
P, NP, NP-hard, and
NP-complete

1

SAT, 3SAT ∈ 𝖭𝖯
• SAT. Given a CNF formula , does it have a satisfying

truth assignment?

• 3SAT. A SAT formula where each clause contains
exactly 3 literals (corresponding to different variables)

•

• Satisfying instance: ,
where true, false

•

• Certificate: truth assignment to variables

• Poly-time verifier: check if assignment
evaluates to true

ϕ

ϕ = (x1 ∨ x2, ∨ x3) ∧ (x1, x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0
1 : 0 :

SAT, 3-SAT ∈ 𝖭𝖯

NP-hard and NP-Complete
Problems

Cook-Levin Theorem (Idea)

• If 3SAT can be solved in polynomial time, then any
problem in NP can be solved in polynomial time

• So: if 3SAT can be solved in polynomial time, then
P = NP

NP-hard intuition

• Our goal is to say that a problem is NP-hard if:

• If can be solved in polynomial time, then any
problem in NP can be solved in polynomial time

• Therefore, if can be solved in polynomial time,
then P = NP

X

X

X

What does this mean?

• We think that, probably,

• So if a problem is NP-hard, then you probably
cannot obtain a polynomial-time algorithm for it

P ≠ NP

Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems

are impossible to solve efficiently

• Instead, we say problem is likely very hard to solve by
saying, if a polynomial-time algorithm was found for ,
then something we all believe is impossible will happen

• Idea: is -hard if , then

• (Erickson) Calling a problem NP hard is like saying, “If I
own a dog, then it can speak fluent English”

• You probably don’t know whether or not I own a dog,
but you are definitely sure I don’t own a talking dog

• Corollary: No one should believe that I own a dog

• If a problem is NP hard, no one should believe it can be
solved in polynomial time

X
X

X 𝖭𝖯 ⇒ X ∈ 𝖯 𝖯 = 𝖭𝖯

Use of Reductions: X ≤p Y
Design algorithms:

• If can be solved in polynomial time, we know can
also be solved in polynomial time

Establish intractability:

• If we know that is known to be impossible/hard to
solve in polynomial-time, then we can conclude the
same about problem

Establish Equivalence:

• If and then can be solved in poly-
time iff can be solved in poly time and we use the
notation

Y X

X

Y

X ≤p Y Y ≤p X X
Y

X ≡p Y

• Graph 2-Color reduces to Graph 3-color

• Just replace the third color with either of the two

• Graph 2-Color can be solved in polynomial time

• How?

• We can decide if a graph is bipartite in
time using traversal

• Graph 3-color (we’ll show) is NP hard

O(n + m)

Digging Deeper

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

X ≤p Y

Relative Hardness
• Suppose we know problem is NP hard, how can we use

that to show problem is also hard to solve?

• How do we compare the relative hardness of problems

• Recurring idea in this class: reductions!

• Informally, we say a problem reduces to a problem , if
can use an algorithm for to solve

• Bipartite matching reduces to max flow

• Edge-disjoint paths reduces to max flow

X
Y

X Y
Y X

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

X ≤p Y

[Karp] Reductions
Definition. Decision problem polynomial-time (Karp)
reduces to decision problem if given any instance
of , we can construct an instance of in polynomial
time s.t if and only if .

Notation.

X
Y x

X y Y
x ∈ X y ∈ Y

X ≤p Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

NP hard: Definition
• We will show problems are NP hard using reductions.

• A problem is NP hard, if, for any problem ,

• This means that if , then

• Cook-Levin theorem [1973]: 3SAT is NP hard

Y X ∈ 𝖭𝖯 X ≤p Y

Y ∈ 𝖯 𝖯 = 𝖭𝖯

NP Completeness
• Definition. A problem is NP complete if is NP hard and

• 3SAT is NP complete

• 3SAT : given an assignment to input gates (certificate), can
verify whether output is one or zero in poly-time

• 3SAT is NP hard (Cook-Levin Theorem)

X X X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Summary
• “ is -hard” “ if and only if ”

• A problem is NP complete if is NP hard and

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Proving NP Hardness
• To prove problem is -hard

• Difficult to prove every problem in reduces to

• Instead, we use a known-NP-hard problem

• We know every problem in ,

• Notice that is transitive

• Thus, enough to prove

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Known NP Hard Problems?
• For now: SAT (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard
and NP complete problems by using
reductions

• Before reducing SAT to other problems to
prove them NP hard, let us practice some
easier reductions first

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem
• Prove that if is a “yes” instance of , then is a “yes”

instance of
• Prove that if is a “yes” instance of , then is a “yes”

instance of
• Notice that correctness of reductions are not symmetric:

• the “if” proof needs to handle arbitrary instances of
• the “only if” needs to handle the special instance of

x X y Y
x X y

Y
y Y x

X

X
Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

VERTEX-COVER IND-SET≡p

IND-SET
• Given a graph , an independent set is a

subset of vertices such that no two of them
are adjacent, that is, for any ,

• IND-SET Problem. Given a graph and
an integer , does have an independent set of
size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

independent set of size 6

Vertex-Cover
• Given a graph , a vertex cover is a

subset of vertices such that for every edge
, either or .

• VERTEX-COVER Problem. Given a graph
and an integer , does have a vertex cover of
size at most ?

G = (V, E)
T ⊆ V

e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G

k

vertex cover of size 4

independent set of size 6

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set,
can we use it to solve vertex cover?

• Claim. is an independent set of size iff is a
vertex cover of size .

• Proof. () Consider an edge

• is independent: both cannot be in

• At least one of

• covers

≤p

S k V∖S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V∖S

V∖S e ∎

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set,
can we use it to solve vertex cover?

• Claim. is an independent set of size iff is a
vertex cover of size .

• Proof. () Consider an edge

• is a vertex cover: at least one of or
both must be in

• Both cannot be in

• Thus, is an independent set.

≤p

S k V∖S
n − k

⇐ e = (u, v) ∈ E

V∖S u, v
V∖S

u, v S

S ∎

Vertex Cover IND Set≡p
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent
set, can we use it to solve vertex cover?

• Reduction. Let .

• If has a vertex cover of size at most then
 has an independent set of size at least

• If has an independent set of size at least
 then has a vertex cover of size at most

• IND-SET VERTEX-COVER

• Same reduction works: ,

• VERTEX-COVER IND-SET

≤p

G′ = G, k′ = n − k

(⇒) G k
G′ k′

(⇐) G′

k′ G k

≤p

G′ = G k′ = n − k

≡p

IND-SET is NP Complete:

3SAT IND-SET≤p

IND-SET: NP Complete
• To show Independent set is NP complete

• Show it is in NP (already did in previous lectures)

• Reduce a known NP complete problem to it

• We will use 3-SAT

• Looking ahead: once we have shown 3-SAT IND-SET

• Since IND-SET Vertex Cover

• And Vertex Cover Set Cover

• We can conclude they are also NP hard

• As they are both in NP, they are also NP complete!

≤p

≤p

≤p

• Theorem. 3-SAT IND-SET

• Given an instance of 3-SAT, we construct an instance of
IND-SET s.t. has an independent set of size iff is
satisfiable.

≤p

Φ ⟨G, k⟩
G k ϕ

Instance of
3-SAT Φ

Instance of
IND SET
⟨G, k⟩

Algorithm for IND SET

Yes

No

Yes

NoPoly time

Algorithm for 3-SAT

IND-SET: NP hard

• Reduction. Let be the number of clauses in .

• has vertices, one for each literal in

• (Clause gadget) For each clause, connect the three
literals in a triangle

• (Variable gadget) Each variable is connected to its
negation

k Φ
G 3k Φ

3SAT IND-SET≤p

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

• Observations.

• Any independent set is can contain at most 1 vertex from
each clause triangle

• Only one of or can be in an independent set (consistency)

G

xi xi

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3SAT IND-SET≤p

• Claim. is satisfiable iff has an independent set of size

• Suppose is satisfiable, consider a satisfying assignment

• There is at least one true literal in each clause

• Select one true literal from each clause/triangle

• This is an independent set of size

Φ G k

(⇒) Φ

k

3SAT IND-SET≤p

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

• Claim. is satisfiable iff has an independent set of size

• Let be in an independent set in of size

• must contain exactly one node in each triangle

• Set the corresponding literals to true

• Set remaining literals consistently

• All clauses are satisfied — is satisfiable

Φ G k = |ϕ |

(⇐) S G k

S

Φ ∎

3SAT IND-SET≤p

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Reduction Strategies
• Equivalence

• VERTEX-COVER IND-SET

• Special case to general case

• VERTEX-COVER SET-COVER

• Encoding with gadgets

• 3-SAT IND-SET

• Transitivity

• 3-SAT IND-SET VERTEX-COVER SET-COVER

• Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard

• Since they are all in NP, also NP - complete

≡p

≤p

≤p

≤p ≤p ≤p

IND-SET Clique≤p

Clique

• A clique in an undirected graph is a subset of nodes
such that every two nodes are connected by an edge.
A -clique is a clique that contains nodes.

• CLIQUE. Given a graph and a number , does
contain a -clique?

k k

G k G
k

IND-SET to CLIQUE

• Theorem. IND-SET CLIQUE.

• We want to: Reduce IND-SET to Clique. Given instance of
independent set, construct an instance of clique such that

• has independent set of size iff has clique of size .

≤p

⟨G, k⟩
⟨G′ , k′ ⟩

G k G′ k′

Instance of
IND-SET ⟨G, k⟩

Instance of
CLIQUE ⟨G′ , k′ ⟩

Algorithm for CLIQUE

Yes

No

Yes

No
Poly time

Algorithm for IND-SET

IND-SET to CLIQUE
• Theorem. IND-SET CLIQUE.

• Proof. Given instance of independent set, we construct an
instance of clique such that has independent set of size iff

 has clique of size

• Reduction.

• Let , where iff

• Let

• has an independent set of size , then is a clique in

• has a clique of size , then is an independent set in

≤p

⟨G, k⟩
⟨G′ , k′ ⟩ G k

G′ k′

G′ = (V, E) e = (u, v) ∈ E e ∉ E

k′ = k

(⇒) G S k S G′

(⇐) G′ Q k Q G

List of NPC Problems So Far
• SAT

• 3-SAT

• INDEPENDENT SET

• VERTEX COVER

• SET COVER

• CLIQUE

• More to come:

• Subset Sum/Knapsack

• 3-COLOR

• Hamiltonian cycle / path

SUBSET-SUM is NP Complete:

Vertex-Cover SUBSET-SUM≤p

Subset Sum Problem
• SUBSET-SUM.

Given positive integers and a target integer , is there a
subset of numbers that adds up to exactly

• SUBSET-SUM

• Certificate: a subset of numbers

• Poly-time verifier: checks if subset is from the given set and sums
exactly to

• Problem has a pseudo-polynomial -time dynamic programming
algorithm similar to Knapsack

• Will prove SUBSET-SUM is NP hard: reduction from vertex cover

• NP hard problems that have pseudo-polynomial algorithms are called
weakly NP hard

n a1, …, an T
T

∈ 𝖭𝖯

T

O(nT)

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Given a graph with vertices and edges
and a number , we construct a set of numbers

 and a target sum such that has a vertex
cover of size iff there is a subset of numbers that sum
to

≤p

G n m
k

a1, …, at T G
k

T

⟨G, k⟩ ⟨a1, …, at, T⟩

Algorithm for SUBSET-
SUM

Yes

No

Yes

No
Poly time

Algorithm for VERTEX-
COVER

Vertex Cover to Subset Sum
• Theorem. VERTEX-COVER SUBSET-SUM

• Proof. Label the edges of as .

• Reduction. Create integers and a target value as follows

• Each integer is a -bit number in base four

• Integers representing vertices and edges:

• Vertex integer : th (most significant) bit is and for , the th
bit is 1 if th edge is incident to vertex

• Edge integer : th digit is and for , the th bit is 1 if this
integer represents an edge

•
Target value

≤p

G 0,1,…, m − 1

n + m T

m + 1

av m 1 i < m i
i v

buv m 0 i < m i
i = (u, v)

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

Vertex Cover to Subset Sum
• Example: consider the graph where

and

• If then

G = (V, E) V = {u, v, w, x}
E = {(u, v), (u, w), (v, w), (v, x), (w, x)}

k = 2 T = 2222224 = 2730

u v

w x
5th 4th : (wx) 3rd : (vx) 2nd : (vw) 1st : (uw) 0th: (uv)

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

au

av

aw

ax

buv

bvw

bvx

bwx

buw

Correctness
• Claim. has a vertex cover of size if and only there is a subset

of corresponding integers that sums to value

• Let be a vertex cover of size in , define as

• Sum of the most significant bits of is and all other bits sum to

• Thus the elements of sum to exactly

G k X
T

(⇒) C k G X

X := {av | v ∈ C} ∪ {bi | edge i has exactly one endpoint in C}

X k 2
X T

T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

C = {v, w}

T = 2222224 = 2730

u v

w x

Vertex Cover to Subset Sum
• Claim. has a vertex cover of size if and only there is a subset of

corresponding integers that sums to value

• Let be the subset of numbers that sum to

• That is, there is s.t.

• These numbers are base 4 and there are no carries

• Each only contributes to the th digit, which is 2

• Thus, for each edge , at least one of its endpoints must be in

• is a vertex cover

• Size of is : only vertex-numbers have a in the th position

G k X
T

(⇐) X T

V′ ⊆ V, E′ ⊆ E

X := ∑
v∈V′

av + ∑
i∈E′

bi = T = k ⋅ 4m +
m−1

∑
i=0

2 ⋅ 4i

bi 1 i

i V′

V′

V′ k 1 m

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

