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Admin

• Any questions before we start?



What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Each edge  has edge capacity 

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0
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What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies: 

• [Flow conservation]   , for  where 
 

 and  

• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v
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What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity constraints of 

the network, that is,: 

[Capacity constraint] for each , 

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma.  

•
Proof.   Let  

•
Then,  

• For every   flow conversation implies  

• Thus all terms cancel out on both sides except 
 

• But 

f v( f ) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma.  

• Corollary. .

f v( f ) fout(s)

fout(s) = fin(t)

v( f ) = fin(t)
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Max-Flow Problem

• Problem.  Given an  flow network, find a feasible  flow of 
maximum value.

s-t s-t
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Network Flows: 
Max-Flow Min-Cut Theorem
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Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such that 

 ,  and  are non-empty. 

• Definition. An -cut is a cut  s.t.  and .

(S, T )
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T ) s ∈ S t ∈ T

ts
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Cuts in Flow Networks
• For any flow  on  and any -cut , let 

•
 (sum of flow ‘leaving’ ) 

•
 (sum of flow ‘entering’ ) 

• Note:     and  

• Lemma. Value of a flow,   is the 
net-flow out of , for any -cut .

f G = (V, E) (s, t) (S, T )

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T ) fin(S) = fout(T )

v( f ) = fout(S) − fin(S)
S (s, t) (S, T )

11



Value of Flow and Cuts
• Lemma. Value of a flow,   is the net-

flow out of , for any -cut . 

• Proof.                   

     

 

   

   

 

v( f ) = fout(S) − fin(S)
S (s, t) (S, T )

v( f ) = fout(s)
v( f ) = fout(s) − fin(s)

= ∑
v∈S

( fout(v) − fin(v))

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= fout(S) − fin(S)
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Value of Flow and Cuts (Explanation)
   

   

 

 

   

∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S

(∑
w∈S

f(v → w) + ∑
w∈T

f(v → w) − ∑
u∈S

f(u → v) − ∑
u∈T

f(u → v))

= ∑
v∈S ( ∑

w∈S

f(v → w) − ∑
u∈S

f(u → v)) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v,w∈S

f(v → w) − ∑
v,u∈S

f(u → v) + ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)
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they sum the flow of all 

edges with both vertices in 
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Cut Capacity
• Capacity of a -cut  is the sum of the capacities 

of edges leaving : 

•

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)
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Quick Quiz
Question.  Which is the capacity of the given st-cut? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  34  (8 + 11 + 9 + 6)  

C.  45  (20 + 25) 

D.  79  (20 + 25 + 8 + 11 + 9 + 6) 
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Capacities of Cuts
• Capacity of a -cut  is the sum of the capacities 

of edges leaving : 

•
 

• Dual problem of the max-flow problem. 

• Find an -cut of minimum capacity 

• Claim.  Let  be any s-t flow and  be any s-t cut then 

(s, t) (S, T )
S

c(S, T ) = ∑
v∈S,w∈T

c(v → w)

(s, t)

f (S, T )
v( f ) ≤ c(S, T )
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Cuts Upper Bound Flows

• For any cut, our flow needs to “get out” of that cut 
on its route from S to T 

• So it seems the capacity of any cut is an upper limit 
on our max flow.  Can we formalize that?

ts



Relationship: Flows and Cuts
• Claim.  Let  be any s-t flow and  be any s-t cut then 

 

• Proof. 

•  
 

 

f (S, T )
v( f ) ≤ c(S, T )

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T )
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Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two problems in 

given by the following theorem 

• Theorem.  Given a flow network , let  be an -flow and let 
 be any -cut of  then, 

 
 if and only if 

 
 is a flow of maximum value and  is a cut of minimum 

capacity. 

• Informally, in a flow network the max-flow = min-cut. 

• (Will prove this theorem by construction in a bit.)

G f (s, t)
(S, T ) (s, t) G

v( f ) = c(S, T )

f (S, T )
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Max-Flow Problem Review
• Max-flow problem.  Given a flow network  with source 

 and sink , find a feasible  flow of maximum value. 

• Recall that a feasible flow must satisfy: 

• Flow conservation:   , for   
where 

, and  

 

• Capacity constraint: for each ,  

• Recall that the value of a flow is  .  

G = (V, E, c)
s t s-t

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v)

fout(v) = ∑
w

f(v → w)

e ∈ E 0 ≤ f(e) ≤ c(e)

v( f ) = fout(s) = fin(t)
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Towards a Max-Flow Algorithm
• Greedy strategy: 

• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck 

• Let’s take an example

f(e) = 0

s ↝ t P f(e) < c(e)

P

21



Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 2 = 10
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Towards a Max-Flow Algorithm
• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P
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Towards a Max-Flow Algorithm

s t
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10 / 10
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ending flow value = 16
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• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P

+ 6 = 16



Towards a Max-Flow Algorithm

max-flow value = 19

3 / 4

7 / 8

19
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9 / 9s t
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• Start with  for each edge 

• Find an  path  where each edge has  

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck

f(e) = 0
s ↝ t P f(e) < c(e)

P



Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 
• Unique max flow has  
• Greedy could choose  as first  

 
 
 
 
 
 
 
 

• Summary:  Need a mechanism to “undo” bad flow decisions 

f(v → w) = 0
s → v → w → t P

30
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w

v

1

2
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Ford-Fulkerson 
Algorithm

31



Ford Fulkerson: Idea
• We want to make “forward progress” while letting 

ourselves undo previous decisions if they’re getting 
in our way 

• Idea: keep track of where we can push flow 

• Can push more flow along an edge with 
remaining capacity 

• Can also push flow “back” along an edge that 
already has flow down it



Residual Graph
• Given flow network  and a feasible flow  

on , the residual graph  is defined as: 

• Vertices in  same as  

• (Forward edge) For  with residual capacity 
 let  with capacity  

• (Backward edge) For  with , let  
 with capacity 

G = (V, E, c) f
G Gf = (V, Ef , cf )

Gf G

e ∈ E
cr = c(e) − f(e) > 0 e ∈ Ef cr

e ∈ E f(e) > 0
ereverse ∈ Ef f(e)

u v

flow

6 / 17

capacity

original flow network G

u v

residual
capacity

residual network Gf

11

6

reverse edge



Augmenting Path & Flow
• An augmenting path  is a simple  path in the 

residual graph  

• The bottleneck capacity  of an augmenting path  
is the minimum capacity of any edge in .

P s ↝ t
Gf

b P
P

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.


b

b

b



Ford-Fulkerson Algorithm
• Start with  for each edge  

• Find an  path  in the residual network  

• Augment flow along path  

• Repeat until you get stuck

f(e) = 0 e ∈ E
s ↝ t P Gf

P

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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Quick question

• Are we making forward progress here?  (An 
augmenting path can “push flow back”) 

• Yes: cannot push flow back out of t—the last edge 
always involves more flow.  So the augmenting path 
always increases the flow into t



Ford-Fulkerson Example
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Ford-Fulkerson Example

s t
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example

s t
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Ford-Fulkerson Example
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Ford-Fulkerson Example

s t
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Correctness &  
Value of Flow
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• Claim.  Let  be a feasible flow in  and let  be an augmenting path 
in  with bottleneck capacity .  Let  , then  is 
a feasible flow and  . 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:  
 

       
       

• If  is a backward edge: 

•  
        

• Conservation constraint hold on nodes in  (exercise)

f G P
Gf b f′ ← AUGMENT( f, P) f′ 

v( f′ ) = v( f ) + b
P

f′ = f e = (u, v) ∈ P
e

f(e) ≤ f′ (e)
≤ f(e) + b
≤ f(e) + (ce − f(e)) = ce

e
f(e) ≥ f′ (e) = f(e) − b

≥ f(e) − f(e) = 0
P

Augmenting Path & Flow
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• Claim.  Let  be a feasible flow in  and let  be an augmenting path 
in  with bottleneck capacity .  Let  , then  is 
a feasible flow and  . 

• Proof.  

• First edge  must be out of  in  

•  is simple so never visits  again  

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

f G P
Gf b f′ ← AUGMENT( f, P) f′ 

v( f′ ) = v( f ) + b

e ∈ P s Gf

P s
e P s t

f(e) b v( f ) b
∎

Augmenting Path & Flow
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Optimality
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Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -

 cut then . 

• We will show that the Ford-Fulkerson algorithm 
terminates in a flow that achieves equality, that is, 

• Ford-Fulkerson finds a flow  and there exists a cut 
 such that 

         

• Proving this shows that it finds the maximum flow! 

• This also proves the max-flow min-cut theorem

f s t (S, T ) s
t v( f ) ≤ c(S, T )

f*
(S*, T*)

v( f*) = c(S*, T*)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. 

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with , 
then what can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)
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Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. 

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with , 
then what can we say about ?  

•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.)  

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with 
, then what can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)
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Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.)  

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with 
, then what can we say about ?  

•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

f(e) = 0
59



Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.) 

• Let ,    

• Thus, all edges leaving  are completely saturated and 
all edges entering  have zero flow 

•   

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎
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Ford-Fulkerson Algorithm
Running Time
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Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C = O(nC)

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time
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• Claim.  Ford-Fulkerson can be implemented to run in 
time , where  and 

. 

• Proof.  We know algorithm terminates in at most  
iterations.  Each iteration takes  time: 

• We need to find an augmenting path in  

•  has at most  edges, using BFS/DFS takes 
 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in 
 time 

O(nmC) m = |E | ≥ n − 1
C = max

u
c(s → u)

C
O(m)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m) ∎

Ford-Fulkerson Running Time
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[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time 

polynomial in the input size?  

• Running time is , where 
, suppose it is even larger, that is, 

 

• What is the input size?    

• Let’s take an example

O(nmC)
C = max

u
c(s → u)

C = max
e

c(e)
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• Question.  Does the Ford-Fulkerson algorithm run in 
polynomial-time in the size of the input? 

• Answer.  No. if max capacity is , the algorithm can 
take  iterations.  Consider the following example.

C
≥ C

66

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each 

with capacity  

•  = , then  takes  bits to represent 

• Input size:  bits 

• Let ,  

• Input size:  

• Running time: , exponential in the size of   

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude 
but not size of an input parameter.

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

O(n log n + m log n + m log C)
t = log n b = log C

O(nv + m(v + b))

O(nm2b) C
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Non-Integral Capacities?

• If the capacities are rational, can just multiply to 
obtain a large integer (massively increases running 
time) 

• If capacities are irrational, Ford-Fulkerson can run 
infinitely! 

• Idea: amount of flow sent decreases by a 
constant factor each loop



Summary
• Given a flow network with integer capacities, Ford-

Fulkerson computes the max flow in  time 

• A constructive proof of the max-flow min-cut theorem 

• It is a pseudo-polynomial algorithm 

• Can take exponential time wrt to size of  

• Bad performance in the worst case can be blamed 
on poor augmenting path choices 

• Next.  (Flow Applications)  Solving other optimization 
problems by reduction them to a network flow problem

O(mnC)

C
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Network Flow [Optional]:  
Beyond Ford Fulkerson
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Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which 

path in the residual graph to augment 

• Poor worst-case behavior of the algorithm can be blamed 
on bad choices on augmenting path 

• Better choice of augmenting paths.  In 1970s, Jack 
Edmonds and Richard Karp published two natural rules 
for choosing augmenting paths 

• Fattest augmenting paths first 

• Shortest (in terms of edges) augmenting paths first 
(Dinitz independently discovered & analyzed this rule)



Fattest Augmenting Paths First
• Ford Fulkerson is essentially a greedy algorithm way 

of augmenting paths: 

• Choose the augmenting path with largest 
bottleneck capacity 

• Largest bottleneck path can be computed in 
 time in a directed graph 

• Similar to Dijkstra’s analysis 

• How many iterations if we use this rule? 

• Won’t prove this: takes  iterations 

• Overall running time is  
(polynomial time!)

O(m log n)

O(m log C)

O(m2 log n log C)



Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges 

• Can be found using BFS on  in  time 

• Surprisingly, this resulting a polynomial-time algorithm 
independent of the actual edge capacities ! 

• Analysis looks at “level” of vertices in the BFS tree of  
rooted at  —levels only grow over time 

• Analyzes # of times an edge  disappears from  

• Takes  iterations overall 

• Thus overall running time is 

Gf O(m + n) = O(m)

Gf
s

u → v Gf

O(mn)

O(m2n)



Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

2014 Õ(m n1/2 log C) Lee–Sidford

2016 Õ(m10/7 C1/7) Mądry

For unit capacity 
networks



Progress on Network Flows
• Best known:  

• Best lower bound?   

• None known.  (Needs  just to look at the 
network, but that’s it) 

• Some of these algorithms do REALLY well in “practice;” 
basically  

• Well-known open problem

O(nm)

Ω(n + m)

O(n + m)



Summary
• Given a flow network with integer capacities, the maximum 

flow and minimum cut can be computed in  time. 

• Next.  Network flow applications!

O(mn)
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