P, NP, NP-hard, and NP-complete

SAT, $3 \mathrm{SAT} \in \mathrm{NP}$

- SAT. Given a CNF formula ϕ, does it have a satisfying truth assignment?
- 3SAT. A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\phi=\left(\overline{x_{1}} \vee x_{2}, \vee x_{3}\right) \wedge\left(x_{1}, \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)$
- Satisfying instance: $x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0$, where 1 : true, 0 : false
- SAT, 3-SAT \in NP
- Certificate: truth assignment to variables
- Poly-time verifier: check if assignment evaluates to true

NP-hard and NP-Complete Problems

Cook-Levin Theorem (Idea)

- If 3SAT can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- So: if 3SAT can be solved in polynomial time, then $P=N P$

NP-hard intuition

- Our goal is to say that a problem X is NP-hard if:
- If X can be solved in polynomial time, then any problem in NP can be solved in polynomial time
- Therefore, if X can be solved in polynomial time, then $\mathrm{P}=\mathrm{NP}$

What does this mean?

- We think that, probably, $P \neq N P$
- So if a problem is NP-hard, then you probably cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

- We are frustratingly unable to prove a lot of problems are impossible to solve efficiently
- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- Idea: X is NP-hard \Rightarrow if $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- (Erickson) Calling a problem NP hard is like saying, "If I own a dog, then it can speak fluent English"
- You probably don't know whether or not I own a dog, but you are definitely sure I don't own a talking dog
- Corollary: No one should believe that I own a dog
- If a problem is NP hard, no one should believe it can be solved in polynomial time

Use of Reductions: $X \leq_{p} Y$

Design algorithms:

- If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

- If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

- If $X \leq_{p} Y$ and $Y \leq_{p} X$ then X can be solved in polytime iff Y can be solved in poly time and we use the notation $X \equiv_{p} Y$

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
- Just replace the third color with either of the two
- Graph 2-Color can be solved in polynomial time
- How?
- We can decide if a graph is bipartite in $O(n+m)$ time using traversal
- Graph 3-color (we'll show) is NP hard

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Relative Hardness

- Suppose we know problem X is NP hard, how can we use that to show problem Y is also hard to solve?
- How do we compare the relative hardness of problems
- Recurring idea in this class: reductions!
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
- Bipartite matching reduces to max flow
- Edge-disjoint paths reduces to max flow

Intuitively, if problem X reduces to problem Y,

$X \leq_{p} Y$

 then solving X is no harder than solving Y
[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_{p} Y$

Algorithm for X

NP hard: Definition

- We will show problems are NP hard using reductions.
- A problem Y is $\mathbf{N P}$ hard, if, for any problem $X \in \mathrm{NP}, X \leq_{p} Y$
- This means that if $Y \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
- Cook-Levin theorem [1973]: 3SAT is NP hard

NP Completeness

- Definition. A problem X is NP complete if X is NP hard and $X \in$ NP
- 3SAT is NP complete
- 3 SAT \in NP: given an assignment to input gates (certificate), can verify whether output is one or zero in poly-time
- 3SAT is NP hard (Cook-Levin Theorem)

Summary

- " X is NP-hard" \Leftrightarrow " $X \in \mathrm{P}$ if and only if $\mathrm{P}=\mathrm{NP}$ "
- A problem X is NP complete if X is NP hard and $X \in \mathrm{NP}$
- Thus, NP-complete problems are the hardest problems in NP

Proving NP Hardness

- To prove problem Y is NP-hard
- Difficult to prove every problem in NP reduces to Y
- Instead, we use a known-NP-hard problem Z
- We know every problem X in NP, $X \leq_{p} Z$
- Notice that \leq_{p} is transitive
- Thus, enough to prove $Z \leq_{p} Y$

TO PROVE THAT A PROBLEM Y IS NP HARD, reduce a known NP hard problem Z to Y

Known NP Hard Problems?

- For now: SAT (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing SAT to other problems to prove them NP hard, let us practice some easier reductions first

TO PROVE THAT A PROBLEM Y IS NP HARD, reduce a known NP hard problem Z to Y

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that if x is a "yes" instance of X, then y is a "yes" instance of Y
- Prove that if y is a "yes" instance of Y, then x is a "yes" instance of X
- Notice that correctness of reductions are not symmetric:
- the "if" proof needs to handle arbitrary instances of X
- the "only if" needs to handle the special instance of Y

VERTEX-COVER \equiv_{p} IND-SET

IND-SET

- Given a graph $G=(V, E)$, an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S,(x, y) \notin E$
- IND-SET Problem. Given a graph $G=(V, E)$ and an integer k, does G have an independent set of size at least k ?

Vertex-Cover

- Given a graph $G=(V, E)$, a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e=(u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph $G=(V, E)$ and an integer k, does G have a vertex cover of size at most k ?

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V \backslash S$ is a vertex cover of size $n-k$.
- Proof. (\Rightarrow) Consider an edge $e=(u, v) \in E$
- S is independent: u, v both cannot be in S
- At least one of $u, v \in V \backslash S$
- $V \backslash S$ covers e ■

Our First Reduction

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff $V \backslash S$ is a vertex cover of size $n-k$.
- Proof. (\Leftarrow) Consider an edge $e=(u, v) \in E$
- $V \backslash S$ is a vertex cover: at least one of u, v or both must be in $V \backslash S$
- Both u, v cannot be in S
- Thus, S is an independent set. ■

Vertex Cover \equiv_{p} IND Set

- VERTEX-COVER \leq_{p} IND-SET
- Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Reduction. Let $G^{\prime}=G, k^{\prime}=n-k$.
- (\Rightarrow) If G has a vertex cover of size at most k then G^{\prime} has an independent set of size at least k^{\prime}
- (\Leftarrow) If G^{\prime} has an independent set of size at least
k^{\prime} then G has a vertex cover of size at most k
- IND-SET \leq_{p} VERTEX-COVER
- Same reduction works: $G^{\prime}=G, k^{\prime}=n-k$
- VERTEX-COVER \equiv_{p} IND-SET

IND-SET is NP Complete:
 $$
3 \text { SAT } \leq_{p} \text { IND-SET }
$$

IND-SET: NP Complete

- To show Independent set is NP complete
- Show it is in NP (already did in previous lectures)
- Reduce a known NP complete problem to it
- We will use 3-SAT
- Looking ahead: once we have shown $3-$ SAT \leq_{p} IND-SET
- Since IND-SET \leq_{p} Vertex Cover
- And Vertex Cover \leq_{p} Set Cover
- We can conclude they are also NP hard
- As they are both in NP, they are also NP complete!

IND-SET: NP hard

- Theorem. 3 -SAT \leq_{p} IND-SET
- Given an instance Φ of 3-SAT, we construct an instance $\langle G, k\rangle$ of IND-SET s.t. G has an independent set of size k iff ϕ is satisfiable.

Algorithm for 3-SAT

$3 S A T \leq_{p}$ IND-SET

- Reduction. Let k be the number of clauses in Φ.
- G has $3 k$ vertices, one for each literal in Φ
- (Clause gadget) For each clause, connect the three literals in a triangle
- (Variable gadget) Each variable is connected to its negation

$3 \mathrm{SAT} \leq_{p}$ IND-SET

- Observations.
- Any independent set is G can contain at most 1 vertex from each clause triangle
- Only one of x_{i} or \bar{x}_{i} can be in an independent set (consistency)

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

$3 S A T \leq_{p}$ IND-SET

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Rightarrow) Suppose Φ is satisfiable, consider a satisfying assignment
- There is at least one true literal in each clause
- Select one true literal from each clause/triangle
- This is an independent set of size k

$3 S A T \leq_{p}$ IND-SET

- Claim. Φ is satisfiable iff G has an independent set of size $k=|\phi|$
- (\Leftarrow) Let S be in an independent set in G of size k
- S must contain exactly one node in each triangle
- Set the corresponding literals to true
- Set remaining literals consistently
- All clauses are satisfied - Φ is satisfiable ■

Reduction Strategies

- Equivalence
- VERTEX-COVER \equiv_{p} IND-SET
- Special case to general case
- VERTEX-COVER \leq_{p} SET-COVER
- Encoding with gadgets
- 3 -SAT \leq_{p} IND-SET
- Transitivity
- 3-SAT \leq_{p} IND-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER
- Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard
- Since they are all in NP, also NP - complete

IND-SET \leq_{p} Clique

Clique

- A clique in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k-clique?

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- We want to: Reduce IND-SET to Clique. Given instance $\langle G, k\rangle$ of independent set, construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that
- G has independent set of size k iff G^{\prime} has clique of size k^{\prime}.

IND-SET to CLIQUE

- Theorem. IND-SET \leq_{p} CLIQUE.
- Proof. Given instance $\langle G, k\rangle$ of independent set, we construct an instance $\left\langle G^{\prime}, k^{\prime}\right\rangle$ of clique such that G has independent set of size k iff G^{\prime} has clique of size k^{\prime}
- Reduction.
- Let $G^{\prime}=(V, \bar{E})$, where $e=(u, v) \in \bar{E}$ iff $e \notin E$
- Let $k^{\prime}=k$
- $(\Rightarrow) G$ has an independent set S of size k, then S is a clique in G^{\prime}
- $(\Leftarrow) G^{\prime}$ has a clique Q of size k, then Q is an independent set in G

List of NPC Problems So Far

- SAT
- 3-SAT
- INDEPENDENT SET
- VERTEX COVER
- SET COVER
- CLIQUE
- More to come:
- Subset Sum/Knapsack
- 3-COLOR
- Hamiltonian cycle / path

SUBSET-SUM is NP Complete:

Vertex-Cover \leq_{p} SUBSET-SUM

Subset Sum Problem

- SUBSET-SUM.

Given n positive integers a_{1}, \ldots, a_{n} and a target integer T, is there a subset of numbers that adds up to exactly T

- SUBSET-SUM \in NP
- Certificate: a subset of numbers
- Poly-time verifier: checks if subset is from the given set and sums exactly to T
- Problem has a pseudo-polynomial $O(n T)$-time dynamic programming algorithm similar to Knapsack
- Will prove SUBSET-SUM is NP hard: reduction from vertex cover
- NP hard problems that have pseudo-polynomial algorithms are called weakly NP hard

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Proof. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_{1}, \ldots, a_{t} and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T

Vertex Cover to Subset Sum

- Theorem. VERTEX-COVER \leq_{p} SUBSET-SUM
- Proof. Label the edges of G as $0,1, \ldots, m-1$.
- Reduction. Create $n+m$ integers and a target value T as follows
- Each integer is a $m+1$-bit number in base four
- Integers representing vertices and edges:
- Vertex integer $a_{v}: m$ th (most significant) bit is 1 and for $i<m$, the i th bit is 1 if i th edge is incident to vertex v
- Edge integer $b_{u v}: m$ th digit is 0 and for $i<m$, the i th bit is 1 if this integer represents an edge $i=(u, v)$
- Target value $T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}$

Vertex Cover to Subset Sum

- Example: consider the graph $G=(V, E)$ where $V=\{u, v, w, x\}$ and $E=\{(u, v),(u, w),(v, w),(v, x),(w, x)\}$

	$5^{\text {th }}$	$4^{\text {th }}:(\mathbf{w x})$	$3^{\text {rd }}:(\mathbf{v x})$	$2^{\mathrm{nd}}:(\mathrm{vw})$	$1^{\mathrm{st}}:(\mathrm{uw})$	$0^{\text {th }}:(\mathrm{uv})$
a_{u}	1	0	0	0	1	1
a_{v}	1	0	1	1	0	1
a_{w}	1	1	0	1	1	0
a_{x}	1	1	1	0	0	0
$b_{u v}$	0	0	0	0	0	1
$b_{u w}$	0	0	0	0	1	0
$b_{v w}$	0	0	0	1	0	0
$b_{v x}$	0	0	1	0	0	0
$b_{w x}$	0	1	0	0	0	0

$$
\begin{aligned}
a_{u} & :=111000_{4}=1344 \\
a_{v} & :=110110_{4}=1300 \\
a_{w} & :=101101_{4}=1105 \\
a_{x} & :=100011_{4}=1029 \\
b_{u v} & :=010000_{4}=256 \\
b_{u w} & :=001000_{4}=64 \\
b_{v w} & :=000100_{4}=16 \\
b_{v x} & :=000010_{4}=4 \\
b_{w x} & :=000001_{4}=1
\end{aligned}
$$

- If $k=2$ then $T=222222_{4}=2730$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X:=\left\{a_{v} \mid v \in C\right\} \cup\left\{b_{i} \mid\right.$ edge i has exactly one endpoinf in $\left.C\right\}$
Sum of the most significant bits of X is k and all other bits sumto 2
- Thus the elements of X sum to exactly T

$$
\begin{aligned}
& C=\{v, w\} \\
& T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i} \\
& T=2222222_{4}=2730
\end{aligned}
$$

Vertex Cover to Subset Sum

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Leftarrow) Let X be the subset of numbers that sum to T
- That is, there is $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ s.t.

$$
X:=\sum_{v \in V^{\prime}} a_{v}+\sum_{i \in E^{\prime}} b_{i}=T=k \cdot 4^{m}+\sum_{i=0}^{m-1} 2 \cdot 4^{i}
$$

- These numbers are base 4 and there are no carries
- Each b_{i} only contributes 1 to the i th digit, which is 2
- Thus, for each edge i, at least one of its endpoints must be in V^{\prime}
- V^{\prime} is a vertex cover
- Size of V^{\prime} is k : only vertex-numbers have a 1 in the m th position

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

