
Network Flows

1

Admin

• Any questions before we start?

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

capacity

3

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) satisfies:

• [Flow conservation] , for where

 and

• To simplify, if there is no edge from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

4

What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity constraints of

the network, that is,:

[Capacity constraint] for each ,

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

5

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

•
Proof. Let

•
Then,

• For every flow conversation implies

• Thus all terms cancel out on both sides except

• But

f v(f) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

6

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

• Corollary. .

f v(f) fout(s)

fout(s) = fin(t)

v(f) = fin(t)

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

value = 5 + 10 + 10 = 25

7value = 5 + 10 + 10 = 25

Max-Flow Problem

• Problem. Given an flow network, find a feasible flow of
maximum value.

s-t s-t

8

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

value = 5 + 10 + 10 = 25

value = 5 + 10 + 10 = 25

Network Flows:
Max-Flow Min-Cut Theorem

9

Cuts in Flow Networks
• Recall. A cut in a graph is a partition of vertices such that

 , and are non-empty.

• Definition. An -cut is a cut s.t. and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts

10

Cuts in Flow Networks
• For any flow on and any -cut , let

•
 (sum of flow ‘leaving’)

•
 (sum of flow ‘entering’)

• Note: and

• Lemma. Value of a flow, is the
net-flow out of , for any -cut .

f G = (V, E) (s, t) (S, T)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

v(f) = fout(S) − fin(S)
S (s, t) (S, T)

11

Value of Flow and Cuts
• Lemma. Value of a flow, is the net-

flow out of , for any -cut .

• Proof.

v(f) = fout(S) − fin(S)
S (s, t) (S, T)

v(f) = fout(s)
v(f) = fout(s) − fin(s)

= ∑
v∈S

(fout(v) − fin(v))

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= fout(S) − fin(S)

12

ts

Value of Flow and Cuts (Explanation)

∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

(∑
w∈S

f(v → w) + ∑
w∈T

f(v → w) − ∑
u∈S

f(u → v) − ∑
u∈T

f(u → v))

= ∑
v∈S (∑

w∈S

f(v → w) − ∑
u∈S

f(u → v)) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

13

These are the same sum:
they sum the flow of all

edges with both vertices in
S

Cut Capacity
• Capacity of a -cut is the sum of the capacities

of edges leaving :

•

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

14

Quick Quiz
Question. Which is the capacity of the given st-cut?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

15

812 9

8

161

s

86

25 t

1020

6 11

Capacities of Cuts
• Capacity of a -cut is the sum of the capacities

of edges leaving :

•

• Dual problem of the max-flow problem.

• Find an -cut of minimum capacity

• Claim. Let be any s-t flow and be any s-t cut then

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

(s, t)

f (S, T)
v(f) ≤ c(S, T)

16

Cuts Upper Bound Flows

• For any cut, our flow needs to “get out” of that cut
on its route from S to T

• So it seems the capacity of any cut is an upper limit
on our max flow. Can we formalize that?

ts

Relationship: Flows and Cuts
• Claim. Let be any s-t flow and be any s-t cut then

• Proof.

•

f (S, T)
v(f) ≤ c(S, T)

v(f) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)

18

Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two problems in

given by the following theorem

• Theorem. Given a flow network , let be an -flow and let
 be any -cut of then,

 if and only if

 is a flow of maximum value and is a cut of minimum

capacity.

• Informally, in a flow network the max-flow = min-cut.

• (Will prove this theorem by construction in a bit.)

G f (s, t)
(S, T) (s, t) G

v(f) = c(S, T)

f (S, T)

19

Max-Flow Problem Review
• Max-flow problem. Given a flow network with source

 and sink , find a feasible flow of maximum value.

• Recall that a feasible flow must satisfy:

• Flow conservation: , for
where

, and

• Capacity constraint: for each ,

• Recall that the value of a flow is .

G = (V, E, c)
s t s-t

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

e ∈ E 0 ≤ f(e) ≤ c(e)

v(f) = fout(s) = fin(t)

20

Towards a Max-Flow Algorithm
• Greedy strategy:

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P

21

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8
s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 100 / 2
8 / 1

0

8 / 100 / 9

—
10 2 —

2
—

10
—s t

Towards a Max-Flow Algorithm
• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

0 / 4

8 / 8

10

2 / 2
10 / 1

0

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9s t

Towards a Max-Flow Algorithm

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10

6 / 10

ending flow value = 16

28

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16

Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

29

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network
• Unique max flow has
• Greedy could choose as first

• Summary: Need a mechanism to “undo” bad flow decisions

f(v → w) = 0
s → v → w → t P

30

s

t

w

v

1

2

2

22

Ford-Fulkerson
Algorithm

31

Ford Fulkerson: Idea
• We want to make “forward progress” while letting

ourselves undo previous decisions if they’re getting
in our way

• Idea: keep track of where we can push flow

• Can push more flow along an edge with
remaining capacity

• Can also push flow “back” along an edge that
already has flow down it

Residual Graph
• Given flow network and a feasible flow

on , the residual graph is defined as:

• Vertices in same as

• (Forward edge) For with residual capacity
 let with capacity

• (Backward edge) For with , let
 with capacity

G = (V, E, c) f
G Gf = (V, Ef , cf)

Gf G

e ∈ E
cr = c(e) − f(e) > 0 e ∈ Ef cr

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge

Augmenting Path & Flow
• An augmenting path is a simple path in the

residual graph

• The bottleneck capacity of an augmenting path
is the minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT(f, P)
__

 ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge)

 Increase f(e) in G by

ELSE
 Decrease f(e) in G by

RETURN f.
__

b

b

b

Ford-Fulkerson Algorithm
• Start with for each edge

• Find an path in the residual network

• Augment flow along path

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

35

Quick question

• Are we making forward progress here? (An
augmenting path can “push flow back”)

• Yes: cannot push flow back out of t—the last edge
always involves more flow. So the augmenting path
always increases the flow into t

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow
0 / 10

flow capacity

residual network Gf

s t

2 6

10

4

910

residual capacity

 10
 10 8

37

Ford-Fulkerson Example

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow capacity

P in residual network Gf

2 6

4

910

 10

s t

 10

10

8

network G and flow f

value of flow

38

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacitynetwork G and flow f

value of flow

4

10

8

8

8

9s

2
2

 10 6

2 t

residual network Gf

39

Ford-Fulkerson Example

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

0 / 10

flow capacity

4

10

8

8

8

9s

2
2

 10 6

2 t

network G and flow f

value of flow

P in residual network Gf

40

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 8+2 = 10

0 / 10

flow capacitynetwork G and flow f

value of flow

4

8

2

2

10

 10

10 7s

 10 6

t

residual network Gf

41

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

0 / 10

flow capacity

4

8

2

2

10

 10

10 7s

 10 6

t

network G and flow f

value of flow

P in residual network Gf

42

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 10+6 = 16

6 / 10

flow capacitynetwork G and flow f

value of flow

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

residual network Gf

43

Ford-Fulkerson Example

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

6 / 10

flow capacity

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

fixes mistake from
second augmenting path

network G and flow f

value of flow

P in residual network Gf

44

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacitynetwork G and flow f

value of flow

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

residual network Gf

45

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

2 / 4

8 / 8

8 / 98 / 10 18

8 / 10

flow capacity

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

network G and flow f

value of flow

P in residual network Gf

46

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

47

Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

48

Correctness &
Value of Flow

49

• Claim. Let be a feasible flow in and let be an augmenting path
in with bottleneck capacity . Let , then is
a feasible flow and .

• Proof. Only need to verify constraints on the edges of
(since for other edges). Let

• If is a forward edge:

• If is a backward edge:

•

• Conservation constraint hold on nodes in (exercise)

f G P
Gf b f′ ← AUGMENT(f, P) f′

v(f′) = v(f) + b
P

f′ = f e = (u, v) ∈ P
e

f(e) ≤ f′ (e)
≤ f(e) + b
≤ f(e) + (ce − f(e)) = ce

e
f(e) ≥ f′ (e) = f(e) − b

≥ f(e) − f(e) = 0
P

Augmenting Path & Flow

50

• Claim. Let be a feasible flow in and let be an augmenting path
in with bottleneck capacity . Let , then is
a feasible flow and .

• Proof.

• First edge must be out of in

• is simple so never visits again

• must be a forward edge (is a path from to)

• Thus increases by , increasing by

f G P
Gf b f′ ← AUGMENT(f, P) f′

v(f′) = v(f) + b

e ∈ P s Gf

P s
e P s t

f(e) b v(f) b
∎

Augmenting Path & Flow

51

Optimality

52

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any -

 cut then .

• We will show that the Ford-Fulkerson algorithm
terminates in a flow that achieves equality, that is,

• Ford-Fulkerson finds a flow and there exists a cut
 such that

• Proving this shows that it finds the maximum flow!

• This also proves the max-flow min-cut theorem

f s t (S, T) s
t v(f) ≤ c(S, T)

f*
(S*, T*)

v(f*) = c(S*, T*)

53

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with ,
then what can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

54

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

55

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with ,
then what can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)
56

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with
, then what can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

57

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

58

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with
, then what can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

f(e) = 0
59

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and
all edges entering have zero flow

•

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

60

Ford-Fulkerson Algorithm
Running Time

61

Ford-Fulkerson Performance

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

62

• Recall we proved that with each call to AUGMENT, we increase
value of flow by

• Assumption. Suppose all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ (n − 1)C = O(nC)

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

63

• Claim. Ford-Fulkerson can be implemented to run in
time , where and

.

• Proof. We know algorithm terminates in at most
iterations. Each iteration takes time:

• We need to find an augmenting path in

• has at most edges, using BFS/DFS takes
 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in
 time

O(nmC) m = |E | ≥ n − 1
C = max

u
c(s → u)

C
O(m)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m) ∎

Ford-Fulkerson Running Time

64

[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time

polynomial in the input size?

• Running time is , where
, suppose it is even larger, that is,

• What is the input size?

• Let’s take an example

O(nmC)
C = max

u
c(s → u)

C = max
e

c(e)

65

• Question. Does the Ford-Fulkerson algorithm run in
polynomial-time in the size of the input?

• Answer. No. if max capacity is , the algorithm can
take iterations. Consider the following example.

C
≥ C

66

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C

[Digger Deeper] Pseudo-Polynomial
• Input graph has nodes and edges, each

with capacity

• = , then takes bits to represent

• Input size: bits

• Let ,

• Input size:

• Running time: , exponential in the size of

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude
but not size of an input parameter.

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

O(n log n + m log n + m log C)
t = log n b = log C

O(nv + m(v + b))

O(nm2b) C

67

Non-Integral Capacities?

• If the capacities are rational, can just multiply to
obtain a large integer (massively increases running
time)

• If capacities are irrational, Ford-Fulkerson can run
infinitely!

• Idea: amount of flow sent decreases by a
constant factor each loop

Summary
• Given a flow network with integer capacities, Ford-

Fulkerson computes the max flow in time

• A constructive proof of the max-flow min-cut theorem

• It is a pseudo-polynomial algorithm

• Can take exponential time wrt to size of

• Bad performance in the worst case can be blamed
on poor augmenting path choices

• Next. (Flow Applications) Solving other optimization
problems by reduction them to a network flow problem

O(mnC)

C

69

Network Flow [Optional]:
Beyond Ford Fulkerson

70

Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which

path in the residual graph to augment

• Poor worst-case behavior of the algorithm can be blamed
on bad choices on augmenting path

• Better choice of augmenting paths. In 1970s, Jack
Edmonds and Richard Karp published two natural rules
for choosing augmenting paths

• Fattest augmenting paths first

• Shortest (in terms of edges) augmenting paths first
(Dinitz independently discovered & analyzed this rule)

Fattest Augmenting Paths First
• Ford Fulkerson is essentially a greedy algorithm way

of augmenting paths:

• Choose the augmenting path with largest
bottleneck capacity

• Largest bottleneck path can be computed in
 time in a directed graph

• Similar to Dijkstra’s analysis

• How many iterations if we use this rule?

• Won’t prove this: takes iterations

• Overall running time is
(polynomial time!)

O(m log n)

O(m log C)

O(m2 log n log C)

Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges

• Can be found using BFS on in time

• Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

• Analysis looks at “level” of vertices in the BFS tree of
rooted at —levels only grow over time

• Analyzes # of times an edge disappears from

• Takes iterations overall

• Thus overall running time is

Gf O(m + n) = O(m)

Gf
s

u → v Gf

O(mn)

O(m2n)

Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

2014 Õ(m n1/2 log C) Lee–Sidford

2016 Õ(m10/7 C1/7) Mądry

For unit capacity
networks

Progress on Network Flows
• Best known:

• Best lower bound?

• None known. (Needs just to look at the
network, but that’s it)

• Some of these algorithms do REALLY well in “practice;”
basically

• Well-known open problem

O(nm)

Ω(n + m)

O(n + m)

Summary
• Given a flow network with integer capacities, the maximum

flow and minimum cut can be computed in time.

• Next. Network flow applications!

O(mn)

76

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

