
P, NP, NP-hard, and 
NP-complete

1



Admin

• Assignment 7 out right after class 

• We’ve caught up a little with the schedule; thanks 
for being flexible in the last couple minutes with 
class 

• (Today we won’t go over) 

• Anything else?



Goal of Today

• Most of the class has been about how to efficiently 
solve problems 

• Now we’re going to shift to a higher-level question 

• What problems can a computer efficiently solve?



Goal of Today

• Number of inversions—can solve in  easily, 
but  with a clever algorithm 

• Weighted interval scheduling—can try all 
combinations in , but can solve in  
using Dynamic programming 

• Network flow seems very difficult to solve, but we 
saw how to solve it in  and even 

O(n2)
O(n log n)

O(2n) O(n2)

O(nmC) O(n2m)



Goal of Today

• What problems can a computer solve in polynomial 
time? 

• What problems can a computer (probably) not 
solve in polynomial time?



Technical Setup

• We will now focus on decision problems — problems 
with a yes or no answer 

• “Does this DAG have a topological order?” 

• Is this graph bipartite? 

• Do these two strings have Edit Distance at most 10? 

• Does this flow network have a max flow of at least 
20?



Technical Setup
• Most problems have a decision analog 

• Find the flow of this network -> “does this network 
have flow at least ?” 

• Find the optimal schedule of these intervals -> “can 
we schedule at least  intervals?” 

• These are (mostly) the same—-after all, can always 
binary search for the optimal value
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Technical Setup
• Decision problem means that every solution is “yes” or “no” 

• Can represent this using a set of possible inputs : 

•  means that the solution to  is “yes” 

•  means that the solution to  is “no” 

• So can have (for example):  is the set of all flow networks 
which permit flow at least  

• Or can have:  is the set of all pairs of strings  where 
the edit distance between  and  is at most 
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Class P
• P: The decision problems that can be solved by a 

computer in polynomial time 

• Edit distance is in P 

• Max flow is in P 

• Bipartite matching is in P 

• Knapsack? 

• The algorithm we saw is pseudo-polynomial!  So we 
don’t know yet



Class NP



Class NP—Intuition

• NP is the class of problems that can be verified in 
polynomial time 

• If I give you helpful information, you can easily get 
the answer



Class NP—Intuition

Sudoku is easy if I give you information (by 
giving you the solution).  So sudoku is in NP



Class NP—Intuition

Knapsack is easy if I give you information (by 
giving you the solution).  So knapsack is in NP

• Example (Knapsack capacity C = 11) 

• {3, 4} has value $40 (and weight 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)



Class NP
Definition. Algorithm  is a verifier for problem  if for 
every string  iff there exists a certificate, a string , 
such that  yes iff .  

Definition.   = set of decision problems for which there 
exists a polynomial-time verifier 

•  is a polynomial time algorithm 

• Certificate  is of polynomial size:  

•  for some polynomial  

V(s, c) X
s ∈ X c

V(s, c) = s ∈ X

𝖭𝖯

V(s, c)

c

|c | ≤ p( |s | ) p( . )



Quick question

• Is ? 

• That is to say: if a problem is in P, does that mean 
that it is in NP? 

• Yes!  If a problem can be solved in polynomial time, 
it can be verified in polynomial time. 

• (Can just set ””)

P ⊆ NP

c =



Graph-Coloring ∈ 𝖭𝖯
Graph-Coloring.  Given a graph , is it 
possible to color the vertices of  using only three 
colors, such that no edge has both end points 
colored with the same color. 

• Graph-Coloring  

• Certificate: assignment of colors to vertices 

• Poly-time verifier: check if at most 3 colors 
used, check for each edge if ends points same 
color or not

G = (V, E)
G

∈ 𝖭𝖯

A 3-colorable graph



• Given a graph , an independent set is a 
subset of vertices  such that no two of them are 
adjacent, that is, for any ,   

• IND-SET Problem.   
Given a graph  and an integer , does  
have an independent set of size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E) k G
k

independent set of size 6

Independent Set



• Given a graph , an independent set is a 
subset of vertices  such that no two of them 
are adjacent, that is, for any ,   

• IND-SET Problem.  Given a graph  and 
an integer , does  have an independent set of 
size at least ? 

• IND-SET .  

• Certificate: a subset of vertices  

• Poly-time verifier:  check if any two vertices 
are adjacent and check if size is at least 

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

∈ 𝖭𝖯

k

IND-SET ∈ 𝖭𝖯



Satisfiability

• The next problem is the classic example of a 
problem in NP 

•  (and, as we’ll soon see, probably not in P) 

• Many different small variations on the same 
problem (we’ll see a couple) 

• Idea: given a logical equation, can we assign “true” 
and “false” to the variables to satisfy the equation?



SAT, 3SAT ∈ 𝖭𝖯
• SAT.  Given a CNF formula , does it have a satisfying 

truth assignment?  

• 3SAT.  A SAT formula where each clause contains 
exactly 3 literals (corresponding to different variables) 

•   

• Satisfying instance:   , 
where  true,  false  

•   

• Certificate: truth assignment to variables 

• Poly-time verifier: check if assignment 
evaluates to true

ϕ

ϕ = (x1 ∨ x2, ∨ x3) ∧ (x1, x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

x1 = 1, x2 = 1, x3 = 0, x4 = 0
1 : 0 :

SAT, 3-SAT ∈ 𝖭𝖯



 P versus NP 



P vs NP

• We know that every problem in P is also in NP 

• What about the reverse?  That is to say: 

• If a problem can be efficiently verified, does that 
mean it can be efficiently solved in the first 
place? 

• Or, do there exist problems that can be verified 
quickly that are impossible to solve quickly?



Why do we care?
• If , some consequences: 

• Lots of important problems can be solved quickly! 

• Can build things better, faster, more efficiently 

• (Public key) cryptography does not exist 

• If : 

• Some problems can’t be solved quickly 

• Can stop trying to solve them

P = NP

P ≠ NP



P vs NP

• The biggest open problem in computer science 

• One of the biggest in math as well 

• We are not even close to solving it 

• Know that  [Williams ’10]ACC0 ⊊ NEXP



NP-hard and NP-Complete 
Problems



Cook-Levin Theorem

• If Satisfiability can be solved in polynomial time, 
then any problem in NP can be solved in 
polynomial time 

• So: if Satisfiability can be solved in polynomial time, 
then P = NP 

• How is this possible?



Cook-Levin Theorem
• Idea: any computer program can be represented by a 

circuit.  

• Solve SAT in poly time -> can figure out the answer given 
by the circuit for NP problem in poly time

You’ll see the 
proof in 361



NP-hard

• A problem  is NP-hard if: 

• If  can be solved in polynomial time, then any 
problem in NP can be solved in polynomial time 

• Therefore, if  can be solved in polynomial time, 
then P = NP

X

X

X



What does this mean?

• We think that, probably,  

• So if a problem is NP-hard, then you probably 
cannot obtain a polynomial-time algorithm for it

P ≠ NP



Classifying Problems as Hard
• We are frustratingly unable to prove a lot of problems 

are impossible to solve efficiently 

• Instead, we say problem  is likely very hard to solve by 
saying, if a polynomial-time algorithm was found for , 
then something we all believe is impossible will happen 

• We say  is -hard   if  ,  then  

• (Erickson)  Calling a problem NP hard is like saying, “If I 
own a dog, then it can speak fluent English” 

• You probably don’t know whether or not I own a dog, 
but you are definitely sure I don’t own a talking dog 

• Corollary: No one should believe that I own a dog 

• If a problem is NP hard, no one should believe it can be 
solved in polynomial time

X
X

X 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯



NP Completeness
• Definition.  A problem  is NP complete if  is NP hard and  

• SAT is NP complete 

• SAT : given an assignment to input gates (certificate), can 
verify whether output is one or zero in poly-time 

• SAT is NP hard (Cook-Levin Theorem)

X X X ∈ 𝖭𝖯

∈ 𝖭𝖯

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



Summary
•  is -hard -hard   if  ,  then  

• A problem  is NP complete if  is NP hard and  

• Alternate definition of NP hard: 

•  is NP hard if all languages in NP reduce it to in polynomial time 

• Thus, NP-complete problems are the hardest problems in NP

X 𝖭𝖯 𝖭𝖯 ⇔ X ∈ 𝖯 𝖯 = 𝖭𝖯

X X X ∈ 𝖭𝖯

X

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



Relative Hardness
• Suppose we know problem  is NP hard, how can we use 

that to show problem  is also hard to solve? 

• How do we compare the relative hardness of problems  

• Recurring idea in this class: reductions! 

• Informally, we say a problem  reduces to a problem , if 
can use an algorithm for  to solve  

• Bipartite matching reduces to max flow 

• Edge-disjoint paths reduces to max flow

X
Y

X Y
Y X

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y



[Karp] Reductions
Definition.  Decision problem  polynomial-time (Karp) 
reduces to decision problem  if given any instance  
of , we can construct an instance  of  in polynomial 
time s.t   if and only if . 

Notation. 

X
Y x

X y Y
x ∈ X y ∈ Y

X ≤p Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



Say . Which of the following can we infer? 

A. If  can be solved in polynomial time, then so can . 

B.  can be solved in poly time iff  can be solved in poly time. 

C. If  cannot be solved in polynomial time, then neither can . 

D. If  cannot be solved in polynomial time, then neither can .

X ≤p Y

X Y
X Y

X Y
Y X

Reductions Quiz

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



• Graph 2-Color reduces to Graph 3-color

• Just replace the third color with either of the two 

• Graph 2-Color can be solved in polynomial time 

• How? 

• We can decide if a graph is bipartite in  
time using traversal 

• Graph 3-color (we’ll show) is NP hard

O(n + m)

Digging Deeper

Intuitively, if problem  reduces to problem ,  
then solving  is no harder than solving 

X Y
X Y



Use of Reductions:  X ≤p Y
Design algorithms: 

• If  can be solved in polynomial time, we know  can 
also be solved in polynomial time 

Establish intractability: 

• If we know that  is known to be impossible/hard to 
solve in polynomial-time, then we can conclude the 
same about problem  

Establish Equivalence: 

• If  and  then  can be solved in poly-
time iff  can be solved in poly time and we use the 
notation 

Y X

X

Y

X ≤p Y Y ≤p X X
Y

X ≡p Y



NP hard:  Definition
• New definition of NP hard using reductions.   

• A problem  is NP hard, if for any problem , 
  

• Recall we said  is NP hard  . 

• Lets show that both definitions are equivalent 

•  every problem in NP reduces to , and if 
, then  

•  if , then : every problem in 
 reduces to  

Y X ∈ 𝖭𝖯
X ≤p Y

Y ⟺ Y ∈ 𝖯, then 𝖯 = 𝖭𝖯

( ⇒ ) Y
Y ∈ 𝖯 𝖯 = 𝖭𝖯

( ⇐ ) Y ∈ 𝖯 𝖯 = 𝖭𝖯
𝖭𝖯( = 𝖯) Y



Proving NP Hardness
• To prove problem  is -hard 

• Difficult to prove every problem in  reduces to  

• Instead, we use a known-NP-hard problem  

• We know every problem  in ,  

• Notice that  is transitive  

• Thus, enough to prove 

Y 𝖭𝖯

𝖭𝖯 Y

Z

X 𝖭𝖯 X ≤p Z

≤p

Z ≤p Y

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



Known NP Hard Problems?
• For now: SAT  (Cook-Levin Theorem) 

• We will prove a whole repertoire of NP hard 
and NP complete problems by using 
reductions 

• Before reducing SAT to other problems to 
prove them NP hard, let us practice some 
easier reductions first

To prove that a problem  is NP hard, 
reduce a known NP hard problem  to 

Y
Z Y



Reductions: General Pattern
• Describe a polynomial-time algorithm to transform an arbitrary 

instance  of Problem  into a special instance  of Problem  
• Prove that if  is a “yes” instance of , then  is a “yes” 

instance of  
• Prove that if  is a “yes” instance of , then  is a “yes” 

instance of  
• Notice that correctness of reductions are not symmetric:  

• the “if” proof needs to handle arbitrary instances of  
• the “only if” needs to handle the special instance of 

x X y Y
x X y

Y
y Y x

X

X
Y

x
Instance of X

y
Instance of Y

Algorithm for Y

Yes

No

Yes

No
Poly time

Algorithm for X



VERTEX-COVER    IND-SET≡p



IND-SET
• Given a graph , an independent set is a 

subset of vertices  such that no two of them 
are adjacent, that is, for any ,   

• IND-SET Problem.  Given a graph  and 
an integer , does  have an independent set of 
size at least ?

G = (V, E)
S ⊆ V

x, y ∈ S (x, y) ∉ E

G = (V, E)
k G

k

independent set of size 6



Vertex-Cover
• Given a graph , a vertex cover is a 

subset of vertices  such that for every edge 
, either  or . 

• VERTEX-COVER Problem.  Given a graph  
and an integer , does  have a vertex cover of 
size at most ?

G = (V, E)
T ⊆ V

e = (u, v) ∈ E u ∈ T v ∈ T

G = (V, E)
k G

k

vertex cover of size 4

independent set of size 6



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, 
can we use it to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a 
vertex cover of size .  

• Proof. ( ) Consider an edge   

•  is independent:  both cannot be in  

• At least one of   

•  covers   

≤p

S k V − S
n − k

⇒ e = (u, v) ∈ E

S u, v S

u, v ∈ V − S

V − S e ∎



Our First Reduction
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent set, 
can we use it to solve vertex cover? 

• Claim.    is an independent set of size  iff  is a 
vertex cover of size .  

• Proof. ( ) Consider an edge   

•  is a vertex cover: at least one of  or 
both must be in  

• Both  cannot be in   

• Thus,  is an independent set.  

≤p

S k V − S
n − k

⇐ e = (u, v) ∈ E

V − S u, v
V − S

u, v S

S ∎



Vertex Cover  IND Set≡p
• VERTEX-COVER    IND-SET 

• Suppose we know how to solve independent 
set, can we use it to solve vertex cover? 

• Reduction.  Let  .  

•  If  has a vertex cover of size at most  then 
 has an independent set of size at least   

•  If  has an independent set of size at least 
 then  has a vertex cover of size at most  

• IND-SET    VERTEX-COVER  

• Same reduction works: ,  

• VERTEX-COVER    IND-SET

≤p

G′ = G, k′ = n − k

( ⇒ ) G k
G′ k′ 

( ⇐ ) G′ 

k′ G k

≤p

G′ = G k′ = n − k

≡p
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