
Aside: Matrix 
Multiplication



Admin

• Midterm grades ready to be viewed 

• Went really well from my perspective 

• Assignment 6 out tonight 

• CS Grad school colloquium today at 3:15 

• Anything else?



Matrix Multiplication
Problem. Given two -by-  matrices  and , compute matrix 

  

Standard multiplication computes each  as: 

 

Complexity.   operations (scalar multiplications)
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Block Matrix Multiplication
C11 = A11 × B11 + A12 × B21
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Block Matrix Multiplication
To multiply two -by-  matrices  and : 

• Divide: partition  and  into  by  matrices 

• Conquer: multiply 8 pairs of  by  matrices recursively  

• Combine: Add products using 4 matrix additions
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½n-by-½n matrices

C = A � B

n-by-n matrices 8 matrix multiplications
(of ½n-by-½n matrices)

4 matrix additions
(of ½n-by-½n matrices)



Block Matrix Multiplication
Running time recurrence. 

•  

• How do we solve it with the recursion-tree method? 

•  

• Nice idea but it didn’t improve the run time, oh well!   
• Divide and conquer version is still more cache-efficient

T(n) = 8T(n/2) + Θ(n2)

T(n) = O(n3)
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½n-by-½n matrices 4 matrix additions
(of ½n-by-½n matrices)



Key idea. Can multiply two 2-by-2 matrices via 7 scalar multiplications 
(plus 11 additions and 7 subtractions).

Block MM: Strassen’s Trick
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P1 ←  A11 𐄂 (B12 – B22)

P2 ←  (A11 + A12) 𐄂 B22

P3 ←  (A21 + A22) 𐄂 B11

P4 ←  A22 𐄂 (B21 – B11)

P5 ←  (A11 + A22) 𐄂 (B11 + B22)

P6 ←  (A12 – A22) 𐄂 (B21 + B22)

P7 ←  (A11 – A21) 𐄂 (B11 + B12)

C11  =   P5 + P4 – P2 + P6

C12  =   P1 + P2

C21  =   P3 + P4

C22  =   P1 + P5 – P3 – P7

7 scalar multiplications
Pf.   C12  = P1 + P2

                = A11 𐄂 (B12 – B22) + (A11 + A12) 𐄂 B22

                = A11 𐄂 B12 + A12 𐄂 B22.



Block MM: Strassen’s Trick
Key idea. Can multiply two -by-  matrices via 7 -by-  matrix 
multiplications (plus 11 additions and 7 subtractions).
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P1 ←  A11 𐄂 (B12 – B22)

P2 ←  (A11 + A12) 𐄂 B22

P3 ←  (A21 + A22) 𐄂 B11

P4 ←  A22 𐄂 (B21 – B11)

P5 ←  (A11 + A22) 𐄂 (B11 + B22)

P6 ←  (A12 – A22) 𐄂 (B21 + B22)

P7 ←  (A11 – A21) 𐄂 (B11 + B12)

7 recursive multiplications

Pf.   C12  = P1 + P2

                = A11 𐄂 (B12 – B22) + (A11 + A12) 𐄂 B22

                = A11 𐄂 B12 + A12 𐄂 B22.

½n-by-½n matrices

C11  =   P5 + P4 – P2 + P6

C12  =   P1 + P2

C21  =   P3 + P4

C22  =   P1 + P5 – P3 – P7



Strassen’s MM Algorithm



Strassen’s MM Algorithm Analysis
• We get the following recurrence 

•    

• What does the running time recurrence solve to? 

• We have a increasing geometric series 

• Thus, the cost is dominated by the leaves 

•   

• We have a much “faster” algorithm!

T(n) = 7T(n/2) + Θ(n2)

T(n) = Θ(rL) = Θ(7log2 n) = Θ(nlog2 r) ≈ Θ(n2.81)



History of Matrix Multiplication
year algorithm

arithmetic 
operations

1858 “grade school” O (n3 )

1969 Strassen O (n2.808 )

1978 Pan O (n2.796 )

1979 Bini O (n2.780 )

1981 Schönhage O (n2.522 )

1982 Romani O (n2.517 )

1982 Coppersmith–Winograd O (n2.496 )

1986 Strassen O (n2.479 )

1989 Coppersmith–Winograd O (n2.3755 )

2010 Strother O (n2.3737 )

2011 Williams O (n2.372873 )

2014 Le Gall O (n2.372864 )

2021 Alman-Williams O (n2.37286  )

galactic
algorithms

“Galactic algorithm:  runs faster than any other algorithm for 
problems that are sufficiently large, but "sufficiently large" is so 

big that the algorithm is never used in practice.”



How fast can matrix 
multiplication get?

• Best lower bound:   

• Known methods cannot get better than ~  

• If we allow  time arithmetic on arbitrarily large 
integers, can get  [Han, Unpublished] 

• Why do we care? 

• Important for practice if makes things faster 

• New methods for new bounds

Ω(n2)

Ω(n2.37)

O(1)
O(n2)



Why are we doing this?



Why are we doing this?

• Not because the fastest exponent = fastest method 
in practice 

• New methods that can be useful in other contexts 

• Paves the way for other methods that are fast in 
practice 

• Better understanding of what computers can do



Matrix Multiplication in 
Practice

• Is Strassen’s worth it? 

• Strassen’s is better than a simple MM 
implementation (use 3 loops to compute all sums) 

• But it’s (generally) a little worse than a  time 
hyper-optimized MM implementation 

O(n3)



Tons of Applications
• Lots of problem reduce to matrix multiplication complexity

linear algebra problem expression arithmetic complexity

matrix multiplication A × B MM(n)

matrix squaring A2 Θ(MM(n))

matrix inversion A–1 Θ(MM(n))

determinant ⎢A ⎢ Θ(MM(n))

rank rank(A) Θ(MM(n))

system of linear equations Ax = b Θ(MM(n))

LU decomposition A = L U Θ(MM(n))

least squares min ⎢⎢Ax – b ⎢⎢2 Θ(MM(n))

numerical linear algebra problems with the same
arithmetic complexity MM(n) as matrix multiplication



And nontrivial applications

• Triangle finding/clique finding in a graph 

• “Lightbulb” problem (find correlations between long 
random vectors) 

• String matching



Introduction to
Network Flows

18



New Algorithmic Paradigm
• Network flows model a variety of optimization problems 

• These optimization problems look complicated with lots of 
constraints and on the face of it have nothing to do with networks 

• Very powerful problem solving frameworks 

• We'll focus on the concept of problem reductions

• Problem A reduces to B if a solution to B leads to a solution to A 

• Learn how to prove that our reductions are correct

19



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union 
and Eastern Europe 

• Vertices were the geographic regions 

• Edges were railway links between the regions 

• Edge weights were the rate at which material could be 
shipped from one region to next 

• Ross and Harris determined: 

• Maximum amount of stuff that could be  
moved from Russia to Europe (max flow) 

• Cheapest way to disrupt the network by  
removing rail links  (min cut) 

20



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for 
evaluating rail net capacities. The RAND Corporation, Research Memorandum RM-1517, October 24, 1955. United States 

Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf
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What’s a Flow Network?
• A flow network is a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Each edge  has edge capacity 

G = (V, E)
s 0

t 0
e ∈ E c(e) > 0

s t5
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Simplifying Assumptions
• Assume that each node  is on some  path, that is, 

  exists, for any vertex  

• Implies  is connected, and  

• Assume capacities are integers 

• For simplifying expositions, assume  if  
is not an edge, that is, for  and edge  

• Non-existent edges/capacities not shown in figures 

• Directed edge  written as 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

c(e) = 0 e = (u, v)
u, v ∈ V (u, v) ∉ E

(u, v) u → v

23



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  satisfies: 

• [Flow conservation]   , for  where 
 

 and  

• To simplify,  if there is no edge from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

f(u → v) = 0 u v
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What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity constraints of 

the network, that is,: 

[Capacity constraint] for each , 

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is .f v( f ) fout(s)

26
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma. 

f v( f ) fout(s)

fout(s) = fin(t)

value  =  5 + 10 + 10  =  25
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma.  

•
Proof.   Let  

•
Then,  

• For every   flow conversation implies  

• Thus all terms cancel out on both sides except 
 

• But 

f v( f ) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t fin(v) = fout(v)

fin(s) + fin(t) = fout(s) + fout(t)

fin(s) = fout(t) = 0 ∎
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