Network Flows:
 Reductions and Applications

Admin

- Assignment 6 due tomorrow evening
- Help on slack or in office hours
- Today may give practice that will help with problem 2. (It's not a network flow problem, but it is (another) reduction problem.)

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for each edge $e \in E$
- Find an $s \leadsto t$ path P in the residual network G_{f}
- Augment flow along path P
- Repeat until you get stuck

Ford-FULKERSON(G)
Foreach edge $e \in E: f(e) \leftarrow 0$.
$G_{f} \leftarrow$ residual network of G with respect to flow f.
While (there exists an s \imath t path P in G_{f})
$f \leftarrow \operatorname{AUGMENT}(f, P)$.
Update G_{f}.
RETURN f.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

Ford-FULKERSON(G)
FOREACH edge $e \in E: f(e) \leftarrow 0$.
$G_{f} \leftarrow$ residual network of G with respect to flow f.
WHILE (there exists an s \leadsto t path P in G_{f})
$f \leftarrow \operatorname{AUGMEnt}(f, P)$.
Update G_{f}.
RETURN f.

- Does the algorithm terminate?
- Can we bound the number of iterations it does?
- Running time?

Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase value of flow by $b=\operatorname{bottleneck}\left(G_{f}, P\right)$
- Assumption. Suppose all capacities $c(e)$ are integers.
- Integrality invariant. Throughout Ford-Fulkerson, every edge flow $f(e)$ and corresponding residual capacity is an integer. Thus $b \geq 1$.
- Let $C=\max c(s \rightarrow u)$ be the maximum capacity among edges u leaving the source s.
- It must be that $v(f) \leq(n-1) C=O(n C)$
- Since, $v(f)$ increases by $b \geq 1$ in each iteration, it follows that FF algorithm terminates in at most $v(f)=O(n C)$ iterations.

Ford-Fulkerson Running Time

- Claim. Ford-Fulkerson can be implemented to run in time $O(n m C)$, where $m=|E| \geq n-1$ and $C=\max c(s \rightarrow u)$.
u
- Proof. We know algorithm terminates in at most C iterations. Each iteration takes $O(m)$ time:
- We need to find an augmenting path in G_{f}
- G_{f} has at most $2 m$ edges, using BFS/DFS takes $O(m+n)=O(m)$ time
- Augmenting flow in P takes $O(n)$ time
- Given new flow, we can build new residual graph in $O(m)$ time

[Digging Deeper] Polynomial time?

- Does the Ford-Fulkerson algorithm run in time polynomial in the input size?
- Running time is $O(n m C)$, where $C=\max c(s \rightarrow u)$ What is the input size?
- Let's take an example

[Digging Deeper] Polynomial time?

- Question. Does the Ford-Fulkerson algorithm run in polynomial-time in the size of the input? $\longleftarrow \sim \sim m, n$, and $\log C$
- Answer. No. if max capacity is C, the algorithm can take $\geq C$ iterations. Consider the following example.

- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$
$\longleftarrow \quad \begin{gathered}\text { sends only } 1 \text { unit of flow } \\ \text { (\# augmenting paths }=2 C \text {) }\end{gathered}$
- $s \rightarrow w \rightarrow v \rightarrow t$
- ...
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$

[Digger Deeper] Pseudo-Polynomial

- Input graph has n nodes and $m=O\left(n^{2}\right)$ edges, each with capacity c_{e}
- $C=\max c(e)$, then $c(e)$ takes $O(\log C)$ bits to represent $e \in E$
- Input size: $\Omega(n \log n+m \log n+m \log C)$ bits
- Running time: $O(n m C)=O\left(n m 2^{\log C}\right)$, exponential in the size of C
- Such algorithms are called pseudo-polynomial
- If the running time is polynomial in the magnitude but not size of an input parameter.
- We saw this for knapsack as well!

Non-Integral Capacities?

- If the capacities are rational, can just multiply to obtain a large integer (massively increases running time)
- If capacities are irrational, Ford-Fulkerson can run infinitely!
- Idea: amount of flow sent decreases by a constant factor each loop

Network Flow: Beyond Ford Fulkerson

Edmond and Karp's Algorithms

- Ford and Fulkerson's algorithm does not specify which path in the residual graph to augment
- Poor worst-case behavior of the algorithm can be blamed on bad choices on augmenting path
- Better choice of augmenting paths. In 1970s, Jack Edmonds and Richard Karp published two natural rules for choosing augmenting paths
- Fattest augmenting paths first
- Shortest (in terms of edges) augmenting paths first (Dinitz independently discovered \& analyzed this rule)
- Can result in $O\left(n^{2} m\right)$ time

Progress on Network Flows

1951	$O\left(m n^{2} C\right)$	Dantzig
1955	$O(m n C)$	Ford-Fulkerson
1970	$O\left(m n^{2}\right)$	Edmonds-Karp, Dinitz
1974	$O\left(n^{3}\right)$	Karzanov
1983	$O(m n \log n)$	Sleator-Tarjan
1985	$O(m n \log C)$	Gabow
1988	$O\left(m n \log \left(n^{2} / m\right)\right)$	Goldberg-Tarjan
1998	$O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log C\right)$	Goldberg-Rao
2013	$\tilde{O}\left(m n^{1 / 2} \log C\right)$	Orlin
2014	$\tilde{O}\left(m^{10 / 7} C^{1 / 7}\right)$	Lee-Sidford Mądry

Progress on Network Flows

- Best known: $O(n m)$
- Best lower bound?
- None known. (Needs $\Omega(n+m)$ just to look at the network, but that's it)
- Some of these algorithms do REALLY well in "practice;" basically $O(n+m)$
- Well-known open problem

Applications of Network Flow: Solving Problems by
Reduction to Network Flows

Max-Flow Min-Cut Applications

- Data mining
- Bipartite matching
- Network reliability
- Image segmentation
- Baseball elimination
- Network connectivity
- Markov random fields
- Distributed computing
- Network intrusion detection
- Many, many, more.

Anatomy of Problem Reductions

- At a high level, a problem X reduces to a problem Y if an algorithm for Y can be used to solve X
- Reduction. Convert an arbitrary instance x of X to a special instance y of Y such that there is a 1-1 correspondence between them

Anatomy of Problem Reductions

- Claim. x satisfies a property iff y satisfies a corresponding property
- Proving a reduction is correct: prove both directions
- x has a property (e.g. has matching of size $k) \Longrightarrow y$ has a corresponding property (e.g. has a flow of value k)
- x does not have a property (e.g. does not have matching of size $k) \Longrightarrow y$ does not have a corresponding property (e.g. does not have a flow of value k)
- Or equivalently (and this is often easier to prove):
- y has a property (e.g. has flow of value $k) \Longrightarrow x$ has a corresponding property (e.g. has a matching of value k)

Plan for Today

- I'll show you one (classic) network flow reduction
- Then you'll attempt one; we'll go over the answer together

Max-Cardinality Bipartite Matching

Review: Matching in Graphs

- Definition. Given an undirected graph $G=(V, E)$, a matching $M \subseteq E$ of G is a subset of edges such that no two edges in M are incident on the same vertex.

Review: Matching in Graphs

- Definition. Given an undirected graph $G=(V, E)$, a matching $M \subseteq E$ of G is a subset of edges such that no two edges in M are incident on the same vertex.
- Max matching problem. Find a matching of maximum cardinality for a given graph, that is, a matching with maximum number of edges

Review: Bipartite Graphs

- A graph is bipartite if its vertices can be partitioned into two subsets X, Y such that every edge $e=(u, v)$ connects $u \in X$ and $v \in Y$
- Bipartite matching problem. Given a bipartite graph $G=(X \cup Y, E)$ find a maximum matching.

Bipartite Matching Example

- Suppose A is a set of students, B as a set of dorms
- Each student lists a set of dorms they'd like to live in, each dorm lists students it is willing to accommodate
- Goal. Find the largest matching (student, dorm) pairs that satisfies their requirements
- Bipartite matching instance. $V=(A, B)$ and $e \in E$ if student and dorm are mutually acceptable, goal is to find maximum matching
- Note. This is a different problem than the one we studied for Gale-Shapely matching!

Reduction to Max Flow

- Given arbitrary instance x of bipartite matching problem $(X): A, B$ and edges E between A and B
- Goal. Create a special instance y of a max-flow problem (Y) : flow network: $G(V, E, c)$, source s, sink $t \in V$ s.t.
- 1-1 correspondence. There exists a matching of size k iff there is a flow of value k

Reduction to Max Flow

- Create a new directed graph $G^{\prime}=\left(A \cup B \cup\{s, t\}, E^{\prime}, c\right)$
- Add edge $s \rightarrow a$ to E^{\prime} for all nodes $a \in A$
- Add edge $b \rightarrow t$ to E^{\prime} for all nodes $b \in B$
- Direct edge $a \rightarrow b$ in E^{\prime} if $(a, b) \in E$
- Set capacity of all edges in E^{\prime} to 1

Correctness of Reduction

- Claim (\Rightarrow).

If the bipartite graph (A, B, E) has matching M of size k then flow-network G^{\prime} has an integral flow of value k.

Correctness of Reduction

- Claim (\Rightarrow).

If the bipartite graph (A, B, E) has matching M of size k then flow-network G^{\prime} has an integral flow of value k.

- Proof.
- For every edge $e=(a, b) \in M$, let f be the flow resulting from sending 1 unit of flow along the path $s \rightarrow a \rightarrow b \rightarrow t$
- f is a feasible flow (satisfies capacity and conservation) and integral
- $v(f)=k$

Correctness of Reduction

- Claim (\Rightarrow).

If the bipartite graph (A, B, E) has matching M of size k then flow-network G^{\prime} has an integral flow of value k.

Correctness of Reduction

- Claim (\Leftarrow).

If flow-network G^{\prime} has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

Correctness of Reduction

- Claim (\Leftarrow).

If flow-network G^{\prime} has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

- Proof.
- Let $M=$ set of edges from A to B with $f(e)=1$.
- No two edges in M share a vertex, why?
- $|M|=k$
- $v(f)=f_{\text {out }}(S)-f_{\text {in }}(S)$ for any $(S, V-S)$ cut
- Let $S=A \cup\{s\}$

Correctness of Reduction

- Claim (\Leftarrow).

If flow-network G^{\prime} has an integral flow of value k, then the bipartite graph (A, B, E) has matching M of size k.

Summary \& Running Time

- Proved matching of size k iff flow of value k
- Thus, max-flow iff max matching
- Running time of algorithm overall:
- Running time of reduction + running time of solving the flow problem (dominates)
- What is running time of Ford-Fulkerson algorithm for a flow network with all unit capacities?
- $O(n m)$
- Overall running time of finding max-cardinality bipartite matching: $O(\mathrm{~nm})$

Disjoint Paths Problem

Disjoint Paths Problem

- Definition. Two paths are edge-disjoint if they do not have an edge in common.
- Edge-disjoint paths problem.

Given a directed graph with two nodes s and t, find the max number of edge-disjoint $s \leadsto t$ paths.

Towards Reduction

- Given: arbitrary instance x of disjoint paths problem (X) : directed graph G, with source s and sink t
- Goal. create a special instance y of a max-flow problem (Y) : flow network $G^{\prime}\left(V^{\prime}, E^{\prime}, c\right)$ with s^{\prime}, t^{\prime} s.t.
- 1-1 correspondence. Input graph has k edgedisjoint paths iff flow network has a flow of value k

Reduction to Max Flow

- Reduction. G^{\prime} : same as G with unit capacity assigned to every edge
- Claim [Correctness of reduction]. G has k edge disjoint $s \leadsto t$ paths iff G^{\prime} has an integral flow of value k.
- Proof. (\Rightarrow)
- Set $f(e)=1$ if e in some disjoint $s \leadsto t, f(e)=0$ otherwise.
- We have $v(f)=k$ since paths are edge disjoint.
- (\Leftarrow) Need to show: If G^{\prime} has a flow of value k then there are k edge-disjoint $s \leadsto t$ paths in G

Correction of Reduction

- Claim. (\Leftarrow) If f is a 0-1 flow of value k in G^{\prime}, then the set of edges where $f(e)=1$ contains a set of k edgedisjoint $s \leadsto t$ paths in G.
- Proof [By induction on the \# of edges k^{\prime} with $f(e)=1$]
- If $k^{\prime}=0$, no edges carry flow, nothing to prove
- IH: Assume claim holds for all flows that use $<k^{\prime}$ edges
- Consider an edge $s \rightarrow u$ with $f(s \rightarrow u)=1$
- By flow conservation, there exists an edge $u \rightarrow v$ with $f(u \rightarrow v)=1$, continue "tracing out the path" until
- Case (a) reach t, Case (b) visit a vertex v for a 2nd time

Correction of Reduction

- Case (a) We reach t, then we found a $s \leadsto t$ path P
- f^{\prime} : Decrease the flow on edges of P by 1
- $v\left(f^{\prime}\right)=v(f)-1=k-1$
- Number of edges that carry flow now < k^{\prime} : can apply IH and find $k-1$ other $s \leadsto t$ disjoint paths
- Case (b) visit a vertex v for a 2nd time: consider cycle C of edges visited btw 1st and 2nd visit to v
- f^{\prime} : decrease flow values on edges in C to zero
- $v\left(f^{\prime}\right)=v(f)$ but \# of edges in f^{\prime} that carry flow
$<k^{\prime}$, can now apply IH to get k edge disjoint paths

Summary \& Running Time

- Proved k edge-disjoint paths iff flow of value k
- Thus, max-flow iff max \# of edge-disjoint $s \leadsto t$ paths
- Running time of algorithm overall:
- Running time of reduction + running time of solving the max-flow problem (dominates)
- What is running time of Ford-Fulkerson algorithm for a flow network with all unit capacities?
- $O(n m)$
- Overall running time of finding max \# of edge-disjoint $s \leadsto t$ paths: $O(n m)$

[Take-home Exercise] Reduction to Think About

Room Scheduling

- Williams College is holding a big gala and has hired you to write an algorithm to schedule rooms for all the different parties happening as part of it.
- There are n parties and the i th party has p_{i} invitees.
- There are r different rooms and the j th room can fit r_{j} people in it.
- Thus, party i can be held in room j iff $p_{i} \leq r_{j}$.
- Describe and analyze an efficient algorithm to assign a room to each party (or report correctly that no such assignment is possible).

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

