NP Hardness Reductions ||

Admin

* Problem 2 on Assignment 7 is extra credit

 Assignment /7 due tomorrow

e | just found o
while we're g

 [hanksgiving Is soon!

e |nthe meantime, let's er

O

'00fs. A good mix of C

Ut you can't move the boxes we make
rading—-we'll keep that iIn mina

joy some more NP hardness
ifficulty today...

SET-COVER

Set Cover

* Set-Cover. Given a set U of elements, a collection & of
subsets of U and an integer k, are there at most k subsets
S1, ---» S, Whose union covers U, that is, U C U~ §,

U=1{1,2,3,4,5,6,7}
S¢=13,7} Sp=12,47}

(5.={3.4,5.6)) S;={5}
- S.={1} Sr= {1,2,6,7}) |

k=72

a set cover instance

List of NPC Problems So Far

o SAT/3-SAT
 |INDEPENDENT SET
 VERTEXCOVER
 CLIQUE

Vertex Cover <, Set Cover

 Theorem. VERTEX-COVER <, SET-COVER

* Proof. Given instance (G, k) of vertex cover, construct
an instance (U, 8, k') of set cover problem such that G
nas a vertex cover of size at most « it and only If (U, &, k")

nas a set cover of size at most «.

Yes

Yes

Instance of Instance of
VERTEX-COVER SET COVER

(G, k)

Poly time

Algorithm for SET COVER

Algorithm for Vertex Cover

Vertex Cover <, Set Cover

 Theorem. VERTEX-COVER <, SET-COVER

 Proof. Given instance (G,k) of vertex cover, construct an
instance (U, 8, k) of set cover problem that has a set cover
of size k Iff G has a vertex cover of size k.

e Reduction. U=E, foreach nodev eV, let
S, = {e € E | eincident to v}

€7 é- es ey U={e.e,....e;}
Se=1ene } Sp =1 eres}
@ C6 @ Sc=1 e e, 6565} Sa=1es}
e €s Se=He} Sf = {epenege;)
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

e Claim. (=) If G has a vertex cover of size at most k, then U
can be covered using at most k subsets.

* Proof. Let X € vV be a vertex coverin G

* Then, Y={S | ve X} Is aset cover of U of the same size

€7 () es €y U= { e, €, ...,87}
: Sa — { €3, €7 } Sb — { 62,64}
0 ©6 e CSC = { €3, €4, €5, 66}) Sd — { €5 }
e es - Se={a} (5= {aeaeea})
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

* Claim. («) It U can be covered using at most k subsets
then G has a vertex cover of size at most k.

e Proof. Let YC & be a set cover of size k

* Then, X={v|S €Y} Isavertex cover of size k

€7 €- es €4 U={ep.ep....e0)
Se=1ene } Sp =1 eres}
0 ©6 e CSC — { €3, €4, €5, 66}) Sd — { €5 } :
€1 5 S€={el} €f= {e1a€2»€6,€7})
vertex cover instance set cover instance

(k = 2) (k = 2)

SUBSET-SUM is NP Complete:
Vertex-Cover Sp SUBSET-SUM

Subset Sum Problem

 SUBSET-SUM.
Given n positive integers ay, ..., a, and a target integer 1, is
there a subset of numbers that adds up to exactly 1’

e SUBSET-SUM & NP
e C(Certificate: a subset of numbers

* Poly-time verifier: checks if subset is from the given set and
sums exactly to T

« Problem has a pseudo-polynomial O(nT')-time dynamic
programming algorithm similar to Knapsack

* Will prove SUBSET-SUM is NP hard: reduction from vertex cover

NP hard problems that have pseudo-polynomial algorithms are
called weakly NP hard

Vertex Cover to Subset Sum

» Theorem. VERTEX-COVER <, SUBSET-SUM

« Proof. Given a graph G with n vertices and m edges and a
number k, we construct a set of numbers ay, ..., a, and a target
sum 7 such that G has a vertex cover of size k iff there is a subset
of numbers that sumto 1

(G, k)
—————— Poly time

Algorithm for SUBSET-SUM

Algorithm for VERTEX-COVER

Vertex Cover to Subset Sum

e Theorem. VERTEX-COVER <, SUBSET-SUM

« Proof. Label the edgesof Gas 0,1,...,m — 1.

« Reduction. Create n + m integers and a target value 1 as follows
« Each integeris a m + 1-bit number in base four

* Integers representing vertices and edges:

. Vertex integer a,, : mth (most significant) bitis 1 and for i < m,
the 1th bit is 1 if 1th edge is incident to vertex v

 Edge integer b, : mth digitis 0 and for i < m, the ith bitis 1 if
this integer represents an edge i = (u, v)

m—1
Targetvalue T = k - 4™ + Z 2. 4!
i=0

Vertex Cover to Subset Sum

« Example: consider the graph G = (V, E) where V= {u,v,w, x}

and E = {(u,v), (u,w), v,w), (v,x), (w,x)} U V
5th 4th - (uv) 3d . (uw) | 2nd: (vw) Ist: (vx) Oth: (wx)

a, 1 1 1 0 0 0)

a, 1 1 0 1 1 0 |44 X

a, 1 0 1 1 0 1

a, 1 0 0 0 1 1

by 0 1 0 0 0 0 a, := 1110004, = 1344
Dy 0 0 1 0 0 0 a, :=110110, = 1300
ll:vw 0 0 0 1 0 0 a, := 101101, =1105
i 0 0 0 0 : 0 a, := 100011, = 1029

wx 0 0 0 0 0 1

:= 010000, = 256
., :=001000, = 64
b,,, := 000100, = 16
b,, := 000010, = 4
b, := 000001, = 1

e Ifk=2thenT =222222, = 2730

Correctness

« Claim. G has a vertex cover of size k if and only there is a subset X of
corresponding integers that sums to value 1T°

« (=) Let C be avertex cover of size k in G, define X as

X:=1{a,| ve C}uU{b; | edgei has exactly one endpoint in C} “ Y

« Sum of the most significant bits of X is k and all other bits sum to 2

« Thus the elements of X sum to exactly 1°

= @

w

C={v,w}

m—1
T=k-4"+) 2.4
=0
T = 222222, = 2730

Vertex Cover to Subset Sum

« Claim. G has a vertex cover of size k if and only there is a subset
X of corresponding integers that sums to value T’

. (<) Let X be the subset of numbers that sumto T
. Thatis, thereisV'C V,E'C E st

X = Za+2b—T k - 4m+22 4

veV’ =3

 [hese numbers are base 4 and there are no carries

« Each b, only contributes 1 to the ith digit, which is 2

» Thus, for each edge i, at least one of its endpoints must be in V’
. V'is avertex cover

« Size of V'is k: only vertex-numbers have a 1 in the mth position

Class Exercise:
SUBSET-SUM <, Knapsack

Subset Sum to Knapsack

» Knapsack. Given n elements aq, ..., a, where each element has
a weight w, > 0 and a value v, > 0 and target weight W and
value K. Does there exist a subset X of numbers such that

* Knapsack € NP

e (Can check if given subset satisfies the above conditions Se 22

<=
» =

Creative Commons Attribution-Share Alike 2.5
by Dake

« Show Subset-Sum < Knapsack.

Subset Sum to Knapsack

» Knapsack. Given n elements a, ..., a, where each element has
a weight w, > 0 and a value v; > 0 and target weight W and
value K. Does there exist a subset X of numbers such that

* Knapsack € NP

e (Can check If given subset satisfies the above conditions Se 22

<=
» =

Creative Commons Attribution-Share Alike 2.5
by Dake

Subset-Sum < Knapsack Proof idea:

K=W=Tandw, =v, =q,forall i

Graph-3-Color is NP Complete:
3-SAT <, Graph 3-Color

Graph 3-Color Problem

e 3-COLOR. Given an undirected graph G = (V, E), is it
possible to color the vertices with 3 colors s.t. no
adjacent nodes have the same color.

« We argued previously that 3-COLOR &€ NP.

®
°
o ®
® ® y
® o ®
o o e
® ®
®

U o

yes instance

3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

e Proof. Given a 3-SAT instance @, define G as follows

« Truth gadget: a triangle with three nodes T, F, and X
(for true, false and other) — they must get ditferent

colors (say true, false, other)

« Variable gadget: triangle made up of variable a, its T F
negation @ and the X node of the truth gadget — \
enforces a, a are colored true/false X,

3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

e Proof. Given a 3-SAT instance @, define G as follows

(fo
CO

ruth gadget: a triangle with three nodes 7, F, and X

" true, false and other) — they must get different

ors (say true, false, other)

Variable gadget: triangle made up of variable a, its

negation @ and the X node of the truth gadget —

enforces a, a are colored true/false

Clause gadget: joins three literal nodes (from the

variable gadget) to node 1 in the truth gadget using a

subgraph as shown below

3-SAT to 3-Color Problem

« Observation.

 Clause gadget enforces that in a valid 3-coloring, not
all three literals can be colored FALSE

e Ifa,b(orb,c)or(a,c)getthe same color (say,
FALSE) then the right-end-point of the triangle must
be colored the same (shown in blue)

* The remaining literal cannot be colored false!

3-SAT to 3-Color Problem

» Theorem. 3-SAT < 3-COLOR

« Overall G example

+ (Yes, this | icated 1// \\\
(Yes, this is a complicate ~

graph. Complicated graphs
are going to be the hard
®
C

raphs for problems like 3-
olor!)

(avbVvc)A(bvevd)A(@vevd)A(avbvd)

3-SAT to 3-Color Problem

» Theorem. 3-SAT <, 3-COLOR

 Proof Sketch.

. (=) If D is satisfiable, color the variables based on
the satistying assignment (and because each clause is
satisfied) extend the coloring to the clause gadgets

. (<)If Gis 3-colorable, then we can assign truth
values based on the colors (at least one of the literals
in each clause must be colored true) and thus the
resulting assignment must satisfy @

 Note this problem extends to k-coloring of graphs for
k > 3 and the generalized problem is also hard.

List of NPC Problems So Far

* SAT/ 3-SAT

 |INDEPENDENT SET

 VERTEX COVER

 SET COVER

 CLIQUE

 3-COLOR

* Subset-Sum

 Knapsack

* Next:

* Traveling salesman problem

 Hamiltonian cycle / path

Traveling Salesman Problem

https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d

Traveling Salesman Problem

 Extremely famous NP complete problem

« Consider a salesman who visits n cities labeled vy, ..., Vv,

« Salesman starts at v; and wants to find a tour, an order in which
to visit all the other cities and return home

 Goal. Travel as little distance as possible

. Formally, let d(i, j) be the distance from city v; to city v; (not
necessarily symmetric or triangle inequality (e.g. airplane prices))

 TSP. Decision version: given a set of distances on n cities and a
bound D), is there a tour (of all the cities) of length at most D?

 Many applications: VLSI design, robotics, cache-efficiency

* Wil prove TSP is NP hard using a similar problem:
HAMILTONIAN CYCLE/PATH

(Directed) Hamiltonian Cycle

« HAMILTONIAN-CYCLE. Given a directed graph G = (V, E) does
there exists a cycle 1 that visits every vertex exactly once?

 We want to prove HAMILTONIAN-CYCLE is NP complete
 HAMILTONIAN-CYCLE € NP
» (ertificate: sequence of vertices in the graph
* Poly-time verifier

« Check if sequence is a valid path in G

 Check if path visits every vertex exactly once @

« HAMILTONIAN-CYCLE is NP hard
o Sufficiently different from other NP hard graph problems
 We reduce 35AT to it

3SAI <, Hamiltonian Cycle

« Given 3SAT instance @, transform it to directed graph G s.t.
O is satisfiable iff G has a hamiltonian cycle

e Essential ingredients of a input assignments of @

 FEach variable can be set to true or false (need to encode
these settings in the graph in our variable gadget)

* [or a clause to be satisfied at least one literal is set to true
 High-level reduction idea

* Variable gadgets that encode true/talse assignment

 (Clause gadget that is set to true iff hamiltonian cycle exists

* Tie them together appropriately

3SAI <, Hamiltonian Cycle

o Let D contain k clauses and ¢ variables
« Letx,...,x,denote the £ variable in ®

 \Variable gadget: for each variable x; create a diamond shape structure
with a horizontal row of nodes

« Clause gadget: tor each clause ¢; we create a single node

3SAI <, Hamiltonian Cycle

e (Global structure

| ‘5;: ::(D s © AT ¢

<—>| (‘;‘.

/

3SAI <, Hamiltonian Cycle

 Variable gadget. Horizontal row has 3k

1 internal nodes,

adjacent pairs for each clause, with a separator node in between

. Ifx; appears in ¢;, connect jth pair in the ith diamond to the jth

J

clause as on the left. It X; appears in ¢;, connect it as on the right.

J

Correctness

(=) Suppose D has a satisfying assignment, we show that G has a
hamiltonian cycle

« (Consider cycle starting with edge r — s, traversing the diamond gadgets
(ignoring clauses for now) and ending up at ¢

 |f X; Is set to true in satisfying assignment, traverse the corresponding
diamond in a zig-zag tfashion, otherwise zag-zig as shown below

.

1g-71

71g-7ag 75

o
o

* This path hits each node exactly once except the clause nodes

Correctness |

(=) For each clause select one true literal (must contain one)

o Add detours to visit each clause node C; from the selected
iteral x; or X

. If we selected x; the path zig-zags and thus thus visit C;

. If we selected X;, the path zag-zigs and thus can visit C;

Correctness ||

(<) Suppose G has a hamiltonian cycle, we need to construct a satisfying
assignment to @:

* Note that this hamiltonian cycle must visit each diamond from top-down
with clause detours (either zig-zagging or zag-zigging)

e Situation that cannot occur: clause entered from one diamond but exited to
a different (why?)

e |f a diamond is traversed zig-zag: set
variable to true

* Else, set it to false
 Must be a satistying assignment, why"

 Cycle is able to visit clause nodes

* At least one literal set to true per clause

Such a cycle would never visit node a,

Class Exercise:
Hamiltonian-Cycle <, TSP

Hamiltonian Cycle to TSP

In Class Exercise. HAMILTONIAN-CYCLE < TSP

Given a directed graph G, convert it to an instance of TSP: that is,
 Citiescy,...,C,
e d(i,J): distance from city i to city j

« Target D such that G has a hamiltonian cycle iff there exists a tour of n
cities of length at most D

Yes Yes

(G) Instance of TSP

————— Poly time

Algorithm for TSP

Algorithm for HAM CYCLE

TSP is NP Complete

* Claim. TSP € NP

» Claim. HAMILTONIAN-CYCLE <, TSP

* Proof. Given directed graph G = (V, E), define instance of TSP as:
. City v/ for each node v;
» d(,j)=1if(v,v) € E
. d(,j)=2if(vy,v) € E

« (G has a Hamiltonian cycle iff there is a tour of length at most n

« (=) If G has a hamiltonian cycle, then it defines a tour of length n

« (<) Suppose there is a tour of length at most n, why does this ordering
correspond to a hamiltonian cycle”

(Directed) Hamiltonian Path

« HAMILTONIAN-PATH. Given a directed graph G = (V, E) does there exists
a path P that visits every vertex exactly once? Such a path is called a
hamiltonian path

* Note: path is allowed to start and end anywhere as long as it visits every
node exactly once

 HAMILTONIAN-PATH € NP
« Certificate: path in G
* \Verifier: check if path visits each node exactly once
 Jo prove HAMILTONIAN PATH is NP hard, we can either
« We can modity our hamiltonian cycle reduction (delete t —)

 More fun: (exercise) Directly reduce from HAMILTONIAN CYCLE

Undirected Ham Path/Cycle

 Undirected version of Hamiltonian path/cycle are also NP complete
 (Can reduce from directed version

 Reduction idea: Given a directed graph G = (V, E), construct an
undirected graph G’ with 3n nodes as follows:

directed graph G

undirected graph G’

Fun Facts

 Hamiltonian path problem says NP complete even on two connected, cubic
and planar graphs!

o Still NP complete on general grid graphs, but poly-time solvable on “solid
grid graphs” (a Williams undergrad thesis by Chris Umans)

SIAM [COAMPUT,
Vol. §. No. 4, December 1976

THE PLANAR HAMILTONIAN CIRCUIT PROBLEM IS NP-
COMPLETE*

M. R. GAREYT, D. S. JOHNSONt AND R. ENDRE TARJAN{

Abstract. We consider the problem of determining whether a planar, cubic, triply-connected
graph G has a Hamiltonian circuit. We show that this problem is NP-complete. Hence the Hamiltonian
circuit problem for this class of graphs, or any larger class containing all such graphs, is probably
computationally intractable.

Key words. algorithms, computational complexity, graph theory, Hamiltonian circuit, NP-
completeness

1. Introduction. A Hamiltonian circuit in a graph' is a path which passes
through every vertex exactly once and returns to its starting point. Many attempts
have been made to characterize the graphs which contain Hamiltonian circuits
(see [2, Chap. 10] for a survey). While providing characterizations in various
special cases, none of these results has led to an efficient algorithm for identifying
such graphs in general. In fact, recent results [S] showing this problem to be
“NP-complete” indicate that no simple, computationally-oriented characteriza-
tion is possible. For this reason, attention has shifted to special cases with more
restricted structure for which such a characterization may still be possible. One
special case of particular interest is that of planar graphs. In 1880 Tait made a
famous conjecture [8] that every cubic, triply-connected, planar graph contains a
Hamiltonian circuit. Though this conjecture received considerable attention (if
true it would have resolved the ““four color conjecture™), it was not until 1946 that
Tutte constructed the first counterexample [9]). We shall show that, not only do
these highly-restricted planar graphs occasionally fail to contain a Hamiltonian
circuit, but it is probably impossible to give an efficient algorithm which disting-
uishes those that do from those that do not.

2. Proof of result. Our proof of this result is based on the recently developed
theory of “NP-complete problems”. This class of problems possesses the follow-
ing important properties:

Hamiltonian Cycles in Solid Grid Graphs
(Extended Abstract)

Christopher Umans*

Computer Science Division
U.C. Berkeley

umans@cs.berkeley.edu

Abstract

A grid graph s a finite node-induced subgraph of
the infinite two-dimensional integer grid. A solid grid
graph s a grid graph without holes. For general grid
graphs, the Hamiltonian cycle problem is known to
be N'P-complete. We give a polynomial-time algo-
rithm for the Hamiltonian cycle problem in solid grid
graphs, resolving a longstanding open question posed
in [IPS82]. In fact, our algorithm can identify Hamil-
tontan cycles in quad-quad graphs, a class of graphs
that properly includes solid grid graphs.

1 Introduction

A grid graph is a finite node-induced subgraph of
the infinite two-dimensional integer grid. A solid grid
graph 1s a grid graph all of whose bounded faces
have area one. The study of Hamiltonian cycles in
grid graphs was initiated by Itai, Papadimitriou and
Szwarcfiter [IPS82], who proved that the problem
for general grid graphs is NP-complete, and gave a
polynomial-time algorithm for rectangular solid grid
oranhs. The anestion of whether a nolvnomial-time

William Lenhart

Computer Science Department
Williams College

lenhart@cs.williams.edu

trails (a relaxation of Hamiltonian cycles) in a broad
subclass of grid graphs called polymino, have even con-
Jectured that for solid grid graphs, deciding Hamil-
tonicity is N"P-complete.

We present a polynomial-time algorithm that finds
Hamiltonian cycles in solid grid graphs using the well-
known technique of cycle merging. Given an input
graph G, we first find a 2-factor, which is a spanning
subgraph for which all vertices have degree two. The
2-factor 1s a set of disjoint cycles that exactly cover
the vertices of (¢; a Hamiltonian cycle is a 2-factor
with a single component. We then repeatedly iden-
tify a transformation of the 2-factor that reduces the
number of components. This process either identifies
a Hamiltonian cycle or terminates with multiple com-
ponents if one does not exist.

Our algorithm can be applied to a generalization
of solid grid graphs which are “locally” solid grid
graphs but may not be fully embeddable in the integer
grid without overlap. We call these graphs quad-quad

constraint satisfaction

SAT
3-SAT
CLIQUE < == INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUSBL?I\IjT-
VERTEX-COVER HAM-CYCLE TSP KNAPSACK

!

SET-COVER

Useful NP-hard Problems

BIN-PACKING. Given a set of items I = {1,...,n} where item i has size

s: € (0,1], bins of capacity ¢, find an assignment of items to bins that

minimizes the number of bins used?

AUB=S ANB= and Za=2b
aceA beB

maximizes the number of edges with exactly one endpoint in .

PARTITION. Given a set S of n integers, are there subsets A and B such that

MAXCUT. Given an undirected graph G = (V, E), find a subset S C V that

MAX-2-SAT. Given a Boolean formula in CNF, with exactly two literals per

clause, find a variable assignment that maximizes the number of clauses with

at least one true literal. (2-SAT on the other hand is in P)

« 3D-MATCHING. Given n instructors, n courses, and n times, and a
possible courses and times each instructor is willing to teach, Is it

ist of the
NOSSsIble to

make an assignment so that all courses are taught at different times?

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ay, ..., a,, compute

Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley—Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.

Fun NP-hard Games

* MINESWEEPER (from CIRCUIT-SAT)

 SODUKO (from 3-SAT)

 TETRIS (from 3PARTITION)

* SOLITAIRE (from 3PARTITION)

* SUPER MARIO BROTHERS (from 3-SAT)

 CANDY CRUSH SAGA (from 3-SAT variant)

 PAC-MAN (from Hamiltonian Cycle)

 RUBIK's CUBE (recent 2017 result, from Hamiltonian Cycle)
* TRAINYARD (from Dominating Set)

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

 Hamiltonian cycle reduction images from Michael Sipser’'s Theory of
Computation Book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

