Network Flows

Admin

* Any questions before we start?

What's a Flow Network?

A flow network is a directed graph G = (V, E) with a
« A source is a vertex s with in degree O
« A sink is a vertex f with out degree O

« Each edge e € E has edge capacity c(e) > 0

capacity

What’s a Flow?

« Given a flow network, an (s,)-flow or just flow (if source s
and sink t are clear from context) f: E — Z7 satisfies:

« [Flow conservation] f; (v) =f,(v), forv # s, where
ful) =) flu = v)and f,,(v) = Y fv = w)

« To simplify, f(u — v) = 0 if there is no edge from u to v

What Is a Feasible Flow

« An (s, 1)-flow is feasible if it satisfies the capacity constraints of

the network, that Is;:

[Capacity constraint] foreache € E, 0 < f(e) < c(e)

flow capacity

Value of a Flow

« Definition. The value of a flow f, written v(f), is f,,,(s).

e Lemma.f, (s)=f (?)

. Proof. Letf(E) =) f(e)

eck

. Then, D') =fE) =) V)

vevV vevV
. Foreveryv # s,t flow conversation implies f,,(v) = f, (V)

* Thus all terms cancel out on both sides except

Sin(8) + Jin®) = foul($) + Fou2)
. BUtf,(s) =1, () =0

Value of a Flow

« Definition. The value of a flow f, written v(f), is f_,,.(S).

« Lemma.jf .(s) =/ ()

o Corollary. v(f) =/, (7).

5/9 \
S
5/76‘ /’0
\ value = 5+10+ 10 = 25
5/8 — 10/ 10 7@
Q
)\
/\Q\
10/16

value = 5+10+ 10 = 25 /

Max-Flow Problem

« Problem. Given an s-f flow network, find a feasible s-f flow of
maximum value.

S)
“7s 70

\ value = 5+ 10+ 10 = 25

5/8 m— 10 /10 —)e

/

\
O

/

value = 5+10+10 = 25 8

10/16

Network Flows:
Max-Flow Min-Cut Theorem

Cuts in Flow Networks

« Recall. Acut (S, 7T)in a graph is a partition of vertices such that

SuT =V SNT=¢@ands, T are non-empty.

« Definition. An (s, ?)-cutisacut(S,T)st.s€e Sandtre T

10

Cuts in Flow Networks

« Foranyflowfon G = (V,E)andany (s,)-cut(S,T), let

o) =) f(v > w) (sum of flow ‘leaving’ S)

veSweT

. £,.(S) = Z f(w = v) (sum of flow ‘entering’)

veS.weT

« Note: f,,.(S)=/f . (T)andf (S)=/f,,(T)

« Lemma. Value of a flow, v(f) =,,(S) —f;,(S) is the

net-flow out of S, for any (s, t)-cut (S, T).

11

Value of Flow and Cuts

« Lemma. Value of a flow, v(f) =1, ,(S) —f,,(S) is the net-
flow out of S, for any (s, 1)-cut (S, T).

. Proof. v(f) =f(s)
V() = JoulS) — [:n(5)

=D (S =) @ ¢
VES

=Y (Y fo->w =) flu—>v)) O
veS w u

=) fo-ow— D fu—v)
veS.weT veS,ueT

— out(S) — fm(S)

12

Value of Flow and Cuts (Explanation)

M (Y fo > wy =Y fu—v))

ves w u

=Z<Zf(v_>w)+Zf(vﬁw)—Zf(u%V)—Zf(M%V))

veES weSs weT uesS ueT
= Z(Zf(Vaw)—Zf(u—H/)> + Z fv—-w)— Zf(u—ﬂz)
i veS weS UeS | veSweT veS,.ueT

D fv=w= Y fu=wl+ Y fosw= Y flu—v)

VWES VUES veS.weT veS,ueT

B ESZETf(V = W)= m\ These are the same sum:
| they sum the flow of all

edges with both vertices In

S

13

Cut Capacity

« Capacity of a (s,)-cut (S, T) is the sum of the capacities

of edges leaving S:

. c(S,T) = 2 c(v - w)

veS.weT

14

Quick Quiz

Question. Which is the capacity of the given st-cut?
A. 11 (20+25-8-11-9 - 6)
B. 34 (8+11+9 + 6)
C. 45 (20 + 25)

(

D. 79

20+25+8+11+9 +6)

Capacities of Cuts

« Capacity of a (s,)-cut (S, T) is the sum of the capacities
of edges leaving S:

. c(S,T) = 2 c(v - w)

veS.weT

* Dual problem of the max-flow problem.
« Find an (s, t)-cut of minimum capacity

« Claim. Letfbe any s-tflow and (S, T) be any s-t cut then
v(f) < c(S,T)

16

Cuts Upper Bound Flows

e For any cut, our flow needs to “get out” of that cut
on its route from Sto T

* S0 it seems the capacity of any cut is an upper limit
on our max flow. Can we formalize that”

Relationship: Flows and Cuts

« Claim. Let fbe any s-tflow and (S, T') be any s-t cut then
v(f) < ¢S, T)

 Proof.

o V() = JoulS) — fin(S)

<L =), fvow)

veS.weT

< 2 cv,w)=1c(S,T)

veSweT

18

Max-Flow Min-Cut Theorem

* A beautiful, powerful relationship between these two problems in
given by the following theorem

« Theorem. Given a flow network G, let f be an (s, ?)-flow and let
(S, T) be any (s, 1)-cut of G then,
v(f) = c(S,T) if and only if
fis a flow of maximum value and (S, T') is a cut of minimum
capacity.

e [nformally, in a flow network the max-tflow = min-cut.

* (WIill prove this theorem by construction in a bit.)

19

Max-Flow Problem Review

. Max-flow problem. Given a flow network G = (V, E, ¢) with source
s and sink 7, find a feasible s-f flow of maximum value.

* Recall that a feasible flow must satisty:

 Flow conservation: f, (v) =f, (v), forv #s,¢
where

fi(v) = Zf(u — V), and
OEDIWCESD

 Capacity constraint: foreache € E, 0 < f(e) < c(e)

. Recall that the value of a flow is v(f) = [, (s) =, (?).

20

Towards a Max-Flow Algorithm

* (reedy strategy:
« Start with f(e) = 0O for each edge
« Find ans ~ ¢t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P
* Repeat until you get stuck

* Let'stake an example

21

Towards a Max-Flow Algorithm

o Start with f(e) = 0O for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

flow }apacity
Qo0
Q 0/2 0, 0/6 o
. 8 ‘0

@ 0/10 Q 0/9 Q 0/10 @/O

value of flow

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ ¢ path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O 0/2 ¢, 0/6 -

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

s

O (WS 2 8/2 s, 0/6 -

Jomo Q—z/g —)O—Lg/m —)@ 8 +2=10

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

AN

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

ending flow value = 16

T

@ 6/10 Q 8/9 Q 10/10 @ 10 +6=16

28

Towards a Max-Flow Algorithm

« Start with f(e) = 0 for each edge
« Find ans ~ t path P where each edge has f(e) < c(e)
« “Augment” flow (as much as possible) along path P

* Repeat until you get stuck

max-flow value = 19

L

@ 9/10 Q 9/9 Q 10/10 @ 19

29

Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision

* Consider the following flow network
« Unique max flow has f(v - w) =0
« Greedy could choose s = v - w — tasfirst P

0. 2 O,

() 2 ()

e Summary: Need a mechanism to “undo” bad flow decisions

30

Ford-Fulkerson
Algorithm

Ford Fulkerson: Idea

 We want to make “forward progress” while letting

ourselves undo previous decisions if they're getting
IN our way

* |dea: keep track of where we can push flow

* Can push more flow along an edge with
remaining capacity

 Can also push flow “back”™ along an edge that
already has flow down it

Residual Graph

« Given flow network G = (V, E, ¢) and a feasible flow f
on G, the residual graph G, = (V, E, ¢;) is defined as:

« \ertices in Gf same as G

« (Forward edge) For e € E with residual capacity
¢, = c(e) — fle) > Olete € Epwith capacity c,

« (Backward edge) For e € E with f(e) > 0, let
ereverse € Epwith capacity f(e)

_ residual network G residual
original flow network G f

y 6/ 17 7 114 o
TN

reverse edge

Augmenting Path & Flow

An augmenting path P is a simple s ~ ¢ path in the
residual graph Gf

The bottleneck capacity b of an augmenting path P
is the minimum capacity of any edge in P.

AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.
FOREACH edge e € P :
IF (e € E, that is, e is forward edge)
Increase f(e) in G by b

ELSE
Decrease f(e) in G by b

RETURN f.

Ford-Fulkerson Algorithm

Start with f(e) = 0 foreach edge e € E
Find an s ~ ¢ path P in the residual network Gf

Augment flow along path P

Repeat until you get stuck

FORD-FULKERSON(G)

FOREACH edgee €E E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s+t path P in Gy)
f <= AUGMENT(f, P).
Update Gy.

RETURN f.

35

Quick question

* Are we making forward progress here” (An
augmenting path can “push flow back”)

* Yes: cannot push flow back out of t—the last edge
always involves more flow. So the augmenting path
always increases the flow into t

Fora-Fulkerson Example

network G and flow f

@ 0/10

residual network Gr

QO

0/2

O

flow capacity

NS
0/4 Q

o, 0/6

ors———()

: @

37

7
o value of flow

l
0/10 @ 0

residual capacity

/

0

—

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q 0/2 0 0O/6 =
. & 0 value of flow

l
@ 0/10 Q 0/9 Q 0/10 @ 0

P in residual network Gs

: O
AN

Q

6 0

N

</m O O

Fora-Fulkerson Example

network G and flow f flow capacity

NS
O\ O
/ 0
R 0/2 8, 0/6
> S

e

\ ¢ value of flow
@/ O oo O—— @) ¢

residual network Gr

O : @

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

O 0/2 &, 0/6 “y

&) S o value of flow

@@ Q@ :

P in residual network Gs

Fora-Fulkerson Example

network G and flow f

l

O 2/2
2O

o b

flow capacity

NS
0/4 Q

S 0/6 -
7’8 0 value of flow

2/9)O— 10/10—)@ 8+2 =10

residual network Gr

&——O

Fora-Fulkerson Example

network G and flow f flow capacity

S S T

Q
N\ 2/9 S 0/6 <
\ ‘8 0 value of flow

l
@ 0/10 Q 2/9 Q 10/10 @ 10

P in residual network Gs

N

2 S 6 0

Fora-Fulkerson Example

network G and flow f

@

O 2/2
2O

SO

flow capacity

v

‘ \value of flow

8/9)O 10/10 @ 10+6 =16

residual network Gr

E——0

Fora-Fulkerson Example

network G and flow f flow capacity

O -

Q ~
N 2/2 S 6/6
\ & 0 value of flow

l
@ 6/10 Q 8/9 Q 10/10 @ 16

fixes mistake from

P in residual network Gs second augmenting path

b >

T 6

2 8 6 ¥
RS

R 1 O A0

Fora-Fulkerson Example

network G and flow f flow capacity

TN

O 0/2 8, 6/6 S

O l \value of flow

@—8/10—)@ 8/9 Q 10/10 @ 18

residual network Gr 2
O 2 @
&
<3
2 (o4 6
O

Fora-Fulkerson Example

network G and flow f flow capacity

S I

Q
N 0/2 (< 6/6 -~
\ ‘8 0 value of flow

l
@ 8/10 Q 8/9 Q 10/10 @ 18

P in residual network Gs
’\Q \ \

(S :—>O0— —>Q o

Fora-Fulkerson Example

network G and flow f flow / capacity
3/4 >
Q 9
% 0/2 < 6/6 “7

O \ \value of flow

@—9/10—)@ 9/9)O 10/10 @ 19

residual network Gr 3

Ge—s—-0 9 O A1)

1 47 No s-t path left!

Fora-Fulkerson Example

network G and flow f

@

O 0/2
. O
Capacity of cut?

@ —Q

residual network Gr

nodes reachable from s

flow

9/9

capacity

@

6/6

v

O

@

48

“
o value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Correctness &
Value of Flow

Augmenting Path & Flow

« Claim. Let f be a feasible flow in G and let P be an augmenting path
in G with bottleneck capacity b. Let " < AUGMENT(f, P), then f"is

a feasible flow and v(f") = v(f) + b.

« Proof. Only need to verify constraints on the edges of P
(since f" = ffor other edges). Lete = (u,v) € P

o If eis aforward edge:
f(e) < fe)
< fle)+b
< fe) + (c,—fle)) = ¢,

o If eis abackward edge:

. fle) 2 f(e) = f(e) — b
> fle) - fle) = 0

« Conservation constraint hold on nodes in P (exercise)

50

Augmenting Path & Flow

« Claim. Let f be a feasible flow in G and let P be an augmenting path
in G with bottleneck capacity b. Let " < AUGMENT(f, P), then f"is

a feasible flow and v(f") = v(f) + b.
* Proof.

. Firstedge e € P must be out of s in G,

« P is simple so never visits s again
« ¢ must be a forward edge (P is a path from s to ?)

« Thus f(e) increases by b, increasing v(f) by b
i

51

Optimality

Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T) is any s-
tcutthenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm
terminates in a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut
(5%, T%) such that
v(f*) = c(5%, T%)

Proving this shows that it finds the maximum flow!

This also proves the max-flow min-cut theorem

53

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).

Proof.

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consideranedgee = u — vwithu € §*,v € T*,
then what can we say about f(e)?

54

Recall: Ford-Fulkerson Example

network G and flow f

@

O 0/2
. O
Capacity of cut?

@ —Q

residual network Gr

nodes reachable from s

flow

9/9

capacity

@

6/6

v

O

@

55

0 value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).
Proof.

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consideranedgee = u — vwithu € §*,v € T*,
then what can we say about f(e)?

» fle) = c(e)

56

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).

Proof. (Cont.)

Let §* = {v | vis reachable from s in Gy},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consider an edge ¢ = w — v with
v € §*, w € T*, then what can we say about f(e)?

57

Recall: Ford-Fulkerson Example

network G and flow f

@

O 0/2
. O
Capacity of cut?

@ —Q

residual network Gr

nodes reachable from s

flow

9/9

capacity

@

6/6

v

O

@

58

0 value of flow
10/10 @ 19
9
bg

o0

No s-t path left!

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consider an edge e = w — v with
v € §*,w € T*, then what can we say about f(e)?

. fley=0

59

Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).

Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and
all edges entering $* have zero flow

V) = JoulS™) = finlS™) = fpu(S™) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.

60

Ford-Fulkerson Algorithm
Running Time

Ford-Fulkerson Performance

FORD—-FULKERSON(G)

FOREACHedgee € E: f(e) < 0.

G < residual network of G with respect to flow f.

WHILE (there exists an s~t path P in Gy)
f <= AUGMENT(f, P).
Update Gv.

RETURN f.

* Does the algorithm terminate”
e (Can we bound the number of iterations it does?

* Running time?

62

Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be that v(f) < (n—1)C = O(nC)

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = OnC) iterations.

63

Ford-Fulkerson Running Time

 Claim. Ford-Fulkerson can be implemented to run in
time O(mnmC), wherem = |E| > n — 1 and

C =maxc(s = u).

« Proof. We know algorithm terminates in at most C
iterations. Each iteration takes O(m) time:

. We need to find an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

« Augmenting flow in P takes O(n) time

* Given new flow, we can build new residual graph in
O(m) time B

64

[Digging Deeper] Polynomial time??

* Does the Ford-Fulkerson algorithm run in time
polynomial in the input size?

« Running time is O(nmC), where

C = max c(s — u), suppose it is even larger, that is,
u

C = max c(e)
(4

 What is the input size?

 Let's take an example

65

[Digging Deeper] Polynomial time??

* Question. Does the Ford-Fulkerson algorithm run in
polynomial-time in the size of the input? «<——— ~m, n andlogC

« Answer. No. if max capacity is C, the algorithm can
take > C iterations. Consider the following example.

66

* s—V—W—f
¢ sEW—Y—>f
¢ sV W—

* S—SW—Y—>f

* S Vv—=w—f

* SSW—Y—>f

—

each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2C)

[Digger Deeper] Pseudo-Polynomial

Input graph has n nodes and m = O(n?) edges, each
with capacity c,

. C=maxc(e), then c(e) takes O(log C) bits to represent
eck

« Inputsize: O(nlogn + mlogn + mlog C) bits

e Lett=1logn, b =1ogC

« Inputsize: O(nv + m(v + b))

. Running time: O(nm2?), exponential in the size of C
e Such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude
but not size of an input parameter.

6/

Non-Integral Capacities?

* |t the capacities are rational, can just multiply to
obtain a large integer (massively increases running
time)

e |t capacities are irrational, Ford-Fulkerson can run
infinitely!

* |dea: amount of flow sent decreases by a
constant factor each loop

Summary

* (Given a flow network with integer capacities, Ford-
Fulkerson computes the max flow in O(mnC) time

* A constructive proof of the max-flow min-cut theorem
* [tis a pseudo-polynomial algorithm
« Can take exponential time wrt to size of C

* Bad performance in the worst case can be blamed
on poor augmenting path choices

- Next. (Flow Applications) Solving other optimization
problems by reduction them to a network flow problem

69

Network Flow [Optionalj:
Beyond Ford Fulkerson

Edmond and Karp’s Algorithms

 Ford and Fulkerson’s algorithm does not specity which
path in the residual graph to augment

e Poor worst-case behavior of the algorithm can be blamed
on bad choices on augmenting path

* Better choice of augmenting paths. In 1970s, Jack
Edmonds and Richard Karp published two natural rules
for choosing augmenting paths

e Fattest augmenting paths first

e Shortest (in terms of edges) augmenting paths first
(Dinitz independently discovered & analyzed this rule)

Fattest Augmenting Paths First

Ford Fulkerson is essentially a greedy algorithm way
of augmenting paths:

 Choose the augmenting path with largest
bottleneck capacity

Largest bottleneck path can be computed in
O(mlog n) time in a directed graph

e Similar to Dijkstra’s analysis
How many iterations if we use this rule”?

« Won't prove this: takes O(m log C) iterations

Overall running time is O(m?*log nlog C)
(polynomial time!)

Shortest Augmenting Paths First

Choose the augmenting path with the smallest # of edges

Can be found using BFS on G¢in O(m + n) = O(m) time

Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

Analysis looks at “level” of vertices in the BFS tree of Gf

rooted at s —levels only grow over time

Analyzes # of times an edge u — v disappears from Gf

Takes O(mn) iterations overall

Thus overall running time is O(m*n)

Progress on Network Flows

1951 O(m n* C) Dantzig
1955 O(mn C) Ford—Fulkerson
1970 O(m n?) Edmonds—Karp, Dinitz
1974 o) Karzanov
1983 O(m n log n) Sleator—Tarjan
1985 O(m n log C) Gabow
1988 O(m n log (n* / m)) Goldberg—Tarjan
1998 O(m>? log (n* / m) log C) Goldberg—Rao
2013 O(m n) Orlin

2014 O(mn'? log C) Lee—Sidford
2016 Om'"" C'7y Madry

For unit capacity
networks

Progress on Network Flows

Best known: O(nm)
Best lower bound?

« None known. (Needs 2(n + m) just to look at the
network, but that’s it)

Some of these algorithms do REALLY well in “practice;”
basically O(n + m)

Well-known open problem

Summary

* (Given a flow network with integer capacities, the maximum
flow and minimum cut can be computed in O(mn) time.

* Next. Network flow applications!

/6

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

