
Network Flows:
Reductions and Applications
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Admin

• Assignment 6 due tomorrow evening 

• Help on slack or in office hours 

• Today may give practice that will help with problem 
2.  (It’s not a network flow problem, but it is 
(another) reduction problem.)



Ford-Fulkerson Algorithm
• Start with  for each edge  

• Find an  path  in the residual network  

• Augment flow along path  

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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Ford-Fulkerson Algorithm
Running Time
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Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C = O(nC)

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time
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• Claim.  Ford-Fulkerson can be implemented to run in 
time , where  and 

. 

• Proof.  We know algorithm terminates in at most  
iterations.  Each iteration takes  time: 

• We need to find an augmenting path in  

•  has at most  edges, using BFS/DFS takes 
 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in 
 time 

O(nmC) m = |E | ≥ n − 1
C = max

u
c(s → u)

C
O(m)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m) ∎

Ford-Fulkerson Running Time
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[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time 

polynomial in the input size?  

• Running time is , where 

What is the input size?    

• Let’s take an example

O(nmC) C = max
u

c(s → u)
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• Question.  Does the Ford-Fulkerson algorithm run in 
polynomial-time in the size of the input? 

• Answer.  No. if max capacity is , the algorithm can 
take  iterations.  Consider the following example.

C
≥ C

9

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each 

with capacity  

•  = , then  takes  bits to represent 

• Input size:  bits 

• Running time: , exponential in 
the size of   

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude 
but not size of an input parameter. 

• We saw this for knapsack as well!

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

Ω(n log n + m log n + m log C)

O(nmC) = O(nm2log C)
C
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Non-Integral Capacities?

• If the capacities are rational, can just multiply to 
obtain a large integer (massively increases running 
time) 

• If capacities are irrational, Ford-Fulkerson can run 
infinitely! 

• Idea: amount of flow sent decreases by a 
constant factor each loop



Network Flow: 
Beyond Ford Fulkerson

12



Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which 

path in the residual graph to augment 

• Poor worst-case behavior of the algorithm can be blamed 
on bad choices on augmenting path 

• Better choice of augmenting paths.  In 1970s, Jack 
Edmonds and Richard Karp published two natural rules 
for choosing augmenting paths 

• Fattest augmenting paths first 

• Shortest (in terms of edges) augmenting paths first 
(Dinitz independently discovered & analyzed this rule) 

• Can result in  timeO(n2m)



Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

2014 Õ(m n1/2 log C) Lee–Sidford

2016 Õ(m10/7 C1/7) Mądry

For unit capacity 
networks



Progress on Network Flows
• Best known:  

• Best lower bound?   

• None known.  (Needs  just to look at the 
network, but that’s it) 

• Some of these algorithms do REALLY well in “practice;” 
basically  

• Well-known open problem

O(nm)

Ω(n + m)

O(n + m)



Applications of 
Network Flow:  
Solving Problems by  

Reduction to Network Flows
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Max-Flow Min-Cut  
Applications

• Data mining 
• Bipartite matching 
• Network reliability 
• Image segmentation 
• Baseball elimination 
• Network connectivity 
• Markov random fields 
• Distributed computing 
• Network intrusion detection 
• Many, many, more.
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Anatomy of Problem 
Reductions

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• At a high level, a problem  reduces to a problem  
if an algorithm for  can be used to solve  

• Reduction.  Convert an arbitrary instance  of  to a 
special instance  of  such that there is a 1-1 
correspondence between them

X Y
Y X

x X
y Y
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Anatomy of Problem 
Reductions

• Claim.   satisfies a property iff  satisfies a corresponding 
property 

• Proving a reduction is correct: prove both directions 
•  has a property (e.g. has matching of size    has a 

corresponding property (e.g. has a flow of value  
•  does not have a property (e.g. does not have matching of 

size    does not have a corresponding property 
(e.g. does not have a flow of value   

• Or equivalently (and this is often easier to prove): 
•  has a property (e.g. has flow of value    has a 

corresponding property (e.g. has a matching of value 

x y

x k) ⟹ y
k)

x
k) ⟹ y

k)

y k) ⟹ x
k)
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Plan for Today

• I’ll show you one (classic) network flow reduction 

• Then you’ll attempt one; we’ll go over the answer 
together



Max-Cardinality 
Bipartite Matching
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Review: Matching in Graphs
• Definition.  Given an undirected graph 

, a matching  of  is a subset 
of edges such that no two edges in  are 
incident on the same vertex.

G = (V, E) M ⊆ E G
M
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Review: Matching in Graphs
• Definition.  Given an undirected graph 

, a matching  of  is a subset 
of edges such that no two edges in  are 
incident on the same vertex. 

• Max matching problem. Find a matching of 
maximum cardinality for a given graph, that is, a 
matching with maximum number of edges

G = (V, E) M ⊆ E G
M
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Review: Bipartite Graphs
• A graph is bipartite if its vertices can be partitioned 

into two subsets  such that every edge  
connects  and  

• Bipartite matching problem. Given a bipartite graph 
 find a maximum matching.

X, Y e = (u, v)
u ∈ X v ∈ Y

G = (X ∪ Y, E)

1

2

3

4

5

1'

2'

3'

4'

5'
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Bipartite Matching Example
• Suppose  is a set of students,  as a set of dorms 

• Each student lists a set of dorms they’d like to live in, 
each dorm lists students it is willing to accommodate 

• Goal. Find the largest matching (student, dorm) pairs 
that satisfies their requirements 

• Bipartite matching instance.   and  
if student and dorm are mutually acceptable, goal is to 
find maximum matching 

• Note. This is a different problem than the one we 
studied for Gale-Shapely matching!

A B

V = (A, B) e ∈ E
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Reduction to Max Flow

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X

• Given arbitrary instance  of bipartite matching problem 
:   and edges  between  and  

• Goal. Create a special instance  of a max-flow problem 
: flow network: , source , sink   s.t. 

• 1-1 correspondence.  There exists a matching of size  
iff there is a flow of value 

x
(X) A, B E A B

y
(Y ) G(V, E, c) s t ∈ V

k
k
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Reduction to Max Flow
• Create a new directed graph 

 

• Add edge  to  for all nodes  

• Add edge  to  for all nodes  

• Direct edge   in  if   

• Set capacity of all edges in   to 1

G′ = (A ∪ B ∪ {s, t}, E′ , c)
s → a E′ a ∈ A
b → t E′ b ∈ B

a → b E′ (a, b) ∈ E
E′ 
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s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'



Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size  
then flow-network  has an integral flow of value .

( ⇒ )
(A, B, E) M k

G′ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G′

1

G

1

3

5

1'

3'

5'

2

4

2'

4'
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Correctness of Reduction
• Claim .  

If the bipartite graph  has matching  of size 
 then flow-network  has an integral flow of value . 

• Proof. 

• For every edge , let  be the flow 
resulting from sending 1 unit of flow along the path 

  

•  is a feasible flow (satisfies capacity and 
conservation) and integral 

•   

( ⇒ )
(A, B, E) M

k G′ k

e = (a, b) ∈ M f

s → a → b → t

f

v( f ) = k
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• Claim .  
If the bipartite graph  has matching  of size 
 then flow-network  has an integral flow of value .

( ⇒ )
(A, B, E) M

k G′ k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
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• Claim .  
If flow-network  has an integral flow of value , then 
the bipartite graph  has matching  of size .

( ⇐ )
G′ k

(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′

Correctness of Reduction
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• Claim .  
If flow-network  has an integral flow of value , then 
the bipartite graph  has matching  of size . 

• Proof. 

• Let set of edges from  to  with . 

• No two edges in  share a vertex, why? 

•   

•  for any  cut 

• Let 

( ⇐ )
G′ k

(A, B, E) M k

M = A B f(e) = 1

M

|M | = k

v( f ) = fout(S) − fin(S) (S, V − S)

S = A ∪ {s}

Correctness of Reduction
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• Claim .  
If flow-network  has an integral flow of value , then 
the bipartite graph  has matching  of size .

( ⇐ )
G′ k

(A, B, E) M k

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

G′ G

1

3

5

1'

3'

5'

2

4

2'

4'

Correctness of Reduction
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• Proved matching of size  iff flow of value  

• Thus, max-flow iff max matching 

• Running time of algorithm overall: 

• Running time of reduction + running time of 
solving the flow problem (dominates) 

• What is running time of Ford–Fulkerson algorithm for a 
flow network with all unit capacities? 

•  

• Overall running time of finding max-cardinality bipartite 
matching: 

k k

O(nm)

O(nm)

Summary & Running Time
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Disjoint Paths Problem
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Disjoint Paths Problem
• Definition.  Two paths are edge-disjoint if they do not 

have an edge in common. 

• Edge-disjoint paths problem.   
Given a directed graph with two nodes  and , find 
the max number of edge-disjoint  paths. 

s t
s ↝ t

Directed graph G
2 edge-disjoint paths

s

2

3

4

5

6

7

ts

2

3

4

5

6

7

t

36



Towards Reduction
• Given: arbitrary instance  of disjoint paths problem 

( ): directed graph , with source  and sink  

• Goal. create a special instance  of a max-flow 
problem :  flow network  with  s.t. 

• 1-1 correspondence.  Input graph has  edge-
disjoint paths iff flow network has a flow of value 

x
X G s t

y
(Y ) G′ (V′ , E′ , c) s′ , t′ 

k
k

x
Instance of X

y
Instance of Y

Algorithm for Y

Positive instance

Negative instance
Reduction

Algorithm for X
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Reduction to Max Flow
• Reduction.    same as  with unit capacity 

assigned to every edge 

• Claim [Correctness of reduction].  has  edge disjoint 
 paths iff  has an integral flow of value . 

• Proof.   

• Set  if  in some disjoint ,  
otherwise.   

• We have  since paths are edge disjoint. 

•  Need to show: If  has a flow of value  then 
there are  edge-disjoint  paths in 

G′ : G

G k
s ↝ t G′ k

( ⇒ )

f(e) = 1 e s ↝ t f(e) = 0

v( f ) = k

( ⇐ ) G′ k
k s ↝ t G
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Correction of Reduction
• Claim.  If  is a 0-1 flow of value  in , then the 

set of edges where  contains a set of  edge-
disjoint  paths in . 

• Proof [By induction on the # of edges  with ] 

• If , no edges carry flow, nothing to prove 

• IH: Assume claim holds for all flows that use  edges  

• Consider an edge  with  

• By flow conservation, there exists an edge  with 
, continue “tracing out the path" until  

• Case (a) reach , Case (b) visit a vertex  for a 2nd time

( ⇐ ) f k G′ 

f(e) = 1 k
s ↝ t G

k′ f(e) = 1

k′ = 0

< k′ 

s → u f(s → u) = 1

u → v
f(u → v) = 1

t v
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Correction of Reduction
• Case (a) We reach , then we found a  path  

•  Decrease the flow on edges of  by 1 

•  

• Number of edges that carry flow now : can 
apply IH and find  other  disjoint paths 

• Case (b) visit a vertex  for a 2nd time: consider cycle 
 of edges visited btw 1st and 2nd visit to  

•  : decrease flow values on edges in  to zero 

•  but # of edges in  that carry flow 
, can now apply IH to get  edge disjoint paths 

 

t s ↝ t P
f′ : P
v( f′ ) = v( f ) − 1 = k − 1

< k′ 

k − 1 s ↝ t
v

C v
f′ C
v( f′ ) = v( f ) f′ 

< k′ k

∎
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• Proved  edge-disjoint paths iff flow of value  

• Thus, max-flow iff max # of edge-disjoint  paths 

• Running time of algorithm overall: 

• Running time of reduction + running time of 
solving the max-flow problem (dominates) 

• What is running time of Ford–Fulkerson algorithm for a 
flow network with all unit capacities? 

•  

• Overall running time of finding max # of edge-disjoint 
 paths: 

k k

s ↝ t

O(nm)

s ↝ t O(nm)

Summary & Running Time

41



[Take-home Exercise] 
Reduction to Think About
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Room Scheduling
• Williams College is holding a big gala and has 

hired you to write an algorithm to schedule rooms 
for all the different parties happening as part of it.  

• There are  parties and the th party has  invitees.  

• There are  different rooms and the th room can fit 
 people in it. 

• Thus, party  can be held in room  iff .  

• Describe and analyze an efficient algorithm to 
assign a room to each party (or report correctly that 
no such assignment is possible).

n i pi

r j
rj

i j pi ≤ rj
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