
P, NP, NP-hard, and
NP-complete

1

Admin

• Assignment 7 out right after class

• We’ve caught up a little with the schedule; thanks
for being flexible in the last couple minutes with
class

• (Today we won’t go over)

• Anything else?

Goal of Today

• Most of the class has been about how to efficiently
solve problems

• Now we’re going to shift to a higher-level question

• What problems can a computer efficiently solve?

Goal of Today

• Number of inversions—can solve in easily,
but with a clever algorithm

• Weighted interval scheduling—can try all
combinations in , but can solve in
using Dynamic programming

• Network flow seems very difficult to solve, but we
saw how to solve it in and even

O(n2)
O(n log n)

O(2n) O(n2)

O(nmC) O(n2m)

Goal of Today

• What problems can a computer solve in polynomial
time?

• What problems can a computer (probably) not
solve in polynomial time?

Technical Setup

• We will now focus on decision problems — problems
with a yes or no answer

• “Does this DAG have a topological order?”

• Is this graph bipartite?

• Do these two strings have Edit Distance at most 10?

• Does this flow network have a max flow of at least
20?

Technical Setup
• Most problems have a decision analog

• Find the flow of this network -> “does this network
have flow at least ?”

• Find the optimal schedule of these intervals -> “can
we schedule at least intervals?”

• These are (mostly) the same—-after all, can always
binary search for the optimal value

k

k

Technical Setup
• Decision problem means that every solution is “yes” or “no”

• Can represent this using a set of possible inputs :

• means that the solution to is “yes”

• means that the solution to is “no”

• So can have (for example): is the set of all flow networks
which permit flow at least

• Or can have: is the set of all pairs of strings where
the edit distance between and is at most

A

x ∈ A x

x ∉ A x

A
k

A (a, b)
a b k

Class P
• P: The decision problems that can be solved by a

computer in polynomial time

• Edit distance is in P

• Max flow is in P

• Bipartite matching is in P

• Knapsack?

• The algorithm we saw is pseudo-polynomial! So we
don’t know yet

Class NP

Class NP—Intuition

• NP is the class of problems that can be verified in
polynomial time

• If I give you helpful information, you can easily get
the answer

Class NP—Intuition

Sudoku is easy if I give you information (by
giving you the solution). So sudoku is in NP

Class NP—Intuition

Knapsack is easy if I give you information (by
giving you the solution). So knapsack is in NP

• Example (Knapsack capacity C = 11)

• {3, 4} has value $40 (and weight 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

Class NP
Definition. Algorithm is a verifier for problem if for
every string iff there exists a certificate, a string ,
such that yes iff .

Definition. = set of decision problems for which there
exists a polynomial-time verifier

• is a polynomial time algorithm

• Certificate is of polynomial size:

• for some polynomial

V(s, c) X
s ∈ X c

V(s, c) = s ∈ X

𝖭𝖯

V(s, c)

c

|c | ≤ p(|s |) p(.)

Quick question

• Is ?

• That is to say: if a problem is in P, does that mean
that it is in NP?

• Yes! If a problem can be solved in polynomial time,
it can be verified in polynomial time.

• (Can just set ””)

P ⊆ NP

c =

Graph-Coloring ∈ 𝖭𝖯
Graph-Coloring. Given a graph , is it
possible to color the vertices of using only three
colors, such that no edge has both end points
colored with the same color.

• Graph-Coloring

• Certificate: assignment of colors to vertices

• Poly-time verifier: check if at most 3 colors
used, check for each edge if ends points same
color or not

G = (V, E)
G

∈ 𝖭𝖯

A 3-colorable graph

• Given a graph , an independent set is a
subset of vertices such that no two of them are
adjacent, that is, for any ,

• IND-SET Problem.
Given a graph and an integer , does
have an independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

independent set of size 6

Independent Set

• Given a graph , an independent set is a
subset of vertices such that no two of them
are adjacent, that is, for any ,

• IND-SET Problem. Given a graph and
an integer , does have an independent set of
size at least ?

• IND-SET .

• Certificate: a subset of vertices

• Poly-time verifier: check if any two vertices
are adjacent and check if size is at least

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

∈ 𝖭𝖯

k

IND-SET ∈ 𝖭𝖯

Satisfiability

• The next problem is the classic example of a
problem in NP

• (and, as we’ll soon see, probably not in P)

• Many different small variations on the same
problem (we’ll see a couple)

• Idea: given a logical equation, can we assign “true”
and “false” to the variables to satisfy the equation?

SAT, 3SAT ∈ 𝖭𝖯
• SAT. Given a CNF formula , does it have a satisfying

truth assignment?

• 3SAT. A SAT formula where each clause contains
exactly 3 literals (corresponding to different variables)

•

• Satisfying instance: ,
where true, false

•

• Certificate: truth assignment to variables

• Poly-time verifier: check if assignment
evaluates to true

ϕ

ϕ = (x1 ∨ x2, ∨ x3) ∧ (x1, x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0
1 : 0 :

SAT, 3-SAT ∈ 𝖭𝖯

 P versus NP

P vs NP

• We know that every problem in P is also in NP

• What about the reverse? That is to say:

• If a problem can be efficiently verified, does that
mean it can be efficiently solved in the first
place?

• Or, do there exist problems that can be verified
quickly that are impossible to solve quickly?

Why do we care?
• If , some consequences:

• Lots of important problems can be solved quickly!

• Can build things better, faster, more efficiently

• (Public key) cryptography does not exist

• If :

• Some problems can’t be solved quickly

• Can stop trying to solve them

P = NP

P ≠ NP

P vs NP

• The biggest open problem in computer science

• One of the biggest in math as well

• We are not even close to solving it

• Know that [Williams ’10]ACC0 ⊊ NEXP

NP-hard and NP-Complete
Problems

Cook-Levin Theorem

• If Satisfiability can be solved in polynomial time,
then any problem in NP can be solved in
polynomial time

• So: if Satisfiability can be solved in polynomial time,
then P = NP

• How is this possible?

Cook-Levin Theorem
• Idea: any computer program can be represented by a

circuit.

• Solve SAT in poly time -> can figure out the answer given
by the circuit for NP problem in poly time

You’ll see the
proof in 361

NP-hard

• A problem is NP-hard if:

• If can be solved in polynomial time, then any
problem in NP can be solved in polynomial time

• Therefore, if can be solved in polynomial time,
then P = NP

X

X

X

What does this mean?

• We think that, probably,

• So if a problem is NP-hard, then you probably
cannot obtain a polynomial-time algorithm for it

P ≠ NP

Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems

are impossible to solve efficiently

• Instead, we say problem is likely very hard to solve by
saying, if a polynomial-time algorithm was found for ,
then something we all believe is impossible will happen

• We say is -hard if , then

• (Erickson) Calling a problem NP hard is like saying, “If I
own a dog, then it can speak fluent English”

• You probably don’t know whether or not I own a dog,
but you are definitely sure I don’t own a talking dog

• Corollary: No one should believe that I own a dog

• If a problem is NP hard, no one should believe it can be
solved in polynomial time

X
X

X 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

NP Completeness
• Definition. A problem is NP complete if is NP hard and

• SAT is NP complete

• SAT : given an assignment to input gates (certificate), can
verify whether output is one or zero in poly-time

• SAT is NP hard (Cook-Levin Theorem)

X X X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Summary
• is -hard -hard if , then

• A problem is NP complete if is NP hard and

• Alternate definition of NP hard:

• is NP hard if all languages in NP reduce it to in polynomial time

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

X

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

Relative Hardness
• Suppose we know problem is NP hard, how can we use

that to show problem is also hard to solve?

• How do we compare the relative hardness of problems

• Recurring idea in this class: reductions!

• Informally, we say a problem reduces to a problem , if
can use an algorithm for to solve

• Bipartite matching reduces to max flow

• Edge-disjoint paths reduces to max flow

X
Y

X Y
Y X

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

[Karp] Reductions
Definition. Decision problem polynomial-time (Karp)
reduces to decision problem if given any instance
of , we can construct an instance of in polynomial
time s.t if and only if .

Notation.

X
Y x

X y Y
x ∈ X y ∈ Y

X ≤p Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

Say . Which of the following can we infer?

A. If can be solved in polynomial time, then so can .

B. can be solved in poly time iff can be solved in poly time.

C. If cannot be solved in polynomial time, then neither can .

D. If cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y
X Y

X Y
Y X

Reductions Quiz

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

• Graph 2-Color reduces to Graph 3-color

• Just replace the third color with either of the two

• Graph 2-Color can be solved in polynomial time

• How?

• We can decide if a graph is bipartite in
time using traversal

• Graph 3-color (we’ll show) is NP hard

O(n + m)

Digging Deeper

Intuitively, if problem reduces to problem ,
then solving is no harder than solving

X Y
X Y

Use of Reductions: X ≤p Y
Design algorithms:

• If can be solved in polynomial time, we know can
also be solved in polynomial time

Establish intractability:

• If we know that is known to be impossible/hard to
solve in polynomial-time, then we can conclude the
same about problem

Establish Equivalence:

• If and then can be solved in poly-
time iff can be solved in poly time and we use the
notation

Y X

X

Y

X ≤p Y Y ≤p X X
Y

X ≡p Y

NP hard: Definition
• New definition of NP hard using reductions.

• A problem is NP hard, if for any problem ,

• Recall we said is NP hard .

• Lets show that both definitions are equivalent

• every problem in NP reduces to , and if
, then

• if , then : every problem in
 reduces to

Y X ∈ 𝖭𝖯
X ≤p Y

Y ⟺ Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

(⇒) Y
Y ∈ 𝖯 𝖯 = 𝖭𝖯

(⇐) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯(= 𝖯) Y

Proving NP Hardness
• To prove problem is -hard

• Difficult to prove every problem in reduces to

• Instead, we use a known-NP-hard problem

• We know every problem in ,

• Notice that is transitive

• Thus, enough to prove

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Known NP Hard Problems?
• For now: SAT (Cook-Levin Theorem)

• We will prove a whole repertoire of NP hard
and NP complete problems by using
reductions

• Before reducing SAT to other problems to
prove them NP hard, let us practice some
easier reductions first

To prove that a problem is NP hard,
reduce a known NP hard problem to

Y
Z Y

Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary

instance of Problem into a special instance of Problem
• Prove that if is a “yes” instance of , then is a “yes”

instance of
• Prove that if is a “yes” instance of , then is a “yes”

instance of
• Notice that correctness of reductions are not symmetric:

• the “if” proof needs to handle arbitrary instances of
• the “only if” needs to handle the special instance of

x X y Y
x X y

Y
y Y x

X

X
Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X

VERTEX-COVER IND-SET≡p

IND-SET
• Given a graph , an independent set is a

subset of vertices such that no two of them
are adjacent, that is, for any ,

• IND-SET Problem. Given a graph and
an integer , does have an independent set of
size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

independent set of size 6

Vertex-Cover
• Given a graph , a vertex cover is a

subset of vertices such that for every edge
, either or .

• VERTEX-COVER Problem. Given a graph
and an integer , does have a vertex cover of
size at most ?

G = (V, E)
T ⊆ V

e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G

k

vertex cover of size 4

independent set of size 6

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set,
can we use it to solve vertex cover?

• Claim. is an independent set of size iff is a
vertex cover of size .

• Proof. () Consider an edge

• is independent: both cannot be in

• At least one of

• covers

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e ∎

Our First Reduction
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent set,
can we use it to solve vertex cover?

• Claim. is an independent set of size iff is a
vertex cover of size .

• Proof. () Consider an edge

• is a vertex cover: at least one of or
both must be in

• Both cannot be in

• Thus, is an independent set.

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v
V − S

u, v S

S ∎

Vertex Cover IND Set≡p
• VERTEX-COVER IND-SET

• Suppose we know how to solve independent
set, can we use it to solve vertex cover?

• Reduction. Let .

• If has a vertex cover of size at most then
 has an independent set of size at least

• If has an independent set of size at least
 then has a vertex cover of size at most

• IND-SET VERTEX-COVER

• Same reduction works: ,

• VERTEX-COVER IND-SET

≤p

G′ = G, k′ = n − k

(⇒) G k
G′ k′

(⇐) G′

k′ G k

≤p

G′ = G k′ = n − k

≡p

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

