
Aside: Matrix
Multiplication

Admin

• Midterm grades ready to be viewed

• Went really well from my perspective

• Assignment 6 out tonight

• CS Grad school colloquium today at 3:15

• Anything else?

Matrix Multiplication
Problem. Given two -by- matrices and , compute matrix

Standard multiplication computes each as:

Complexity. operations (scalar multiplications)

n n A B
C = A ⋅ B

cij

cij =
n

∑
k=1

aikbkj

Θ(n3)

€

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

"

$
$
$
$

%

&

'
'
'
'

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

"

$
$
$
$

%

&

'
'
'
'

×

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

"

$
$
$
$

%

&

'
'
'
'

Block Matrix Multiplication
C11 = A11 × B11 + A12 × B21

€

152 158 164 170
504 526 548 570
856 894 932 970

1208 1262 1316 1370

"

$
$
$
$

%

&

'
'
'
'

 =

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

"

$
$
$
$

%

&

'
'
'
'

 ×

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

"

$
$
$
$

%

&

'
'
'
'

C11
A11 A12 B11

€

C
11

 = A11 ×B11 + A12 ×B21 =
0 1
4 5

$
%

&

'
(×

16 17
20 21

$
%

&

'
(+

2 3
6 7

$
%

&

'
(×

24 25
28 29

$
%

&

'
(=

152 158
504 526

$
%

&

'
(

B21

Block Matrix Multiplication
To multiply two -by- matrices and :

• Divide: partition and into by matrices

• Conquer: multiply 8 pairs of by matrices recursively

• Combine: Add products using 4 matrix additions

n n A B

A B
n
2

n
2

n
2

n
2

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' ×

B11 B12

B21 B22

"

$

%

&
'

½n-by-½n matrices

C = A � B

n-by-n matrices 8 matrix multiplications
(of ½n-by-½n matrices)

4 matrix additions
(of ½n-by-½n matrices)

Block Matrix Multiplication
Running time recurrence.

•

• How do we solve it with the recursion-tree method?

•

• Nice idea but it didn’t improve the run time, oh well!
• Divide and conquer version is still more cache-efficient

T(n) = 8T(n/2) + Θ(n2)

T(n) = O(n3)

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' ×

B11 B12

B21 B22

"

$

%

&
'

½n-by-½n matrices 4 matrix additions
(of ½n-by-½n matrices)

Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications
(plus 11 additions and 7 subtractions).

Block MM: Strassen’s Trick

€

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' ×

B11 B12

B21 B22

"

$

%

&
'

P1 ← A11 𐄂 (B12 – B22)

P2 ← (A11 + A12) 𐄂 B22

P3 ← (A21 + A22) 𐄂 B11

P4 ← A22 𐄂 (B21 – B11)

P5 ← (A11 + A22) 𐄂 (B11 + B22)

P6 ← (A12 – A22) 𐄂 (B21 + B22)

P7 ← (A11 – A21) 𐄂 (B11 + B12)

C11 = P5 + P4 – P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P1 + P5 – P3 – P7

7 scalar multiplications
Pf. C12 = P1 + P2

 = A11 𐄂 (B12 – B22) + (A11 + A12) 𐄂 B22

 = A11 𐄂 B12 + A12 𐄂 B22.

Block MM: Strassen’s Trick
Key idea. Can multiply two -by- matrices via 7 -by- matrix
multiplications (plus 11 additions and 7 subtractions).

n n n/2 n/2

€

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' ×

B11 B12

B21 B22

"

$

%

&
'

P1 ← A11 𐄂 (B12 – B22)

P2 ← (A11 + A12) 𐄂 B22

P3 ← (A21 + A22) 𐄂 B11

P4 ← A22 𐄂 (B21 – B11)

P5 ← (A11 + A22) 𐄂 (B11 + B22)

P6 ← (A12 – A22) 𐄂 (B21 + B22)

P7 ← (A11 – A21) 𐄂 (B11 + B12)

7 recursive multiplications

Pf. C12 = P1 + P2

 = A11 𐄂 (B12 – B22) + (A11 + A12) 𐄂 B22

 = A11 𐄂 B12 + A12 𐄂 B22.

½n-by-½n matrices

C11 = P5 + P4 – P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P1 + P5 – P3 – P7

Strassen’s MM Algorithm

Strassen’s MM Algorithm Analysis
• We get the following recurrence

•

• What does the running time recurrence solve to?

• We have a increasing geometric series

• Thus, the cost is dominated by the leaves

•

• We have a much “faster” algorithm!

T(n) = 7T(n/2) + Θ(n2)

T(n) = Θ(rL) = Θ(7log2 n) = Θ(nlog2 r) ≈ Θ(n2.81)

History of Matrix Multiplication
year algorithm

arithmetic
operations

1858 “grade school” O (n3)

1969 Strassen O (n2.808)

1978 Pan O (n2.796)

1979 Bini O (n2.780)

1981 Schönhage O (n2.522)

1982 Romani O (n2.517)

1982 Coppersmith–Winograd O (n2.496)

1986 Strassen O (n2.479)

1989 Coppersmith–Winograd O (n2.3755)

2010 Strother O (n2.3737)

2011 Williams O (n2.372873)

2014 Le Gall O (n2.372864)

2021 Alman-Williams O (n2.37286)

galactic
algorithms

“Galactic algorithm: runs faster than any other algorithm for
problems that are sufficiently large, but "sufficiently large" is so

big that the algorithm is never used in practice.”

How fast can matrix
multiplication get?

• Best lower bound:

• Known methods cannot get better than ~

• If we allow time arithmetic on arbitrarily large
integers, can get [Han, Unpublished]

• Why do we care?

• Important for practice if makes things faster

• New methods for new bounds

Ω(n2)

Ω(n2.37)

O(1)
O(n2)

Why are we doing this?

Why are we doing this?

• Not because the fastest exponent = fastest method
in practice

• New methods that can be useful in other contexts

• Paves the way for other methods that are fast in
practice

• Better understanding of what computers can do

Matrix Multiplication in
Practice

• Is Strassen’s worth it?

• Strassen’s is better than a simple MM
implementation (use 3 loops to compute all sums)

• But it’s (generally) a little worse than a time
hyper-optimized MM implementation

O(n3)

Tons of Applications
• Lots of problem reduce to matrix multiplication complexity

linear algebra problem expression arithmetic complexity

matrix multiplication A × B MM(n)

matrix squaring A2 Θ(MM(n))

matrix inversion A–1 Θ(MM(n))

determinant ⎢A ⎢ Θ(MM(n))

rank rank(A) Θ(MM(n))

system of linear equations Ax = b Θ(MM(n))

LU decomposition A = L U Θ(MM(n))

least squares min ⎢⎢Ax – b ⎢⎢2 Θ(MM(n))

numerical linear algebra problems with the same
arithmetic complexity MM(n) as matrix multiplication

And nontrivial applications

• Triangle finding/clique finding in a graph

• “Lightbulb” problem (find correlations between long
random vectors)

• String matching

Introduction to
Network Flows

18

New Algorithmic Paradigm
• Network flows model a variety of optimization problems

• These optimization problems look complicated with lots of
constraints and on the face of it have nothing to do with networks

• Very powerful problem solving frameworks

• We'll focus on the concept of problem reductions

• Problem A reduces to B if a solution to B leads to a solution to A

• Learn how to prove that our reductions are correct

19

Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union
and Eastern Europe

• Vertices were the geographic regions

• Edges were railway links between the regions

• Edge weights were the rate at which material could be
shipped from one region to next

• Ross and Harris determined:

• Maximum amount of stuff that could be
moved from Russia to Europe (max flow)

• Cheapest way to disrupt the network by
removing rail links (min cut)

20

Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

21

What’s a Flow Network?
• A flow network is a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Each edge has edge capacity

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5

15

10 15

16

9

15

6

8 10

154

4 10

10

capacity

22

Simplifying Assumptions
• Assume that each node is on some path, that is,

 exists, for any vertex

• Implies is connected, and

• Assume capacities are integers

• For simplifying expositions, assume if
is not an edge, that is, for and edge

• Non-existent edges/capacities not shown in figures

• Directed edge written as

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

c(e) = 0 e = (u, v)
u, v ∈ V (u, v) ∉ E

(u, v) u → v

23

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) satisfies:

• [Flow conservation] , for where

 and

• To simplify, if there is no edge from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v

24

What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity constraints of

the network, that is,:

[Capacity constraint] for each ,

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

25

Value of a Flow
• Definition. The value of a flow , written , is .f v(f) fout(s)

26

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

f v(f) fout(s)

fout(s) = fin(t)

value = 5 + 10 + 10 = 25

0 / 4

10 / 1
0

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

27

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

•
Proof. Let

•
Then,

• For every flow conversation implies

• Thus all terms cancel out on both sides except

• But

f v(f) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎

28

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

