Network Flows:
Reductions and Applications

Admin

* Assignment 6 due tomorrow evening
* Help on slack or in office hours
* Joday may give practice that will help with problem

2. (It's not a network flow problem, but it is
(another) reduction problem.)

Ford-Fulkerson Algorithm

Start with f(e) = 0 foreach edge e € E
Find an s ~ ¢ path P in the residual network Gf

Augment flow along path P

Repeat until you get stuck

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s+t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

FORD—-FULKERSON(G)

FOREACHedgee € E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be that v(f) < (n—1)C = O(nC)

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = OnC) iterations.

6

Ford-Fulkerson Running Time

 Claim. Ford-Fulkerson can be implemented to run in
time O(mnmC), wherem = |E| > n — 1 and

C =maxc(s = u).

« Proof. We know algorithm terminates in at most C
iterations. Each iteration takes O(m) time:

. We need to find an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

« Augmenting flow in P takes O(n) time

* Given new flow, we can build new residual graph in
O(m) time B

[Digging Deeper] Polynomial time??

* Does the Ford-Fulkerson algorithm run in time

polynomial in the input size?

Running time is O(nmC), where C = max c(s — u)
u

What is the input size”

* Let's take an example

[Digging Deeper] Polynomial time??

* Question. Does the Ford-Fulkerson algorithm run in
polynomial-time in the size of the input? «<——— ~m, n andlogC

« Answer. No. if max capacity is C, the algorithm can
take > C iterations. Consider the following example.

* s—V—W—f
¢ sEW—Y—>f
¢ sV W—

* S—SW—Y—>f

* S Vv—=w—f

* SSW—Y—>f

—

each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2C)

[Digger Deeper] Pseudo-Polynomial

Input graph has n nodes and m = O(n?) edges, each
with capacity c,

. C=maxc(e), then c(e) takes O(log C) bits to represent
eck

« Input size: Q(nlogn 4+ mlogn + mlog C) bits

. Running time: O(nmC) = O(nm?2'°¢ %), exponential in
the size of C

e Such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude
but not size of an input parameter.

 We saw this for knapsack as well!

10

Non-Integral Capacities?

* |t the capacities are rational, can just multiply to
obtain a large integer (massively increases running
time)

e |t capacities are irrational, Ford-Fulkerson can run
infinitely!

* |dea: amount of flow sent decreases by a
constant factor each loop

Network Flow:
Beyond Ford Fulkerson

Edmond and Karp’s Algorithms

e Ford and Fulkerson’s algorithm does not specify which
path in the residual graph to augment

e Poor worst-case behavior of the algorithm can be blamed
on bad choices on augmenting path

 Better choice of augmenting paths. In 1970s, Jack
Edmonds and Richard Karp published two natural rules
for choosing augmenting paths

o Fattest augmenting paths first

e Shortest (in terms of edges) augmenting paths first
(Dinitz independently discovered & analyzed this rule)

. Can result in O(n*m) time

Progress on Network Flows

1951 O(m n* C) Dantzig
1955 O(mn C) Ford—Fulkerson
1970 O(m n?) Edmonds—Karp, Dinitz
1974 o) Karzanov
1983 O(m n log n) Sleator—Tarjan
1985 O(m n log C) Gabow
1988 O(m n log (n* / m)) Goldberg—Tarjan
1998 O(m>? log (n* / m) log C) Goldberg—Rao
2013 O(m n) Orlin

2014 O(mn'? log C) Lee—Sidford
2016 Om'"" C'7y Madry

For unit capacity
networks

Progress on Network Flows

Best known: O(nm)
Best lower bound?

« None known. (Needs 2(n + m) just to look at the
network, but that’s it)

Some of these algorithms do REALLY well in “practice;”
basically O(n + m)

Well-known open problem

Applications of

Network Flow:

Solving Problems by
Reduction to Network Flows

16

Max-Flow Min-Cut
Applications

Data mining

Bipartite matching

Network reliability

mage segmentation
Baseball elimination
Network connectivity
Markov random fields
Distributed computing
Network intrusion detection

Viany, many, more.

17

Anatomy of Problem
Reductions

« At a high level, a problem X reduces to a problem Y
if an algorithm for Y can be used to solve X

« Reduction. Convert an arbitrary instance x of X to a
special instance y of Y such that there is a 1-1
correspondence between them

Positive instance

Instance of X

— R o dUCtiON
X

Instance of Y

Negative instance

Algorithm for Y

Algorithm for X

18

Anatomy of Problem
Reductions

Claim. Xx satisfies a property iff y satisfies a corresponding
property
Proving a reduction is correct: prove both directions

X has a property (e.g. has matching of size k) => y has a
corresponding property (e.g. has a flow of value k)

X does not have a property (e.g. does not have matching of
size k) = y does not have a corresponding property
(e.g. does not have a flow of value k)

Or equivalently (and this is often easier to prove):

« Y has a property (e.g. has flow of value k) = x has a
corresponding property (e.g. has a matching of value k)

19

Plan for Today

* |'ll show you one (classic) network flow reduction

 Then you'll attempt one; we'll go over the answer
together

Max-Cardinality
Bipartite Matching

Review: Matching in Graphs

e Definition. Given an undirected graph
G = (V,E), amatching M C E of G is a subset
of edges such that no two edges in M are
incident on the same vertex.

22

Review: Matching in Graphs

e Definition. Given an undirected graph
G = (V,E), amatching M C E of G is a subset
of edges such that no two edges in M are
incident on the same vertex.

 Max matching problem. Find a matching of
maximum cardinality for a given graph, that is, a
matching with maximum number of edges

23

Review: Bipartite Graphs

* A graph is bipartite if its vertices can be partitioned
into two subsets X, Y such that every edge e = (u, v)
connectsu € Xandv €Y

* Bipartite matching problem. Given a bipartite graph
G =(XUY,E)find amaximum matching.

24

Bipartite Matching Example

« Suppose A is a set of students, B as a set of dorms

 Each student lists a set of dorms they'd like to live in,
each dorm lists students it is willing to accommodate

 Goal. Find the largest matching (student, dorm) pairs
that satisfies their requirements

« Bipartite matching instance. V= (A,B)ande € E
if student and dorm are mutually acceptable, goal is to
find maximum matching

 Note. This is a different problem than the one we
studied for Gale-Shapely matching!

25

Reduction to Max Flow

« Given arbitrary instance x of bipartite matching problem
(X): A, B and edges E between A and B

« Goal. Create a special instance y of a max-flow problem
(Y): flow network: G(V, E, ¢), source s, sinkt € Vs.t.

« 1-1 correspondence. There exists a matching of size k
iff there is a flow of value k

Positive instance

Instance of X

- Reduction
X

Instance of Y

Negative instance

Algorithm for Y

Algorithm for X

20

Reduction to Max Flow

 (Create a new directed graph
G'=(AUBU{s,t},E c)

« Addedges — ato E'forallnodesa € A
« Addedge b — tto E'forallnodes b € B
« Directedge a > binE'if(a,b) € E

« Set capacity of all edges in E’ to 1

f
/

Correctness of Reduction

« Claim (=).
f the bipartite graph (A, B, E') has matching M of size k
then flow-network G’ has an integral flow of value k.

) —, D— + —>@

/ \

28

Correctness of Reduction

« Claim (=).
f the bipartite graph (A, B, E') has matching M of size
k then flow-network G’ has an integral flow of value k.

e Proof.

« Foreveryedgee = (a,b) € M, let f be the flow

resulting from sending 1 unit of flow along the path
s—>a—>b-—ot

« fis afeasible flow (satisfies capacity and
conservation) and integral

» V() =k

29

Correctness of Reduction

« Claim (=).
f the bipartite graph (A, B, E') has matching M of size
k then flow-network G' has an integral flow of value k.

(—— — 1 —@

/ \

— £

[
/
f
/
N

Correctness of Reduction

« Claim (<).
If flow-network G’ has an integral flow of value k, then
the bipartite graph (A, B, E') has matching M of size k.

— 1| —@

/ \
_)@1
B

\@

1

L

@ &) @

31

Correctness of Reduction

« Claim (<).
If flow-network G’ has an integral flow of value k, then

the bipartite graph (A, B, E') has matching M of size k.

e Proof.

« Let M = set of edges from A to B with f(e) = 1.

« No two edges in M share a vertex, why?

e |M| =k
. v(f)=/,,(S) -1, (S)forany (§,V —=35) cut
e LetS =AU {s}

32

Correctness of Reduction

« Claim (<).
If flow-network G’ has an integral flow of value k, then
the bipartite graph (A, B, E') has matching M of size k.

O— 1 —@ O ——=O

/

1

_)@\1
£ :
= ==

33

Summary & Running Time

Proved matching of size k iff flow of value k
Thus, max-flow iff max matching
Running time of algorithm overall:

* Running time of reduction + running time of
solving the flow problem (dominates)

What is running time of Ford—Fulkerson algorithm for a
flow network with all unit capacities”

« O(nm)

Overall running time of finding max-cardinality bipartite
matching: O(nm)

34

Disjoint Paths Problem

Disjoint Paths Problem

* Definition. Two paths are edge-disjoint if they do not
have an edge in common.

 Edge-disjoint paths problem.
Given a directed graph with two nodes s and ¢, find
the max number of edge-disjoint s ~ f paths.

(2) (s)

Directed graph G
2 edge-disjoint paths

Towards Reduction

« Given: arbitrary instance x of disjoint paths problem
(X): directed graph G, with source s and sink ¢

« Goal. create a special instance y of a max-flow
problem (Y): flow network G'(V', E’, ¢) with §', ¢’ s.t.

« 1-1 correspondence. Input graph has k edge-
disjoint paths iff flow network has a flow of value k

Instance of X Instance of Y

— R o dUCtiON
X

Algorithm for Y

Algorithm for X

Positive instance

Negative instance

37

Reduction to Max Flow

« Reduction. G’ : same as G with unit capacity
assigned to every edge

« Claim [Correctness of reduction]. G has k edge disjoint
s ~ t paths iff G’ has an integral flow of value k.

e Proof. (=)

. Setf(e) = 1if einsome disjoints ~ t, f(e) =0
otherwise.

« We have v(f) = k since paths are edge disjoint.

e (<) Need to show: If G’ has a flow of value k then
there are k edge-disjoint § ~ ¢ paths in G

38

Correction of Reduction

Claim. (<) If fis a 0-1 flow of value k in G, then the
set of edges where f(e) = 1 contains a set of k edge-
disjoint s ~ f paths in G.

Proof [By induction on the # of edges k' with f(e) = 1]

« If k"= 0, no edges carry flow, nothing to prove

IH: Assume claim holds for all flows that use < k' edges

Consider an edge s — u with f(s - u) = 1

By tlow conservation, there exists an edge u — v with
f(u — v) = 1, continue “tracing out the path" until

o Case (a) reach t, Case (b) visit a vertex v for a 2nd time

39

Correction of Reduction

« Case (a) We reach t, then we found a s ~ t path P
« 1" : Decrease the flow on edges of P by 1

W) =v(f) =1 =k—1

« Number of edges that carry flow now < k" can
apply IH and find k — 1 other s ~ ¢ disjoint paths

« Case (b) visit a vertex v for a 2nd time: consider cycle
C of edges visited btw 1st and 2nd visit to v

« [decrease flow values on edges in C to zero

« v(f) = v(f) but # of edges in f" that carry flow
< k', can now apply IH to get k edge disjoint paths

40

Summary & Running Time

Proved k edge-disjoint paths iff flow of value k

Thus, max-tlow iff max # of edge-disjoint § ~ paths
 Running time of algorithm overall:

* Running time of reduction + running time of
solving the max-flow problem (dominates)

 What is running time of Ford-Fulkerson algorithm for a
flow network with all unit capacities”

« O(nm)

e Qverall running time of finding max # of edge-disjoint
s ~ t paths: O(nm)

41

| Take-home Exercise]
Reduction to Think About

Room Scheduling

* Williams College is holding a big gala and has
hired you to write an algorithm to schedule rooms
for all the different parties happening as part of it.

 There are n parties and the ith party has p; invitees.

« There are r different rooms and the jth room can fit
r; people in it.

» Thus, party i can be held in room j iff p; < r;.

* Describe and analyze an efticient algorithm to
assign a room to each party (or report correctly that
Nno such assignment is possible).

43

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

