P NP NP-hard, and
NP-complete

SAT, 3SAT € NP

« SAT. Given a CNF formula ¢, does it have a satisfying
truth assignment?

 3SAT. A SAT formula where each clause contains
exactly 3 literals (corresponding to different variables)

o = VX, VXI) A, X VX)) ATV X,V Xy)
1 VX 3 1, X2 V A3 1 VXV Xy

e Satisfying instance: x; =1,x,=1,x=0,x,=0,
where 1 : true, O : false

« SAT, 3-SAT € NP
* Certificate: truth assignment to variables

* Poly-time verifier: check if assignment
evaluates to true

NP-hard and NP-Complete
Problems

Cook-Levin Theorem (ldea)

e |f 3SAT can be solved in polynomial time, then any
problem in NP can be solved in polynomial time

e S0: if 3SAT can be solved in polynomial time, then
P =NP

NP-hard intuition

« Our goal is to say that a problem X is NP-hard if:

« |f X can be solved in polynomial time, then any
problem in NP can be solved in polynomial time

« Therefore, if X can be solved in polynomial time,
then P = NP

What does this mean?

« We think that, probably, P # NP

* So if a problem is NP-hard, then you probably
cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

We are frustratingly unable to prove a lot of problems
are impossible to solve efficiently

Instead, we say problem X is likely very hard to solve by
saying, if a polynomial-time algorithm was found for X,
then something we all believe is impossible will happen

ldea: X is NP-hard = if X € P, then P = NP

(Erickson) Calling a problem NP hard is like saying, “If |
own a dog, then it can speak fluent English”

e You probably don't know whether or not | own a dog,
but you are definitely sure | don’'t own a talking dog

* Corollary: No one should believe that | own a dog

It a problem is NP hard, no one should believe it can be
solved in polynomial time

(o Mzt

Use of Reductions: X Sp Y

Design algorithms:

« If Y can be solved in polynomial time, we know X can
also be solved in polynomial time

Establish intractability:

 If we know that X is known to be impossible/hard to
solve in polynomial-time, then we can conclude the
same about problem Y

Establish Equivalence:

o IfX <, Yand Y <, X then X can be solved in poly-

time iff Y can be solved in poly time and we use the

notation X =, Y

Digging Deeper

* Graph 2-Color reduces to Graph 3-color

e Just replace the third color with either of the two
* Graph 2-Color can be solved in polynomial time

* How?

« We can decide if a graph is bipartite in O(n + m)
time using traversal

* Graph 3-color (we’'ll show) is NP hard

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

X <

Y

Relative Hardness

« Suppose we know problem X is NP hard, how can we use
that to show problem Y is also hard to solve?

« How do we compare the relative hardness of problems
 Recurring idea in this class: reductions!

« Informally, we say a problem X reduces to a problem Y, if
can use an algorithm for Y to solve X

e Bipartite matching reduces to max flow

e Edge-disjoint paths reduces to max flow

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

X <

Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp)
reduces to decision problem Y if given any instance x
of X, we can construct an instance y of Y in polynomial
timest x € Xifandonlyify € Y.

Notation. X Sp Y

Yes

Yes

Instance of X Instance of Y

——————————— Poly time
X

Algorithm for Y

Algorithm for X

NP hard: Definition

 We will show problems are NP hard using reductions.

. A problem Y is NP hard, if, for any problem X € NP, X Sp Y

e Thismeansthatif Y € P,then P = NP

* Cook-Levin theorem [1973]: 3SAT is NP hard

NP Completeness

« Definition. A problem X is NP complete if X is NP hard and X € NP
* 3SAT is NP complete

« 3SAT € NP: given an assignment to input gates (certificate), can
verity whether output is one or zero in poly-time

e 3SAT is NP hard (Cook-Levin Theorem)

NP NP hard

. NP complete

Summary

¢ “XisNP-hard”e “X &€ Pifandonlyif P = NP~
« A problem X is NP complete if X is NP hard and X € NP

 Thus, NP-complete problems are the hardest problems in NP

NP NP hard

./ NP complete

Proving NP Hardness

« To prove problem Y is NP-hard

Difficult to prove every problem in NP reduces to Y

Instead, we use a known-NP-hard problem Z

« We know every problem X in NP, X <, V4
« Notice that Sp IS transitive

« Thus, enough to prove Z <, Y

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z TO Y

Known NP Hard Problems?

 For now: SAT (Cook-Levin Theorem)

* We will prove a whole repertoire of NP hard
and NP complete problems by using
reductions

» Before reducing SAT to other problems to
prove them NP hard, let us practice some
easier reductions first

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z TO Y

Reductions: General Pattern

* Describe a polynomial-time algorithm to transform an arbitrary
instance x of Problem X into a special instance y of Problem Y

« Prove thatif x is a “yes” instance of X, then y is a “yes”
instance of Y

« Provethatif yis a “yes” instance of Y, then x is a “yes”
instance of X

* Notice that correctness of reductions are not symmetric:
« the “if” proof needs to handle arbitrary instances of X

« the “only if” needs to handle the special instance of Y

Yes

Yes

Instance of X Instance of Y

——— Poly time
X

Algorithm for Y
Algorithm for X

VERTEX-COVER =, IND-SET

IND-SET

« Givenagraph G = (V, E), an independent set is a
subset of vertices S C V such that no two of them
are adjacent, that is, forany x,y € §, (x,y) € E

« IND-SET Problem. Given a graph G = (V, E) and
an integer k, does G have an independent set of
size at least k?

‘ independent set of size 6

@ 6 (O

Vertex-Cover

« Givenagraph G = (V, E), avertex cover is a
subset of vertices 1" C V such that for every edge
e =(u,v) € E eithcrueTorveTl.

« VERTEX-COVER Problem. Given a graph G = (V, E)
and an integer k, does G have a vertex cover of
size at most k7?

Q vertex cover of size 4

@ 6 (O

Q ‘ independent set of size 6

Our First Reduction

» VERTEX-COVER <, IND-SET

 Suppose we know how to solve independent set,
can we use it to solve vertex cover?

 Claim. §is anindependent set of size k iff V\S is a
vertex cover of size n — k.

« Proof. (=) Consider anedge e = (u,v) € E
« Sisindependent: u, v both cannot be in $
. Atleastoneofu,v € V\S
« V\Scoverse I

Our First Reduction

» VERTEX-COVER <, IND-SET

 Suppose we know how to solve independent set,
can we use it to solve vertex cover?

. Claim. Sis anindependent set of size kiff V\S is a
vertex cover of size n — k.

« Proof. (&) Consideranedgee = (u,v) € E

. V\S is a vertex cover: at least one of u, v or
both must be in V\S

« Both u,v cannotbein$

« Thus, S is an independent set. |

Vertex Cover =, IND Set

VERTEX-COVER <, IND-SET

e Suppose we know how to solve independent
set, can we use it to solve vertex cover?

e Reduction. LetG'=G, kK'=n—k.

. (=) If G has a vertex cover of size at most k then
G’ has an independent set of size at least k'

e (<)If G'has anindependent set of size at least
k' then G has a vertex cover of size at most k

IND-SET <, VERTEX-COVER

« Samereductionworks: G'=G, k'=n—k

VERTEX-COVER =, IND-SET

IND-SET is NP Complete:

3SAT Sp IND-SET

IND-SET: NP Complete

* To show Independent set is NP complete
 Show itis in NP (already did in previous lectures)
 Reduce a known NP complete problem to it
* We will use 3-SAT
« Looking ahead: once we have shown 3-SAT gp IND-SET

e Since IND-SET <, Vertex Cover
e And Vertex Cover <, Set Cover

 We can conclude they are also NP harad

* Asthey are both in NP, they are also NP complete!

IND-SET: NP hard

e Theorem. 3-SAT gpIND-SET

. Given an instance @ of 3-SAT, we construct an instance (G, k) of
IND-SET s.t. G has an independent set of size k iff ¢ is

satisfiable.
Instance of
IND SET Yes
Instance of (G, k) L >
3-SATD » Poly time NG NG

Algorithm for IND SET
Algorithm for 3-SAT

3SAT<, IND-SET

« Reduction. Let k be the number of clauses in .
o (G has 3k vertices, one for each literal in ©@

e (Clause gadget) For each clause, connect the three
iterals in a triangle

e (Variable gadget) Each variable is connected to its
negation

3SAT<, IND-SET

« Observations.

« Any independent set is G can contain at most 1 vertex from
each clause triangle

« Only one of x; or X; can be in an independent set (consistency)

X u%) X1
X, X5 X, X5 X, X,

3SAT<, IND-SET

« Claim. @ is satisfiable iff G has an independent set of size k

« (=) Suppose D is satisfiable, consider a satisfying assignment
 There is at least one true literal in each clause
e Select one true literal from each clause/triangle

« This is an independent set of size k

SSATSP IND-SET

Claim. @ is satisfiable iff G has an independent set of size k = | ¢ |
(<) Let S be in an independent set in G of size k

« S must contain exactly one node in each triangle

e Setthe corresponding literals to true

e Setremaining literals consistently

o All clauses are satisfied — @ is satisfiable B

CI)=(x1vx2vx3)/\(x1vx2vx3) A(xlvxzvx4)

Reduction Strategies

Equivalence

« VERTEX-COVER =, IND-SET

Special case to general case

« VERTEX-COVER <, SET-COVER
 Encoding with gadgets

« 3-5AT <, IND-SET

Transitivity

e 3-5AT <, IND-SET <, VERTEX-COVER <, SET-COVER
e Thus, IND-SET, VERTEX-COVER and SET-COVER are NP harad

e Since they are all in NP, also NP - complete

IND-SET <, Clique

Clique

A clique in an undirected graph is a subset of nodes
such that every two nodes are connected by an edge.
A k-clique is a clique that contains k nodes.

e CLIQUE. Given a graph G and a number k, does G
contain a k-clique?

IND-SET to CLIQUE

e Theorem. IND-SET <, CLIQUE.

* We want to: Reduce IND-SET to Clique. Given instance (G, k) of
independent set, construct an instance (G’, k") of clique such that

« (G has independent set of size k iff G’ has clique of size k.

Yes Yes

Instance of Instance of

IND-SET (G, k) Poly fime CLIQUE (G, k')

Algorithm for CLIQUE

Algorithm for IND-SET

IND-SET to CLIQUE

e Theorem. IND-SET <, CLIQUE.

. Proof. Given instance (G, k) of independent set, we construct an
instance (G’, k') of clique such that G has independent set of size k iff
G’ has clique of size k'

Reduction.
e LetG' = (V,E) wheree = (u,v) € Eiffe & E
e Letk'=k

« (=) G has anindependent set § of size k, then § is a clique in G’

. (<) G'hasacligue Q of size k, then Q is an independent setin G

List of NPC Problems So Far

 SAT

e 3-SAT

 INDEPENDENT SET

 VERTEX COVER

 SET COVER

« CLIQUE

 More to come:
e Subset Sum/Knapsack
e 3-COLOR

e Hamiltonian cycle / path

SUBSET-SUM is NP Complete:
Vertex-Cover Sp SUBSET-SUM

Subset Sum Problem

e SUBSET-SUM.
Given n positive integers ay, ..., a, and a target integer 71, is there a
subset of numbers that adds up to exactly T

e SUBSET-SUM € NP
e (ertificate: a subset of numbers

* Poly-time verifier: checks if subset is from the given set and sums
exactly to T’

« Problem has a pseudo-polynomial O(nT)-time dynamic programming
algorithm similar to Knapsack

« Will prove SUBSET-SUM is NP hard: reduction from vertex cover

NP hard problems that have pseudo-polynomial algorithms are called
weakly NP hard

Vertex Cover to Subset Sum
« Theorem. VERTEX-COVER gp SUBSET-SUM

« Proof. Given a graph G with n vertices and m edges
and a number k, we construct a set of numbers
a, ...,a,and atarget sum T such that G has a vertex

cover of size k iff there is a subset of numbers that sum
to 1

Yes

(G, k) (a,...,a,T)

» Poly time

No

Algorithm for SUBSET-

Algorithm for VERT%(”—\/I
COVER

Vertex Cover to Subset Sum

« Theorem. VERTEX-COVER <, SUBSET-SUM

« Proof. Label the edges of Gas O,1,...,m — 1.

« Reduction. Create n + m integers and a target value 1T as follows
« Eachintegeris am + 1-bit number in base four
* [ntegers representing vertices and edges:

. Vertex integer a, : mth (most significant) bitis 1 and for i < m, the ith
bit is 1 if ith edge is incident to vertex v

. Edge integer b,,, : mth digit is 0 and for i < m, the ith bit is 1 if this
integer represents an edge i = (u, v)

m—1
Targetvalue T'=k - 4™ + Z 2. 4!
i=0

Vertex Cover to Subset Sum

« Example: consider the graph G = (V,E) where V= {u,v,w, x}

and E = {(u,v), (u,w), (v,w), (v,x), (w,x)} u
5th 4t s (wx) 3rd : (vx) 2nd: (yw) Ist: (uw) Oth: (uv)
a, | 0 0 0 1 | W
a, 1 0 1 1 0 |
a, 1 [0 1 1 0 a, := 111000, = 1344
a, 1 1 1 0 0 0] a, .= 1101104 = 1300
byy 0 0 0 0 0 1 a, :=101101, = 1105
b, 0 0 o 0 1 0 a, := 100011, = 1029
b,,, 0 0 0 1 0 0
, b,, := 010000, = 256
= 0 0 ‘ 0 0 0 b, := 001000, = 64
" 0 : 0 0 0 0 b,, := 000100, = 16
b,, := 000010, = 4
by := 000001, = 1

e Ifk=2thenT = 222222, =72730

= o

Correctness

. Claim. G has a vertex cover of size k if and only there is a subset X
of corresponding integers that sums to value T

» (=) Let Cbe a vertex cover of size k in G, define X as

in C}
to 2

X:={a, | veC}uU{b, | edgeihas exactly one endpoj

« Sum of the most significant bits of X is k and all other

« Thus the elements of X sum to exactly T C={v,w)

m—1
T=k-4"+) 2.4
=0
T = 222222, = 2730

Vertex Cover to Subset Sum

« Claim. G has a vertex cover of size k if and only there is a subset X of
corresponding integers that sums to value T

e (<) Let X be the subset of numbers that sum to T’
e Thatis, thereis V'C V,E'C E s t.

X = Za +Zb—T k - 4m+22 4

veV’ IEE’

e These numbers are base 4 and there are no carries

« Each b; only contributes 1 to the ith digit, which is 2

« Thus, for each edge i, at least one of its endpoints must be in V’
« V'is avertex cover

 Size of V'is k: only vertex-numbers have a 1 in the mth position

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

