
NP Hardness Reductions II

Admin
• Problem 2 on Assignment 7 is extra credit

• Assignment 7 due tomorrow

• I just found out you can’t move the boxes we make
while we’re grading—-we’ll keep that in mind

• Thanksgiving is soon!

• In the meantime, let’s enjoy some more NP hardness
proofs. A good mix of difficulty today…

SET-COVER

Set Cover
• Set-Cover. Given a set of elements, a collection of

subsets of and an integer , are there at most subsets
 whose union covers , that is,

U 𝒮
U k k

S1, …, Sk U U ⊆ ∪k
i=1 Si

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 } Sd = { 5 }
Se = { 1 } Sf = { 1, 2, 6, 7 }
k = 2

a set cover instance

List of NPC Problems So Far
• SAT/ 3-SAT

• INDEPENDENT SET

• VERTEX COVER

• CLIQUE

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct
an instance of set cover problem such that
has a vertex cover of size at most if and only if
has a set cover of size at most .

≤p

⟨G, k⟩
⟨U, 𝒮, k′ ⟩ G

k ⟨U, 𝒮, k′ ⟩
k

Instance of
VERTEX-COVER

Instance of
SET COVER

Algorithm for SET COVER

Yes

No

Yes

No
Poly time

Algorithm for Vertex Cover

⟨U, 𝒮, k′ ⟩⟨G, k⟩

Vertex Cover Set Cover≤p

• Theorem. VERTEX-COVER SET-COVER

• Proof. Given instance of vertex cover, construct an
instance of set cover problem that has a set cover
of size iff has a vertex cover of size .

• Reduction. , for each node , let

≤p

⟨G, k⟩
⟨U, 𝒮, k⟩

k G k

U = E v ∈ V
Sv = {e ∈ E | e incident to v}

7

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }
Sc = { } Sd = { }
Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

Vertex Cover Set Cover≤p

Correctness
• Claim. If has a vertex cover of size at most , then

can be covered using at most subsets.

• Proof. Let be a vertex cover in

• Then, is a set cover of of the same size

(⇒) G k U
k

X ⊆ V G

Y = {Sv | v ∈ X} U

8

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }
Sc = { } Sd = { }
Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

Correctness
• Claim. If can be covered using at most subsets

then has a vertex cover of size at most .

• Proof. Let be a set cover of size

• Then, is a vertex cover of size

(⇐) U k
G k

Y ⊆ 𝒮 k

X = {v | Sv ∈ Y} k

9

vertex cover instance
(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance
(k = 2)

U = { }
Sa = { } Sb = { }
Sc = { } Sd = { }
Se = { } Sf = { }

e1, e2, …, e7

e3, e7 e2, e4

e3, e4, e5, e6 e5

e1 e1, e2, e6, e7

cff

SUBSET-SUM is NP Complete:
Vertex-Cover SUBSET-SUM≤p

Subset Sum Problem
• SUBSET-SUM.

Given positive integers and a target integer , is
there a subset of numbers that adds up to exactly

• SUBSET-SUM

• Certificate: a subset of numbers

• Poly-time verifier: checks if subset is from the given set and
sums exactly to

• Problem has a pseudo-polynomial -time dynamic
programming algorithm similar to Knapsack

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover

• NP hard problems that have pseudo-polynomial algorithms are
called weakly NP hard

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT)

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Given a graph with vertices and edges and a
number , we construct a set of numbers and a target
sum such that has a vertex cover of size iff there is a subset
of numbers that sum to

≤p

G n m
k a1, …, at

T G k
T

⟨G, k⟩ ⟨a1, …, at, T⟩

Algorithm for SUBSET-SUM

Yes

No

Yes

No
Poly time

Algorithm for VERTEX-COVER

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Label the edges of as .

• Reduction. Create integers and a target value as follows

• Each integer is a -bit number in base four

• Integers representing vertices and edges:

• Vertex integer : th (most significant) bit is and for ,
the th bit is 1 if th edge is incident to vertex

• Edge integer : th digit is and for , the th bit is 1 if
this integer represents an edge

•
Target value

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m
i i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

Vertex Cover to Subset Sum
• Example: consider the graph where

and

• If then

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 2222224 = 2730

u v

w x

5th 4th : (uv) 3rd : (uw) 2nd : (vw) 1st : (vx) 0th: (wx)

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

1 0 0 0 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

au

av

aw

ax

buv

bvw

bvx

bwx

buw

5th 4th : (uv) 3rd : (uw) 2nd : (vw) 1st : (vx) 0th: (wx)

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

1 0 0 0 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim. has a vertex cover of size if and only there is a subset of

corresponding integers that sums to value

• Let be a vertex cover of size in , define as

• Sum of the most significant bits of is and all other bits sum to

• Thus the elements of sum to exactly

G k X
T

(⇒) C k G X

X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k 2

X T

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x

Vertex Cover to Subset Sum
• Claim. has a vertex cover of size if and only there is a subset

 of corresponding integers that sums to value

• Let be the subset of numbers that sum to

• That is, there is s.t.

• These numbers are base 4 and there are no carries

• Each only contributes to the th digit, which is 2

• Thus, for each edge , at least one of its endpoints must be in

• is a vertex cover

• Size of is : only vertex-numbers have a in the th position

G k
X T

(⇐) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′

av + ∑
i∈E′

bi = T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

bi 1 i

i V′

V′

V′ k 1 m

Class Exercise:
SUBSET-SUM Knapsack≤p

Subset Sum to Knapsack
• Knapsack. Given elements where each element has

a weight and a value and target weight and
value . Does there exist a subset of numbers such that

•

•

• Knapsack

• Can check if given subset satisfies the above conditions

• Show Subset-Sum Knapsack.

n a1, …, an
wi ≥ 0 vi ≥ 0 W

K X

∑
ai∈X

wi ≤ W

∑
ai∈X

vi ≥ K

∈ 𝖭𝖯

≤p

Subset Sum to Knapsack
• Knapsack. Given elements where each element has

a weight and a value and target weight and
value . Does there exist a subset of numbers such that

•

•

• Knapsack

• Can check if given subset satisfies the above conditions

• Subset-Sum Knapsack Proof idea:

• and for all

n a1, …, an
wi ≥ 0 vi ≥ 0 W

K X

∑
ai∈X

wi ≤ W

∑
ai∈X

vi ≥ K

∈ 𝖭𝖯

≤p

K = W = T wi = vi = ai i

Graph-3-Color is NP Complete:
3-SAT Graph 3-Color≤p

Graph 3-Color Problem
• 3-COLOR. Given an undirected graph , is it

possible to color the vertices with 3 colors s.t. no
adjacent nodes have the same color.

• We argued previously that 3-COLOR .

G = (V, E)

∈ 𝖭𝖯

yes instance

3-SAT to 3-Color Problem
• Theorem. 3-SAT 3-COLOR

• Proof. Given a 3-SAT instance , define as follows

• Truth gadget: a triangle with three nodes and
(for true, false and other) — they must get different
colors (say true, false, other)

• Variable gadget: triangle made up of variable , its
negation and the node of the truth gadget —
enforces are colored true/false

≤p

Φ G

T, F, X

a
a X
a, a

T

X

F

a a

3-SAT to 3-Color Problem
• Theorem. 3-SAT 3-COLOR

• Proof. Given a 3-SAT instance , define as follows

• Truth gadget: a triangle with three nodes and
(for true, false and other) — they must get different
colors (say true, false, other)

• Variable gadget: triangle made up of variable , its
negation and the node of the truth gadget —
enforces are colored true/false

• Clause gadget: joins three literal nodes (from the
variable gadget) to node in the truth gadget using a
subgraph as shown below

≤p

Φ G

T, F, X

a
a X
a, a

T

(a ∨ b ∨ c)

3-SAT to 3-Color Problem
• Observation.

• Clause gadget enforces that in a valid 3-coloring, not
all three literals can be colored FALSE

• If (or) or () get the same color (say,
FALSE) then the right-end-point of the triangle must
be colored the same (shown in blue)

• The remaining literal cannot be colored false!

a, b b, c a, c

(a ∨ b ∨ c)

3-SAT to 3-Color Problem
• Theorem. 3-SAT 3-COLOR

• Overall example

• (Yes, this is a complicated
graph. Complicated graphs
are going to be the hard
graphs for problems like 3-
color!)

≤p

G

3-SAT to 3-Color Problem
• Theorem. 3-SAT 3-COLOR

• Proof Sketch.

• If is satisfiable, color the variables based on
the satisfying assignment (and because each clause is
satisfied) extend the coloring to the clause gadgets

• If is 3-colorable, then we can assign truth
values based on the colors (at least one of the literals
in each clause must be colored true) and thus the
resulting assignment must satisfy

• Note this problem extends to -coloring of graphs for
 and the generalized problem is also hard.

≤p

(⇒) Φ

(⇐) G

Φ

k
k ≥ 3

List of NPC Problems So Far
• SAT/ 3-SAT

• INDEPENDENT SET

• VERTEX COVER

• SET COVER

• CLIQUE

• 3-COLOR

• Subset-Sum

• Knapsack

• Next:

• Traveling salesman problem

• Hamiltonian cycle / path

Traveling Salesman Problem

Vaidehi Joshi
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d

https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d
https://medium.com/@vaidehijoshi?source=post_page-----56048d6709d----------------------
https://medium.com/basecs/the-trials-and-tribulations-of-the-traveling-salesman-56048d6709d

• Extremely famous NP complete problem

• Consider a salesman who visits cities labeled

• Salesman starts at and wants to find a tour, an order in which
to visit all the other cities and return home

• Goal. Travel as little distance as possible

• Formally, let be the distance from city to city (not
necessarily symmetric or triangle inequality (e.g. airplane prices))

• TSP. Decision version: given a set of distances on cities and a
bound , is there a tour (of all the cities) of length at most ?

• Many applications: VLSI design, robotics, cache-efficiency

• Will prove TSP is NP hard using a similar problem:
HAMILTONIAN CYCLE/PATH

n v1, …, vn

v1

d(i, j) vi vj

n
D D

Traveling Salesman Problem

• HAMILTONIAN-CYCLE. Given a directed graph does
there exists a cycle that visits every vertex exactly once?

• We want to prove HAMILTONIAN-CYCLE is NP complete

• HAMILTONIAN-CYCLE

• Certificate: sequence of vertices in the graph

• Poly-time verifier

• Check if sequence is a valid path in

• Check if path visits every vertex exactly once

• HAMILTONIAN-CYCLE is NP hard

• Sufficiently different from other NP hard graph problems

• We reduce 3SAT to it

G = (V, E)
T

∈ 𝖭𝖯

G

(Directed) Hamiltonian Cycle

yes

• Given 3SAT instance , transform it to directed graph s.t.
 is satisfiable iff has a hamiltonian cycle

• Essential ingredients of a input assignments of

• Each variable can be set to true or false (need to encode
these settings in the graph in our variable gadget)

• For a clause to be satisfied at least one literal is set to true

• High-level reduction idea

• Variable gadgets that encode true/false assignment

• Clause gadget that is set to true iff hamiltonian cycle exists

• Tie them together appropriately

Φ G
Φ G

Φ

3SAT Hamiltonian Cycle≤p

• Let contain clauses and variables

• Let denote the variable in

• Variable gadget: for each variable create a diamond shape structure
with a horizontal row of nodes

• Clause gadget: for each clause we create a single node

Φ k ℓ

x1, …, xℓ ℓ Φ

xi

cj

3SAT Hamiltonian Cycle≤p

• Global structure

3SAT Hamiltonian Cycle≤p

• Variable gadget. Horizontal row has internal nodes,
adjacent pairs for each clause, with a separator node in between

• If appears in , connect th pair in the th diamond to the th
clause as on the left. If appears in , connect it as on the right.

3k + 1

xi cj j i j
xi cj

3SAT Hamiltonian Cycle≤p

 Suppose has a satisfying assignment, we show that has a
hamiltonian cycle

• Consider cycle starting with edge , traversing the diamond gadgets
(ignoring clauses for now) and ending up at

• If is set to true in satisfying assignment, traverse the corresponding
diamond in a zig-zag fashion, otherwise zag-zig as shown below

• This path hits each node exactly once except the clause nodes

(⇒) Φ G

t → s
t

xi

Correctness

 For each clause select one true literal (must contain one)

• Add detours to visit each clause node from the selected
literal or :

• If we selected the path zig-zags and thus thus visit

• If we selected , the path zag-zigs and thus can visit

(⇒)

cj
xi xi

xi cj

xi cj

Correctness I

 Suppose has a hamiltonian cycle, we need to construct a satisfying
assignment to :

• Note that this hamiltonian cycle must visit each diamond from top-down
with clause detours (either zig-zagging or zag-zigging)

• Situation that cannot occur: clause entered from one diamond but exited to
a different (why?)

• If a diamond is traversed zig-zag: set
variable to true

• Else, set it to false

• Must be a satisfying assignment, why?

• Cycle is able to visit clause nodes

• At least one literal set to true per clause

(⇐) G
Φ

Such a cycle would never visit node a2

Correctness II

Class Exercise:
Hamiltonian-Cycle TSP≤p

In Class Exercise. HAMILTONIAN-CYCLE TSP

Given a directed graph , convert it to an instance of TSP: that is,

• Cities

• : distance from city to city

• Target such that has a hamiltonian cycle iff there exists a tour of
cities of length at most

≤p

G

c1, …, cn

d(i, j) i j

D G n
D

Hamiltonian Cycle to TSP

⟨G⟩ Instance of TSP

Algorithm for TSP

Yes

No

Yes

No
Poly time

Algorithm for HAM CYCLE

• Claim. TSP

• Claim. HAMILTONIAN-CYCLE TSP

• Proof. Given directed graph , define instance of TSP as:

• City for each node

• if

• if

• has a Hamiltonian cycle iff there is a tour of length at most

• If has a hamiltonian cycle, then it defines a tour of length

• Suppose there is a tour of length at most , why does this ordering
correspond to a hamiltonian cycle?

∈ 𝖭𝖯

≤p

G = (V, E)

v′ i vi

d(i′ , j′) = 1 (vi, vj) ∈ E

d(i′ , j′) = 2 (vi, vj) ∉ E

G n

(⇒) G n

(⇐) n

TSP is NP Complete

• HAMILTONIAN-PATH. Given a directed graph does there exists
a path that visits every vertex exactly once? Such a path is called a
hamiltonian path

• Note: path is allowed to start and end anywhere as long as it visits every
node exactly once

• HAMILTONIAN-PATH

• Certificate: path in

• Verifier: check if path visits each node exactly once

• To prove HAMILTONIAN PATH is NP hard, we can either

• We can modify our hamiltonian cycle reduction (delete)

• More fun: (exercise) Directly reduce from HAMILTONIAN CYCLE

G = (V, E)
P

∈ 𝖭𝖯

G

t → s

(Directed) Hamiltonian Path

• Undirected version of Hamiltonian path/cycle are also NP complete

• Can reduce from directed version

• Reduction idea: Given a directed graph G = (V, E), construct an
undirected graph G ʹ with 3n nodes as follows:

Undirected Ham Path/Cycle

vin

aout

bout

cout
ein

v vout
v

a

b

c

d

e

din

directed graph G undirected graph G′

• Hamiltonian path problem says NP complete even on two connected, cubic
and planar graphs!

• Still NP complete on general grid graphs, but poly-time solvable on “solid
grid graphs” (a Williams undergrad thesis by Chris Umans)

Fun Facts

constraint satisfaction

44

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

SAT

CLIQUE

TSP

• BIN-PACKING. Given a set of items where item has size
, bins of capacity , find an assignment of items to bins that

minimizes the number of bins used?

• PARTITION. Given a set of integers, are there subsets and such that
, and

• MAXCUT. Given an undirected graph , find a subset that
maximizes the number of edges with exactly one endpoint in .

• MAX-2-SAT. Given a Boolean formula in CNF, with exactly two literals per
clause, find a variable assignment that maximizes the number of clauses with
at least one true literal. (2-SAT on the other hand is in)

• 3D-MATCHING. Given instructors, courses, and times, and a list of the
possible courses and times each instructor is willing to teach, is it possible to
make an assignment so that all courses are taught at different times?

I = {1,…, n} i
si ∈ (0,1] c

S n A B
A ∪ B = S A ∩ B = ∅ ∑

a∈A

a = ∑
b∈B

b

G = (V, E) S ⊂ V
S

𝖯

n n n

Useful NP-hard Problems

More hard computational problems
Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.

Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.

Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, …, an, compute

Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley–Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.

• MINESWEEPER (from CIRCUIT-SAT)

• SODUKO (from 3-SAT)

• TETRIS (from 3PARTITION)

• SOLITAIRE (from 3PARTITION)

• SUPER MARIO BROTHERS (from 3-SAT)

• CANDY CRUSH SAGA (from 3-SAT variant)

• PAC-MAN (from Hamiltonian Cycle)

• RUBIK’s CUBE (recent 2017 result, from Hamiltonian Cycle)

• TRAINYARD (from Dominating Set)

Fun NP-hard Games

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Hamiltonian cycle reduction images from Michael Sipser’s Theory of
Computation Book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

