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Admin
• Problem 2 on Assignment 7 is extra credit 

• Assignment 7 due tomorrow 

• I just found out you can’t move the boxes we make 
while we’re grading—-we’ll keep that in mind 

• Thanksgiving is soon! 

• In the meantime, let’s enjoy some more NP hardness 
proofs.  A good mix of difficulty today…



SET-COVER



Set Cover
• Set-Cover. Given a set  of elements, a collection  of 

subsets of  and an integer , are there at most  subsets 
 whose union covers , that is,  

U 𝒮
U k k

S1, …, Sk U U ⊆ ∪k
i=1 Si

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }      Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }      Sd = { 5 } 
Se = { 1 }      Sf =  { 1, 2, 6, 7 }
k = 2

a set cover instance



List of NPC Problems So Far
• SAT/ 3-SAT 

• INDEPENDENT SET 

• VERTEX COVER 

• CLIQUE



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct 
an instance  of set cover problem such that  
has a vertex cover of size at most  if and only if  
has a set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩ G

k ⟨U, 𝒮, k′ ⟩
k

Instance of 
VERTEX-COVER

Instance of  
SET COVER

Algorithm for SET COVER

Yes

No

Yes

No
Poly time

Algorithm for Vertex Cover

⟨U, 𝒮, k′ ⟩⟨G, k⟩

Vertex Cover  Set Cover≤p



• Theorem.  VERTEX-COVER    SET-COVER 

• Proof.   Given instance  of vertex cover, construct an 
instance  of set cover problem that has a set cover 
of size  iff  has a vertex cover of size .  

• Reduction.   , for each node , let
 

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩

k G k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

7

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }
Sc = { }   Sd = {  } 
Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover  Set Cover≤p



Correctness
• Claim.   If  has a vertex cover of size at most , then  

can be covered using at most  subsets. 

• Proof. Let  be a vertex cover in  

• Then,  is a set cover of  of the same size  

( ⇒ ) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

8

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }
Sc = { }   Sd = {  } 
Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



Correctness
• Claim.   If  can be covered using at most  subsets 

then  has a vertex cover of size at most . 

• Proof. Let  be a set cover of size   

• Then,  is a vertex cover of size  

( ⇐ ) U k
G k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

9

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = {  }   Sb = { }
Sc = { }   Sd = {  } 
Se = {  }   Sf  =  {  }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff



SUBSET-SUM is NP Complete: 
Vertex-Cover    SUBSET-SUM≤p



Subset Sum Problem
• SUBSET-SUM.  

Given  positive integers  and a target integer , is 
there a subset of numbers that adds up to exactly  

• SUBSET-SUM  

• Certificate: a subset of numbers 

• Poly-time verifier: checks if subset is from the given set and 
sums exactly to  

• Problem has a pseudo-polynomial -time dynamic 
programming algorithm similar to Knapsack 

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover 

• NP hard problems that have pseudo-polynomial algorithms are 
called weakly NP hard

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT)



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof.  Given a graph  with  vertices and  edges and a 
number , we construct a set of numbers  and a target 
sum  such that  has a vertex cover of size  iff there is a subset 
of numbers that sum to 

≤p

G n m
k a1, …, at

T G k
T

⟨G, k⟩ ⟨a1, …, at, T⟩

Algorithm for SUBSET-SUM

Yes

No

Yes

No
Poly time

Algorithm for VERTEX-COVER



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof. Label the edges of  as . 

• Reduction. Create  integers and a target value  as follows 

• Each integer is a -bit number in base four 

• Integers representing vertices and edges:  

• Vertex integer  : th (most significant) bit is  and for , 
the th bit is 1 if th edge is incident to vertex  

• Edge integer  : th digit is  and for , the th bit is 1 if 
this integer represents an edge   

•
Target value   

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m
i i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i



Vertex Cover to Subset Sum
• Example: consider the graph   where  

and  
 
 
 
 
 
 
 
 
 

• If  then 

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 2222224 = 2730

u v

w x

5th 4th  : (uv) 3rd  : (uw) 2nd : (vw) 1st : (vx) 0th: (wx)

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

1 0 0 0 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

au

av

aw

ax

buv

bvw

bvx

bwx

buw



5th 4th  : (uv) 3rd  : (uw) 2nd : (vw) 1st : (vx) 0th: (wx)

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

1 0 0 0 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

  

• Sum of the most significant bits of  is   and all other bits sum to  

• Thus the elements of  sum to exactly 

G k X
T

( ⇒ ) C k G X

X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k 2

X T

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x



Vertex Cover to Subset Sum
• Claim.   has a vertex cover of size  if and only there is a subset 

 of corresponding integers that sums to value  

•  Let  be the subset of numbers that sum to   

• That is, there is  s.t.

  

• These numbers are base 4 and there are no carries  

• Each  only contributes  to the th digit, which is 2 

• Thus, for each edge , at least one of its endpoints must be in  

•  is a vertex cover 

• Size of  is : only vertex-numbers have a  in the th position

G k
X T

( ⇐ ) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′ 

av + ∑
i∈E′ 

bi = T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

bi 1 i

i V′ 

V′ 

V′ k 1 m



Class Exercise: 
SUBSET-SUM    Knapsack≤p



Subset Sum to Knapsack
• Knapsack. Given  elements  where each element has 

a weight  and a value  and target weight  and 
value .  Does there exist a subset  of numbers such that  

•
 

•
  

• Knapsack  

• Can check if given subset satisfies the above conditions 

• Show Subset-Sum  Knapsack.   

n a1, …, an
wi ≥ 0 vi ≥ 0 W

K X

∑
ai∈X

wi ≤ W

∑
ai∈X

vi ≥ K

∈ 𝖭𝖯

≤p



Subset Sum to Knapsack
• Knapsack. Given  elements  where each element has 

a weight  and a value  and target weight  and 
value .  Does there exist a subset  of numbers such that  

•
 

•
  

• Knapsack  

• Can check if given subset satisfies the above conditions 

• Subset-Sum  Knapsack Proof idea:  

•   and  for all 

n a1, …, an
wi ≥ 0 vi ≥ 0 W

K X

∑
ai∈X

wi ≤ W

∑
ai∈X

vi ≥ K

∈ 𝖭𝖯

≤p

K = W = T wi = vi = ai i



Graph-3-Color is NP Complete: 
3-SAT    Graph 3-Color≤p



Graph 3-Color Problem
• 3-COLOR.  Given an undirected graph , is it 

possible to color the vertices with 3 colors s.t. no 
adjacent nodes have the same color. 

• We argued previously that 3-COLOR .

G = (V, E)

∈ 𝖭𝖯

yes instance



3-SAT to 3-Color Problem
• Theorem.  3-SAT  3-COLOR 

• Proof.  Given a 3-SAT instance , define  as follows 

• Truth gadget: a triangle with three nodes  and  
(for true, false and other) — they must get different 
colors (say true, false, other) 

• Variable gadget: triangle made up of variable , its 
negation  and the  node of the truth gadget — 
enforces  are colored true/false

≤p

Φ G

T, F, X

a
a X
a, a

T

X

F

a a



3-SAT to 3-Color Problem
• Theorem.  3-SAT  3-COLOR 

• Proof.  Given a 3-SAT instance , define  as follows 

• Truth gadget: a triangle with three nodes  and  
(for true, false and other) — they must get different 
colors (say true, false, other) 

• Variable gadget: triangle made up of variable , its 
negation  and the  node of the truth gadget — 
enforces  are colored true/false 

• Clause gadget: joins three literal nodes (from the 
variable gadget) to node  in the truth gadget using a 
subgraph as shown below 

≤p

Φ G

T, F, X

a
a X
a, a

T

(a ∨ b ∨ c)



3-SAT to 3-Color Problem
• Observation. 

• Clause gadget enforces that in a valid 3-coloring, not 
all three literals can be colored FALSE 

• If  (or ) or ( ) get the same color (say, 
FALSE) then the right-end-point of the triangle must 
be colored the same (shown in blue) 

• The remaining literal cannot be colored false!

a, b b, c a, c

(a ∨ b ∨ c)



3-SAT to 3-Color Problem
• Theorem.  3-SAT  3-COLOR 

• Overall  example 

• (Yes, this is a complicated 
graph.  Complicated graphs 
are going to be the hard 
graphs for problems like 3-
color!)

≤p

G



3-SAT to 3-Color Problem
• Theorem.  3-SAT  3-COLOR 

• Proof Sketch.  

•  If  is satisfiable, color the variables based on 
the satisfying assignment (and because each clause is 
satisfied) extend the coloring to the clause gadgets 

•  If  is 3-colorable, then we can assign truth 
values based on the colors (at least one of the literals 
in each clause must be colored true) and thus the 
resulting assignment must satisfy   

• Note this problem extends to -coloring of graphs for 
 and the generalized problem is also hard.

≤p

( ⇒ ) Φ

( ⇐ ) G

Φ

k
k ≥ 3



List of NPC Problems So Far
• SAT/ 3-SAT 

• INDEPENDENT SET 

• VERTEX COVER 

• SET COVER 

• CLIQUE 

• 3-COLOR 

• Subset-Sum 

• Knapsack 

• Next: 

• Traveling salesman problem 

• Hamiltonian cycle / path



Traveling Salesman Problem

Vaidehi Joshi
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d

https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d


• Extremely famous NP complete problem 

• Consider a salesman who visits  cities labeled   

• Salesman starts at  and wants to find a tour, an order in which 
to visit all the other cities and return home 

• Goal. Travel as little distance as possible 

• Formally, let  be the distance from city  to city  (not 
necessarily symmetric or triangle inequality (e.g. airplane prices)) 

• TSP.  Decision version: given a set of distances on  cities and a 
bound , is there a tour (of all the cities) of length at most ? 

• Many applications: VLSI design, robotics, cache-efficiency  

• Will prove TSP is NP hard using a similar problem:  
HAMILTONIAN CYCLE/PATH

n v1, …, vn

v1

d(i, j) vi vj

n
D D

Traveling Salesman Problem



• HAMILTONIAN-CYCLE.  Given a directed graph  does 
there exists a cycle  that visits every vertex exactly once? 

• We want to prove HAMILTONIAN-CYCLE is NP complete 

• HAMILTONIAN-CYCLE  

• Certificate: sequence of vertices in the graph 

• Poly-time verifier 

• Check if sequence is a valid path in  

• Check if path visits every vertex exactly once 

• HAMILTONIAN-CYCLE is NP hard 

• Sufficiently different from other NP hard graph problems 

• We reduce 3SAT to it

G = (V, E)
T

∈ 𝖭𝖯

G

(Directed) Hamiltonian Cycle 

yes



• Given 3SAT instance , transform it to directed graph  s.t. 
 is satisfiable iff  has a hamiltonian cycle 

• Essential ingredients of a input assignments of  

• Each variable can be set to true or false (need to encode 
these settings in the graph in our variable gadget) 

• For a clause to be satisfied at least one literal is set to true 

• High-level reduction idea 

• Variable gadgets that encode true/false assignment 

• Clause gadget that is set to true iff hamiltonian cycle exists 

• Tie them together appropriately

Φ G
Φ G

Φ

3SAT  Hamiltonian Cycle≤p



• Let  contain  clauses and  variables  

• Let  denote the  variable in  

• Variable gadget: for each variable  create a diamond shape structure 
with a horizontal row of nodes  

• Clause gadget: for each clause  we create a single node 

Φ k ℓ

x1, …, xℓ ℓ Φ

xi

cj

3SAT  Hamiltonian Cycle≤p



• Global structure 

3SAT  Hamiltonian Cycle≤p



• Variable gadget. Horizontal row has  internal nodes, 
adjacent pairs for each clause, with a separator node in between  
 
 
 
 

• If  appears in , connect th pair in the th diamond to the th 
clause as on the left. If  appears in , connect it as on the right.

3k + 1

xi cj j i j
xi cj

3SAT  Hamiltonian Cycle≤p



 Suppose  has a satisfying assignment, we show that  has a 
hamiltonian cycle  

• Consider cycle starting with edge , traversing the diamond gadgets 
(ignoring clauses for now) and ending up at  

• If  is set to true in satisfying assignment, traverse the corresponding 
diamond in a zig-zag fashion, otherwise zag-zig as shown below 
 
 
 
 
 
 
 

• This path hits each node exactly once except the clause nodes

( ⇒ ) Φ G

t → s
t

xi

Correctness



 For each clause select one true literal (must contain one) 

• Add detours to visit each clause node  from the selected 
literal  or : 

• If we selected  the path zig-zags and thus thus visit   

• If we selected , the path zag-zigs and thus can visit  
 
 
 
 

( ⇒ )

cj
xi xi

xi cj

xi cj

Correctness I



 Suppose  has a hamiltonian cycle, we need to construct a satisfying 
assignment to : 

• Note that this hamiltonian cycle must visit each diamond from top-down 
with clause detours (either zig-zagging or zag-zigging) 

• Situation that cannot occur: clause entered from one diamond but exited to 
a different (why?) 

• If a diamond is traversed zig-zag: set 
variable to true 

• Else, set it to false 

• Must be a satisfying assignment, why? 

• Cycle is able to visit clause nodes 

• At least one literal set to true per clause

( ⇐ ) G
Φ

Such a cycle would never visit node  a2

Correctness II



Class Exercise: 
Hamiltonian-Cycle    TSP≤p



In Class Exercise.  HAMILTONIAN-CYCLE  TSP  

Given a directed graph , convert it to an instance of TSP: that is, 

• Cities  

• : distance from city  to city  

• Target  such that  has a hamiltonian cycle iff there exists a tour of  
cities of length at most 

≤p

G

c1, …, cn

d(i, j) i j

D G n
D

Hamiltonian Cycle to TSP

⟨G⟩ Instance of TSP

Algorithm for TSP

Yes

No

Yes

No
Poly time

Algorithm for HAM CYCLE



• Claim.  TSP   

• Claim.  HAMILTONIAN-CYCLE  TSP 

• Proof.  Given directed graph , define instance of TSP as: 

• City  for each node  

•  if  

•  if   

•  has a Hamiltonian cycle iff there is a tour of length at most   

•  If  has a hamiltonian cycle, then it defines a tour of length  

•  Suppose there is a tour of length at most , why does this ordering 
correspond to a hamiltonian cycle?

∈ 𝖭𝖯

≤p

G = (V, E)

v′ i vi

d(i′ , j′ ) = 1 (vi, vj) ∈ E

d(i′ , j′ ) = 2 (vi, vj) ∉ E

G n

( ⇒ ) G n

( ⇐ ) n

TSP is NP Complete



• HAMILTONIAN-PATH.  Given a directed graph  does there exists 
a path  that visits every vertex exactly once?  Such a path is called a 
hamiltonian path 

• Note: path is allowed to start and end anywhere as long as it visits every 
node exactly once 

• HAMILTONIAN-PATH  

• Certificate: path in  

• Verifier: check if path visits each node exactly once 

• To prove HAMILTONIAN PATH is NP hard, we can either 

• We can modify our hamiltonian cycle reduction (delete ) 

• More fun: (exercise) Directly reduce from HAMILTONIAN CYCLE

G = (V, E)
P

∈ 𝖭𝖯

G

t → s

(Directed) Hamiltonian Path



• Undirected version of Hamiltonian path/cycle are also NP complete 

• Can reduce from directed version 

• Reduction idea: Given a directed graph G = (V, E), construct an 
undirected graph G ʹ with 3n nodes as follows:

Undirected Ham Path/Cycle

vin

aout

bout

cout
ein

v vout
v

a

b

c

d

e

din

directed graph G undirected graph G′



• Hamiltonian path problem says NP complete even on two connected, cubic 
and planar graphs! 

• Still NP complete on general grid graphs, but poly-time solvable on “solid 
grid graphs” (a Williams undergrad thesis by Chris Umans)

Fun Facts



constraint satisfaction

44

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

SAT

CLIQUE

TSP



• BIN-PACKING. Given a set of items  where item  has size 
, bins of capacity , find an assignment of items to bins that 

minimizes the number of bins used? 

• PARTITION. Given a set  of  integers, are there subsets  and  such that
,  and  

• MAXCUT. Given an undirected graph , find a subset  that 
maximizes the number of edges with exactly one endpoint in . 

• MAX-2-SAT. Given a Boolean formula in CNF, with exactly two literals per 
clause, find a variable assignment that maximizes the number of clauses with 
at least one true literal. (2-SAT on the other hand is in ) 

• 3D-MATCHING.  Given  instructors,  courses, and  times, and a list of the 
possible courses and times each instructor is willing to teach, is it possible to 
make an assignment so that all courses are taught at different times?

I = {1,…, n} i
si ∈ (0,1] c

S n A B
A ∪ B = S A ∩ B = ∅ ∑

a∈A

a = ∑
b∈B

b

G = (V, E) S ⊂ V
S

𝖯

n n n

Useful NP-hard Problems



More hard computational problems
Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley–Shubik voting power.

Recreation.  Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics.  Optimal experimental design.



• MINESWEEPER (from CIRCUIT-SAT) 

• SODUKO (from 3-SAT) 

• TETRIS (from 3PARTITION) 

• SOLITAIRE (from 3PARTITION) 

• SUPER MARIO BROTHERS (from 3-SAT) 

• CANDY CRUSH SAGA (from 3-SAT variant) 

• PAC-MAN (from Hamiltonian Cycle) 

• RUBIK’s CUBE (recent 2017 result, from Hamiltonian Cycle) 

• TRAINYARD (from Dominating Set)

Fun NP-hard Games
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