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NP-complete
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SAT, 3SAT ∈ 𝖭𝖯
• SAT.  Given a CNF formula , does it have a satisfying 

truth assignment?  

• 3SAT.  A SAT formula where each clause contains 
exactly 3 literals (corresponding to different variables) 

•   

• Satisfying instance:   , 
where  true,  false  

•   

• Certificate: truth assignment to variables 

• Poly-time verifier: check if assignment 
evaluates to true

ϕ

ϕ = (x1 ∨ x2, ∨ x3) ∧ (x1, x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0
1 : 0 :

SAT, 3-SAT ∈ 𝖭𝖯



NP-hard and NP-Complete 
Problems



Cook-Levin Theorem (Idea)

• If 3SAT can be solved in polynomial time, then any 
problem in NP can be solved in polynomial time 

• So: if 3SAT can be solved in polynomial time, then 
P = NP



NP-hard intuition

• Our goal is to say that a problem  is NP-hard if: 

• If  can be solved in polynomial time, then any 
problem in NP can be solved in polynomial time 

• Therefore, if  can be solved in polynomial time, 
then P = NP

X

X

X



What does this mean?

• We think that, probably,  

• So if a problem is NP-hard, then you probably 
cannot obtain a polynomial-time algorithm for it

P ≠ NP



Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems 

are impossible to solve efficiently 

• Instead, we say problem  is likely very hard to solve by 
saying, if a polynomial-time algorithm was found for , 
then something we all believe is impossible will happen 

• Idea:  is -hard   if  ,  then  

• (Erickson)  Calling a problem NP hard is like saying, “If I 
own a dog, then it can speak fluent English” 

• You probably don’t know whether or not I own a dog, 
but you are definitely sure I don’t own a talking dog 

• Corollary: No one should believe that I own a dog 

• If a problem is NP hard, no one should believe it can be 
solved in polynomial time

X
X

X 𝖭𝖯 ⇒ X ∈ 𝖯 𝖯 = 𝖭𝖯



Use of Reductions:  X ≤p Y
Design algorithms: 

• If  can be solved in polynomial time, we know  can 
also be solved in polynomial time 

Establish intractability: 

• If we know that  is known to be impossible/hard to 
solve in polynomial-time, then we can conclude the 
same about problem  

Establish Equivalence: 

• If  and  then  can be solved in poly-
time iff  can be solved in poly time and we use the 
notation 

Y X

X

Y

X ≤p Y Y ≤p X X
Y

X ≡p Y



• Graph 2-Color reduces to Graph 3-color

• Just replace the third color with either of the two 

• Graph 2-Color can be solved in polynomial time 

• How? 

• We can decide if a graph is bipartite in  
time using traversal 

• Graph 3-color (we’ll show) is NP hard

O(n + m)

Digging Deeper

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y

X ≤p Y



Relative Hardness
• Suppose we know problem  is NP hard, how can we use 

that to show problem  is also hard to solve? 

• How do we compare the relative hardness of problems  

• Recurring idea in this class: reductions! 

• Informally, we say a problem  reduces to a problem , if 
can use an algorithm for  to solve  

• Bipartite matching reduces to max flow 

• Edge-disjoint paths reduces to max flow

X
Y

X Y
Y X

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y

X ≤p Y



[Karp] Reductions
Definition.  Decision problem  polynomial-time (Karp) 
reduces to decision problem  if given any instance  
of , we can construct an instance  of  in polynomial 
time s.t   if and only if . 

Notation. 

X
Y x

X y Y
x ∈ X y ∈ Y

X ≤p Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



NP hard:  Definition
• We will show problems are NP hard using reductions.   

• A problem  is NP hard, if, for any problem ,   

• This means that if , then  

• Cook-Levin theorem [1973]: 3SAT is NP hard

Y X ∈ 𝖭𝖯 X ≤p Y

Y ∈ 𝖯 𝖯 = 𝖭𝖯



NP Completeness
• Definition.  A problem  is NP complete if  is NP hard and  

• 3SAT is NP complete 

• 3SAT : given an assignment to input gates (certificate), can 
verify whether output is one or zero in poly-time 

• 3SAT is NP hard (Cook-Levin Theorem)

X X X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



Summary
• “  is -hard”    “  if and only if ” 

• A problem  is NP complete if  is NP hard and  

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



Proving NP Hardness
• To prove problem  is -hard 

• Difficult to prove every problem in  reduces to  

• Instead, we use a known-NP-hard problem  

• We know every problem  in ,  

• Notice that  is transitive  

• Thus, enough to prove 

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



Known NP Hard Problems?
• For now: SAT  (Cook-Levin Theorem) 

• We will prove a whole repertoire of NP hard 
and NP complete problems by using 
reductions 

• Before reducing SAT to other problems to 
prove them NP hard, let us practice some 
easier reductions first

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  
• Prove that if  is a “yes” instance of , then  is a “yes” 

instance of  
• Prove that if  is a “yes” instance of , then  is a “yes” 

instance of  
• Notice that correctness of reductions are not symmetric:  

• the “if” proof needs to handle arbitrary instances of  
• the “only if” needs to handle the special instance of 

x X y Y
x X y

Y
y Y x

X

X
Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



VERTEX-COVER    IND-SET≡p



IND-SET
• Given a graph , an independent set is a 

subset of vertices  such that no two of them 
are adjacent, that is, for any ,   

• IND-SET Problem.  Given a graph  and 
an integer , does  have an independent set of 
size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

independent set of size 6



Vertex-Cover
• Given a graph , a vertex cover is a 

subset of vertices  such that for every edge 
, either  or . 

• VERTEX-COVER Problem.  Given a graph  
and an integer , does  have a vertex cover of 
size at most ?

G = (V, E)
T ⊆ V

e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G

k

vertex cover of size 4

independent set of size 6



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, 
can we use it to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a 
vertex cover of size .  

• Proof. ( ) Consider an edge   

•  is independent:  both cannot be in  

• At least one of   

•  covers   

≤p

S k V∖S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V∖S

V∖S e ∎



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, 
can we use it to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a 
vertex cover of size .  

• Proof. ( ) Consider an edge   

•  is a vertex cover: at least one of  or 
both must be in  

• Both  cannot be in   

• Thus,  is an independent set.  

≤p

S k V∖S
n − k

⇐ e = (u, v) ∈ E

V∖S u, v
V∖S

u, v S

S ∎



Vertex Cover  IND Set≡p
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent 
set, can we use it to solve vertex cover? 

• Reduction.  Let  .  

•  If  has a vertex cover of size at most  then 
 has an independent set of size at least   

•  If  has an independent set of size at least 
 then  has a vertex cover of size at most  

• IND-SET    VERTEX-COVER  

• Same reduction works: ,  

• VERTEX-COVER    IND-SET

≤p

G′ = G, k′ = n − k

( ⇒ ) G k
G′ k′ 

( ⇐ ) G′ 

k′ G k

≤p

G′ = G k′ = n − k

≡p



IND-SET is NP Complete: 

3SAT    IND-SET≤p



IND-SET: NP Complete
• To show Independent set is NP complete 

• Show it is in NP (already did in previous lectures) 

• Reduce a known NP complete problem to it 

• We will use 3-SAT 

• Looking ahead: once we have shown 3-SAT  IND-SET 

• Since IND-SET  Vertex Cover 

• And Vertex Cover  Set Cover 

• We can conclude they are also NP hard 

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p



• Theorem.  3-SAT  IND-SET 

• Given an instance  of 3-SAT, we construct an instance  of 
IND-SET s.t.  has an independent set of size  iff  is 
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

Instance of 
3-SAT Φ

Instance of  
IND SET 
⟨G, k⟩

Algorithm for IND SET

Yes

No

Yes

NoPoly time

Algorithm for 3-SAT

IND-SET: NP hard



• Reduction.  Let  be the number of clauses in . 

•  has  vertices, one for each literal in  

• (Clause gadget) For each clause, connect the three 
literals in a triangle 

• (Variable gadget) Each variable is connected to its 
negation

k Φ
G 3k Φ

3SAT  IND-SET≤p

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



• Observations.

• Any independent set is  can contain at most 1 vertex from 
each clause triangle 

• Only one of  or  can be in an independent set (consistency)

G

xi xi

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

3SAT  IND-SET≤p



• Claim.   is satisfiable iff  has an independent set of size  

•  Suppose  is satisfiable, consider a satisfying assignment 

• There is at least one true literal in each clause 

• Select one true literal from each clause/triangle  

• This is an independent set of size 

Φ G k

( ⇒ ) Φ

k

3SAT  IND-SET≤p

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



• Claim.   is satisfiable iff  has an independent set of size  

•  Let  be in an independent set in  of size  

•  must contain exactly one node in each triangle 

• Set the corresponding literals to true  

• Set remaining literals consistently  

• All clauses are satisfied —  is satisfiable 

Φ G k = |ϕ |

( ⇐ ) S G k

S

Φ ∎

3SAT  IND-SET≤p

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



Reduction Strategies
• Equivalence 

• VERTEX-COVER    IND-SET 

• Special case to general case 

• VERTEX-COVER    SET-COVER 

• Encoding with gadgets 

• 3-SAT  IND-SET 

• Transitivity 

•  3-SAT  IND-SET    VERTEX-COVER    SET-COVER 

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard 

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p



IND-SET    Clique≤p



Clique

• A clique in an undirected graph is a subset of nodes 
such that every two nodes are connected by an edge. 
A -clique is a clique that contains  nodes. 

• CLIQUE.  Given a graph  and a number , does  
contain a -clique?

k k

G k G
k



IND-SET to CLIQUE

• Theorem.  IND-SET  CLIQUE. 

• We want to: Reduce IND-SET to Clique. Given instance  of 
independent set, construct an instance  of clique such that  

•  has independent set of size  iff  has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′ 

Instance of  
IND-SET ⟨G, k⟩

Instance of  
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET



IND-SET to CLIQUE
• Theorem.  IND-SET  CLIQUE. 

• Proof. Given instance  of independent set, we construct an 
instance  of clique such that  has independent set of size  iff 

 has clique of size  

• Reduction. 

• Let , where  iff  

• Let  

•   has an independent set  of size , then   is a clique in  

•   has a clique  of size , then  is an independent set in 

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G k

G′ k′ 

G′ = (V, E) e = (u, v) ∈ E e ∉ E

k′ = k

( ⇒ ) G S k S G′ 

( ⇐ ) G′ Q k Q G



List of NPC Problems So Far
• SAT 

• 3-SAT 

• INDEPENDENT SET 

• VERTEX COVER 

• SET COVER 

• CLIQUE 

• More to come: 

• Subset Sum/Knapsack  

• 3-COLOR 

• Hamiltonian cycle / path



SUBSET-SUM is NP Complete: 

Vertex-Cover    SUBSET-SUM≤p



Subset Sum Problem
• SUBSET-SUM.  

Given  positive integers  and a target integer , is there a 
subset of numbers that adds up to exactly  

• SUBSET-SUM  

• Certificate: a subset of numbers 

• Poly-time verifier: checks if subset is from the given set and sums 
exactly to  

• Problem has a pseudo-polynomial -time dynamic programming 
algorithm similar to Knapsack 

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover 

• NP hard problems that have pseudo-polynomial algorithms are called 
weakly NP hard

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT )



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof.  Given a graph  with  vertices and  edges 
and a number , we construct a set of numbers 

 and a target sum  such that  has a vertex 
cover of size  iff there is a subset of numbers that sum 
to 

≤p

G n m
k

a1, …, at T G
k

T

⟨G, k⟩ ⟨a1, …, at, T⟩

Algorithm for SUBSET-
SUM

Yes

No

Yes

No
Poly time

Algorithm for VERTEX-
COVER



Vertex Cover to Subset Sum
• Theorem.  VERTEX-COVER  SUBSET-SUM 

• Proof. Label the edges of  as . 

• Reduction. Create  integers and a target value  as follows 

• Each integer is a -bit number in base four 

• Integers representing vertices and edges:  

• Vertex integer  : th (most significant) bit is  and for , the th 
bit is 1 if th edge is incident to vertex  

• Edge integer  : th digit is  and for , the th bit is 1 if this 
integer represents an edge   

•
Target value   

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m i
i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i



Vertex Cover to Subset Sum
• Example: consider the graph   where  

and  
 
 
 
 
 
 
 
 
 

• If  then 

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 2222224 = 2730

u v

w x
5th 4th  : (wx) 3rd  : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw



Correctness
• Claim.   has a vertex cover of size  if and only there is a subset  

of corresponding integers that sums to value  

•  Let  be a vertex cover of size  in , define  as  
 

  

• Sum of the most significant bits of  is   and all other bits sum to  

• Thus the elements of  sum to exactly 

G k X
T

( ⇒ ) C k G X

X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k 2
X T

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x



Vertex Cover to Subset Sum
• Claim.   has a vertex cover of size  if and only there is a subset  of 

corresponding integers that sums to value  

•  Let  be the subset of numbers that sum to   

• That is, there is  s.t.

  

• These numbers are base 4 and there are no carries  

• Each  only contributes  to the th digit, which is 2 

• Thus, for each edge , at least one of its endpoints must be in  

•  is a vertex cover 

• Size of  is : only vertex-numbers have a  in the th position

G k X
T

( ⇐ ) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′ 

av + ∑
i∈E′ 

bi = T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

bi 1 i

i V′ 

V′ 

V′ k 1 m
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