P, NP, NP-hard, and NP-complete

Admin

- Assignment 7 out right after class
- We've caught up a little with the schedule; thanks for being flexible in the last couple minutes with class
 - (Today we won't go over)
- Anything else?

Goal of Today

- Most of the class has been about how to efficiently solve problems
- Now we're going to shift to a higher-level question
 - What problems can a computer efficiently solve?

Goal of Today

- Number of inversions—can solve in $O(n^2)$ easily, but $O(n \log n)$ with a clever algorithm
- Weighted interval scheduling—can try all combinations in $O(2^n)$, but can solve in $O(n^2)$ using Dynamic programming
- Network flow seems very difficult to solve, but we saw how to solve it in O(nmC) and even $O(n^2m)$

Goal of Today

- What problems can a computer solve in polynomial time?
- What problems can a computer (probably) not solve in polynomial time?

Technical Setup

- We will now focus on decision problems problems with a yes or no answer
 - "Does this DAG have a topological order?"
 - Is this graph bipartite?
 - Do these two strings have Edit Distance at most 10?
 - Does this flow network have a max flow of at least 20?

Technical Setup

- Most problems have a decision analog
 - Find the flow of this network -> "does this network have flow at least k?"
 - Find the optimal schedule of these intervals -> "can we schedule at least k intervals?"

 These are (mostly) the same—-after all, can always binary search for the optimal value

Technical Setup

- Decision problem means that every solution is "yes" or "no"
- Can represent this using a set of possible inputs A:
 - $x \in A$ means that the solution to x is "yes"
 - $x \notin A$ means that the solution to x is "no"
- So can have (for example): A is the set of all flow networks which permit flow at least k
- Or can have: *A* is the set of all pairs of strings (*a*, *b*) where the edit distance between *a* and *b* is at most *k*

Class P

- P: The decision problems that can be solved by a computer in polynomial time
 - Edit distance is in P
 - Max flow is in P
 - Bipartite matching is in P
 - Knapsack?
 - The algorithm we saw is pseudo-polynomial! So we don't know yet

Class NP

Class NP-Intuition

- NP is the class of problems that can be *verified* in polynomial time
- If I give you helpful information, you can easily get the answer

Class NP-Intuition

Sudoku is easy if I give you information (by giving you the solution). So sudoku is in NP

Class NP-Intuition

- Example (Knapsack capacity C = 11)
 - {3, 4} has value \$40 (and weight 11)

i	Vi	Wi
1	\$1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

knapsack instance (weight limit W = 11)

Knapsack is easy if I give you information (by giving you the solution). So knapsack is in NP

Class NP

Definition. Algorithm V(s, c) is a verifier for problem X if for every string $s \in X$ iff there exists a certificate, a string c, such that V(s, c) = yes iff $s \in X$.

Definition. NP = set of decision problems for which there exists a polynomial-time verifier

- V(s, c) is a polynomial time algorithm
- Certificate *c* is of polynomial size:
 - $|c| \le p(|s|)$ for some polynomial p(.)

Quick question

- Is $P \subseteq NP$?
- That is to say: if a problem is in P, does that mean that it is in NP?

- Yes! If a problem can be solved in polynomial time, it can be verified in polynomial time.
- (Can just set c = "")

$\mathsf{Graph}\text{-}\mathsf{Coloring}\ \in\mathsf{NP}$

Graph-Coloring. Given a graph G = (V, E), is it possible to color the vertices of G using only three colors, such that no edge has both end points colored with the same color.

- Graph-Coloring $\in NP$
 - Certificate: assignment of colors to vertices
 - Poly-time verifier: check if at most 3 colors used, check for each edge if ends points same color or not

A 3-colorable graph

Independent Set

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem.

Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

IND-SET \in NP

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- **IND-SET Problem.** Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?
- IND-SET \in NP.
 - **Certificate:** a subset of vertices
 - **Poly-time verifier:** check if any two vertices are adjacent and check if size is at least k

Satisfiability

- The next problem is the classic example of a problem in NP
 - (and, as we'll soon see, probably not in P)
- Many different small variations on the same problem (we'll see a couple)
- Idea: given a logical equation, can we assign "true" and "false" to the variables to satisfy the equation?

SAT, 3SAT \in NP

- SAT. Given a CNF formula ϕ , does it have a satisfying truth assignment?
- **3SAT.** A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\phi = (\overline{x_1} \lor x_2, \lor x_3) \land (x_1, \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
- Satisfying instance: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$, where 1 : true, 0 : false
- SAT, 3-SAT \in NP
 - Certificate: truth assignment to variables
 - Poly-time verifier: check if assignment evaluates to true

P versus NP

P vs NP

- We know that every problem in P is also in NP
- What about the reverse? That is to say:
 - If a problem can be efficiently *verified*, does that mean it can be efficiently solved in the first place?
 - Or, do there exist problems that can be verified quickly that are *impossible* to solve quickly?

Why do we care?

- If P = NP, some consequences:
 - Lots of important problems can be solved quickly!
 - Can build things better, faster, more efficiently
 - (Public key) cryptography does not exist
- If $P \neq NP$:
 - Some problems can't be solved quickly
 - Can stop trying to solve them

P vs NP

- The biggest open problem in computer science
- One of the biggest in math as well
- We are not even close to solving it
 - Know that $ACC_0 \subsetneq NEXP$ [Williams '10]

NP-hard and NP-Complete Problems

Cook-Levin Theorem

- If Satisfiability can be solved in polynomial time, then *any* problem in NP can be solved in polynomial time
- So: if Satisfiability can be solved in polynomial time, then P = NP

• How is this possible?

Cook-Levin Theorem

- Idea: any computer program can be represented by a circuit.
- Solve SAT in poly time -> can figure out the answer given by the circuit for NP problem in poly time

You'll see the proof in 361

NP-hard

- A problem X is **NP-hard** if:
 - If X can be solved in polynomial time, then any problem in NP can be solved in polynomial time
 - Therefore, if X can be solved in polynomial time, then P = NP

What does this mean?

- We think that, probably, $P \neq NP$
- So if a problem is NP-hard, then you probably cannot obtain a polynomial-time algorithm for it

Classifying Problems as Hard

- We are frustratingly unable to prove a lot of problems are **impossible** to solve efficiently
- Instead, we say problem X is likely very hard to solve by saying, if a polynomial-time algorithm was found for X, then something we all believe is impossible will happen
- We say X is NP-hard \Leftrightarrow if $X \in P$, then P = NP
- (Erickson) Calling a problem NP hard is like saying, "If I own a dog, then it can speak fluent English"
 - You probably don't know whether or not I own a dog, but you are definitely sure I don't own a talking dog
 - Corollary: No one should believe that I own a dog
- If a problem is NP hard, no one should believe it can be solved in polynomial time

NP Completeness

- **Definition.** A problem X is NP complete if X is NP hard and $X \in NP$
- SAT is **NP** complete
 - SAT ∈ NP: given an assignment to input gates (certificate), can verify whether output is one or zero in poly-time
 - SAT is **NP** hard (Cook-Levin Theorem)

Summary

- X is NP-hard NP-hard \Leftrightarrow if $X \in P$, then P = NP
- A problem X is NP complete if X is NP hard and $X \in \mathbf{NP}$
- Alternate definition of NP hard:
 - X is NP hard if all languages in NP reduce it to in polynomial time
- Thus, NP-complete problems are the hardest problems in NP

Relative Hardness

- Suppose we know problem X is NP hard, how can we use that to show problem Y is also hard to solve?
- How do we compare the relative hardness of problems
- Recurring idea in this class: **reductions!**
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
 - Bipartite matching reduces to max flow
 - Edge-disjoint paths reduces to max flow

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

- A. If X can be solved in polynomial time, then so can Y.
- B. X can be solved in poly time iff Y can be solved in poly time.
- C. If X cannot be solved in polynomial time, then neither can Y.
- D. If Y cannot be solved in polynomial time, then neither can X.

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
 - Just replace the third color with either of the two
- Graph 2-Color can be solved in polynomial time
 - How?
 - We can decide if a graph is bipartite in O(n + m) time using traversal
- Graph 3-color (we'll show) is NP hard

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Use of Reductions: $X \leq_p Y$

Design algorithms:

• If *Y* can be solved in polynomial time, we know *X* can also be solved in polynomial time

Establish intractability:

• If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

• If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in polytime iff Y can be solved in poly time and we use the notation $X \equiv_p Y$

NP hard: Definition

- New definition of NP hard using reductions.
 - A problem *Y* is NP hard, if for any problem $X \in \mathbb{NP}$, $X \leq_p Y$
- Recall we said Y is NP hard $\iff Y \in P$, then P = NP.
- Lets show that both definitions are equivalent
 - (⇒) every problem in NP reduces to Y, and if
 Y ∈ P, then P = NP
 - (⇐) if Y ∈ P, then P = NP: every problem in NP(= P) reduces to Y

Proving NP Hardness

- To prove problem Y is NP-hard
 - Difficult to prove every problem in ${\sf NP}$ reduces to Y
 - Instead, we use a known-NP-hard problem \boldsymbol{Z}
 - We know every problem X in NP, $X \leq_p Z$
 - Notice that \leq_p is transitive
 - Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Known NP Hard Problems?

- For now: SAT (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing SAT to other problems to prove them NP hard, let us practice some easier reductions first

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that if x is a "yes" instance of X, then y is a "yes" instance of Y
- Prove that if y is a "yes" instance of $Y\!\!\!\!\!$, then x is a "yes" instance of X
- Notice that correctness of reductions are not symmetric:
 - the "if" proof needs to handle arbitrary instances of X
 - the "only if" needs to handle the special instance of ${\it Y}$

VERTEX-COVER \equiv_p **IND-SET**

IND-SET

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem. Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

independent set of size 6

Vertex-Cover

- Given a graph G = (V, E), a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph G = (V, E)and an integer k, does G have a vertex cover of size at most k?

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff V S is a vertex cover of size n k.
- **Proof.** (\Rightarrow) Consider an edge $e = (u, v) \in E$
 - S is independent: u, v both cannot be in S
 - At least one of $u, v \in V S$
 - V-S covers e

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff V S is a vertex cover of size n k.
- **Proof.** (\Leftarrow) Consider an edge $e = (u, v) \in E$
 - V-S is a vertex cover: at least one of u, v or both must be in V-S
 - Both *u*, *v* cannot be in *S*
 - Thus, S is an independent set.

Vertex Cover \equiv_p IND Set

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Reduction. Let G' = G, k' = n k.
 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'
 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k
- IND-SET \leq_p VERTEX-COVER
 - Same reduction works: G' = G, k' = n k
- VERTEX-COVER \equiv_p IND-SET

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)