
location

« Notations. Pr[x], Pr(x) A
1/3
* Definition (Probability space). Vs
A sample space S together with a probability >
function Pr : S — [0,1] M3 e

To determine probability, assign edge probabilities (conditional on previous parts of tree!)

door

player’s revealed
initial
guess 1/2 3
1/2
1/3 A c
1K3 B C 1
1/3 C B 1
C
1/3 A
A 1/2
1/3 B 12
]/3 C A ¢ 1
B 1
1/3 A A1
B
1/2
1/3 c A

outcome

(A,A,B) 1/18

(A,A,C) 1/18

C(A,B,C)) 1/9
C(A,C,B)) 1/9
C(B,A,CD 1/9

(B,B,A) 1/18

(8,8,c) 1/18

C(B,C,A)) 1/9
Comm) 16
Coom) 16

(C,C,A) 1/18

(c,c,B) 1/18



Compute Event Probabilities

 We now have a probability of each outcome

* Probability of an event is the sum of the probabillities of the
outcomes it contains, i.e., Pr(E) = Z Pr(x)

xek
o | 1 1 1 1 1 1 oo

° Pr(S\NltChlng WIﬂS) — | | | | | — p.la_\t(_erl’s revealed outcome
9 9 9 9 9 9 3 ;J;:s 1/2 3 (A,A,B) 1/18
* |t Is better to switch! car V3= ¢ (AAC) 1/18
' location 13 8 ¢ 1 ((A,B,C)) 1/9

. . . . 1/ 1 {
 Takeaway: resist the intuitively appealing answer 3 3 i (ace ) 10
A ¢ 1 ((B,A,C)) 1/9
13 o V3 A 12 (B,B,A) 1/18
«_ | (AAB). (AAC) (ABC). (ACB), (BAC). (BBA) e 2 ey s
~ | (B,B,C), (B,C,A), (C,AB), (C,B,A), (C,C,A), (C,C,B) V3 A
13 o ) ((B,C,A)) 9
Event (Switching Wins) = yy A o (caB) ) 1/
(C,B,A) | 1/
{(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C, A B),(C,B,A)} s L ((CCA)) v

13 g 7

(c,c,B) 1/18



Random Variables

Definition. A random variable X is a function from a sample space S (with
a probability measure) to some value set (e.g. real numbers, integers, etc.)

* 5o for example:

« |flipacoin10times. Let X be the number of heads
. Pr[X=0]=1/2"

. Pr[X=10] = 1/2'°

« Pr[X=4]7

2426 512

10\ 1 1 105
L PriX=4]=( —



Random Variable

 Event either does or does not happen, what it we want to
capture magnitude ot a probabilistic event

o Suppose | flip n independent fair coins, then the number
of heads is a random variable

 Number that comes up when we roll a fair die is a
random variable

e [f an algorithm flips some coins then the running time of
the algorithm is a random variable

* A random variable from S to {0,1} is called an indicator

random variable or Bernoulli random variable
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