P, NP, NP-hard, and NP-complete

SAT, 3SAT \in NP

- SAT. Given a CNF formula ϕ , does it have a satisfying truth assignment?
- **3SAT.** A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\phi = (\overline{x_1} \lor x_2, \lor x_3) \land (x_1, \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
- Satisfying instance: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$, where 1 : true, 0 : false
- SAT, 3-SAT \in NP
 - Certificate: truth assignment to variables
 - Poly-time verifier: check if assignment evaluates to true

NP-hard and NP-Complete Problems

Cook-Levin Theorem (Idea)

- If 3SAT can be solved in polynomial time, then *any* problem in NP can be solved in polynomial time
- So: if 3SAT can be solved in polynomial time, then
 P = NP

NP-hard intuition

- Our goal is to say that a problem X is NP-hard if:
 - If X can be solved in polynomial time, then any problem in NP can be solved in polynomial time
 - Therefore, if X can be solved in polynomial time, then P = NP

What does this mean?

- We think that, probably, $P \neq NP$
- So if a problem is NP-hard, then you probably cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

- We are frustratingly unable to prove a lot of problems are **impossible** to solve efficiently
- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Idea: X is NP-hard \Rightarrow if $X \in P$, then P = NP
- (Erickson) Calling a problem NP hard is like saying, "If I own a dog, then it can speak fluent English"
 - You probably don't know whether or not I own a dog, but you are definitely sure I don't own a talking dog
 - Corollary: No one should believe that I own a dog
- If a problem is NP hard, no one should believe it can be solved in polynomial time

Use of Reductions: $X \leq_p Y$

Design algorithms:

• If *Y* can be solved in polynomial time, we know *X* can also be solved in polynomial time

Establish intractability:

• If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

• If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in polytime iff Y can be solved in poly time and we use the notation $X \equiv_p Y$

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
 - Just replace the third color with either of the two
- Graph 2-Color can be solved in polynomial time
 - How?
 - We can decide if a graph is bipartite in O(n + m) time using traversal
- Graph 3-color (we'll show) is NP hard

Intuitively, if problem X reduces to problem Y, then solving X is *no harder* than solving Y $X \leq_p Y$

Relative Hardness

- Suppose we know problem X is NP hard, how can we use that to show problem Y is also hard to solve?
- How do we compare the relative hardness of problems
- Recurring idea in this class: **reductions!**
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
 - Bipartite matching reduces to max flow
 - Edge-disjoint paths reduces to max flow

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y $X \leq_p Y$

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

NP hard: Definition

- We will show problems are NP hard using reductions.
 - A problem *Y* is **NP hard**, if, for any problem $X \in$ **NP**, $X \leq_p Y$
- This means that if $Y \in P$, then P = NP
- Cook-Levin theorem [1973]: 3SAT is NP hard

NP Completeness

- **Definition.** A problem X is NP complete if X is NP hard and $X \in NP$
- 3SAT is **NP** complete
 - 3SAT ∈ NP: given an assignment to input gates (certificate), can verify whether output is one or zero in poly-time
 - 3SAT is NP hard (Cook-Levin Theorem)

Summary

- "X is NP-hard" \Leftrightarrow "X \in P if and only if P = NP"
- A problem X is NP complete if X is NP hard and $X \in NP$
- Thus, NP-complete problems are the hardest problems in NP

Proving NP Hardness

- To prove problem Y is NP-hard
 - Difficult to prove every problem in ${\sf NP}$ reduces to Y
 - Instead, we use a known-NP-hard problem \boldsymbol{Z}
 - We know every problem X in NP, $X \leq_p Z$
 - Notice that \leq_p is transitive
 - Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Known NP Hard Problems?

- For now: SAT (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing SAT to other problems to prove them NP hard, let us practice some easier reductions first

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that if x is a "yes" instance of X, then y is a "yes" instance of Y
- Prove that if y is a "yes" instance of $Y\!\!\!\!\!$, then x is a "yes" instance of X
- Notice that correctness of reductions are not symmetric:
 - the "if" proof needs to handle arbitrary instances of X
 - the "only if" needs to handle the special instance of ${\it Y}$

VERTEX-COVER \equiv_p **IND-SET**

IND-SET

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem. Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

independent set of size 6

Vertex-Cover

- Given a graph G = (V, E), a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph G = (V, E)and an integer k, does G have a vertex cover of size at most k?

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V \setminus S$ is a vertex cover of size n k.
- **Proof.** (\Rightarrow) Consider an edge $e = (u, v) \in E$
 - S is independent: u, v both cannot be in S
 - At least one of $u, v \in V \backslash S$
 - $V \setminus S$ covers e

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V \setminus S$ is a vertex cover of size n k.
- **Proof.** (\Leftarrow) Consider an edge $e = (u, v) \in E$
 - $V \setminus S$ is a vertex cover: at least one of u, v or both must be in $V \setminus S$
 - Both *u*, *v* cannot be in *S*
 - Thus, S is an independent set.

Vertex Cover \equiv_p IND Set

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Reduction. Let G' = G, k' = n k.
 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'
 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k
- IND-SET \leq_p VERTEX-COVER
 - Same reduction works: G' = G, k' = n k
- VERTEX-COVER \equiv_p IND-SET

IND-SET is NP Complete: $3SAT \leq_p IND-SET$

IND-SET: NP Complete

- To show Independent set is NP complete
 - Show it is in NP (already did in previous lectures)
 - Reduce a known NP complete problem to it
 - We will use 3-SAT
- Looking ahead: once we have shown 3-SAT \leq_p IND-SET
 - Since IND-SET \leq_p Vertex Cover
 - And Vertex Cover \leq_p Set Cover
 - We can conclude they are also NP hard
 - As they are both in NP, they are also NP complete!

IND-SET: NP hard

- Theorem. $3-SAT \leq_p IND-SET$
- Given an instance Φ of 3-SAT, we construct an instance $\langle G,k\rangle$ of IND-SET s.t. G has an independent set of size k iff ϕ is satisfiable.

- **Reduction.** Let k be the number of clauses in Φ .
 - G has 3k vertices, one for each literal in Φ
 - (Clause gadget) For each clause, connect the three literals in a triangle
 - (Variable gadget) Each variable is connected to its negation

Observations.

- Any independent set is *G* can contain at most 1 vertex from each clause triangle
- Only one of x_i or $\overline{x_i}$ can be in an independent set (*consistency*)

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Rightarrow) Suppose Φ is satisfiable, consider a satisfying assignment
 - There is at least one true literal in each clause
 - Select one true literal from each clause/triangle
 - This is an independent set of size k

- Claim. Φ is satisfiable iff *G* has an independent set of size $k = |\phi|$
- (\Leftarrow) Let S be in an independent set in G of size k
 - *S* must contain exactly one node in each triangle
 - Set the corresponding literals to *true*
 - Set remaining literals consistently
 - All clauses are satisfied Φ is satisfiable

Reduction Strategies

- Equivalence
 - VERTEX-COVER \equiv_p IND-SET
- Special case to general case
 - VERTEX-COVER \leq_p SET-COVER
- Encoding with gadgets
 - $3-SAT \leq_p IND-SET$
- Transitivity
 - $3-SAT \leq_p IND-SET \leq_p VERTEX-COVER \leq_p SET-COVER$
 - Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard
 - Since they are all in NP, also NP complete

IND-SET \leq_p Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge.
 A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph *G* and a number *k*, does *G* contain a *k*-clique?

IND-SET to CLIQUE

- **Theorem.** IND-SET \leq_p CLIQUE.
- We want to: Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that
 - G has independent set of size k iff G' has clique of size k'.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_p CLIQUE.
- Proof. Given instance $\langle G, k \rangle$ of independent set, we construct an instance $\langle G', k' \rangle$ of clique such that G has independent set of size k iff G' has clique of size k'
- Reduction.
 - Let $G' = (V, \overline{E})$, where $e = (u, v) \in \overline{E}$ iff $e \notin E$
 - Let k' = k
 - (\Rightarrow) G has an independent set S of size k, then S is a clique in G'
 - (\Leftarrow) G' has a clique Q of size k, then Q is an independent set in G

List of NPC Problems So Far

- SAT
- 3-SAT
- INDEPENDENT SET
- VERTEX COVER
- SET COVER
- CLIQUE
- More to come:
 - Subset Sum/Knapsack
 - 3-COLOR
 - Hamiltonian cycle / path

SUBSET-SUM is NP Complete:

Vertex-Cover \leq_p SUBSET-SUM

Subset Sum Problem

• SUBSET-SUM.

Given *n* positive integers a_1, \ldots, a_n and a target integer *T*, is there a subset of numbers that adds up to exactly *T*

• SUBSET-SUM \in NP

- Certificate: a subset of numbers
- Poly-time verifier: checks if subset is from the given set and sums exactly to ${\cal T}$
- Problem has a pseudo-polynomial O(nT)-time dynamic programming algorithm similar to Knapsack
- Will prove SUBSET-SUM is NP hard: reduction from vertex cover
- NP hard problems that have pseudo-polynomial algorithms are called weakly NP hard

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- Proof. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers
 a₁,..., a_t and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- **Proof.** Label the edges of G as $0, 1, \ldots, m 1$.
- **Reduction**. Create n + m integers and a target value T as follows
- Each integer is a m + 1-bit number in base four
- Integers representing vertices and edges:
 - Vertex integer a_v : *m*th (most significant) bit is 1 and for i < m, the *i*th bit is 1 if *i*th edge is incident to vertex *v*
 - Edge integer b_{uv} : *m*th digit is 0 and for i < m, the *i*th bit is 1 if this integer represents an edge i = (u, v)

• Target value
$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

• Example: consider the graph G = (V, E) where $V = \{u, v, w, x\}$ and $E = \{(u, v), (u, w), (v, w), (v, x), (w, x)\}$

	5 th	4^{th} : (wx)	3 rd : (vx)	2 nd : (vw)	1 st : (uw)	Oth: (uv)
a _u	1	0	0	0	1	1
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
a_x	1	1	1	0	0	0
b_{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vw}	0	0	0	1	0	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

- $a_u := 111000_4 = 1344$ $a_v := 110110_4 = 1300$ $a_w := 101101_4 = 1105$ $a_x := 100011_4 = 1029$
- $b_{uv} := 010000_4 = 256$ $b_{uw} := 001000_4 = 64$ $b_{vw} := 000100_4 = 16$ $b_{vx} := 000010_4 = 4$ $b_{wx} := 000001_4 = 1$

• If k = 2 then $T = 222222_4 = 2730$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let *C* be a vertex cover of size *k* in *G*, define *X* as

 $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

- Sum of the most significant bits of X is k and all other wits sum to 2
- Thus the elements of X sum to exactly T $C = \{v, w\}$

$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$
$$T = 222222_4 = 2730$$

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Leftarrow) Let X be the subset of numbers that sum to T
- That is, there is $V' \subseteq V, E' \subseteq E$ s.t.

$$X := \sum_{v \in V'} a_v + \sum_{i \in E'} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

- These numbers are base 4 and there are no carries
- Each b_i only contributes 1 to the *i*th digit, which is 2
- Thus, for each edge i, at least one of its endpoints must be in V'
 - V' is a vertex cover
- Size of V' is k: only vertex-numbers have a 1 in the mth position

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)