
Last Topics in Dynamic Programming:
Knapsack, and Shortest Paths

Revisited

Admin
• Assignment 5 largely graded, back soon

• You did well!

• Midterm review tomorrow at 7PM

• Bring questions! Mostly Q&A

• 24 hour midterm starts Wed Oct 28 at 10:40 AM

• No office hours Wed or Thur this week (Mon still on)

DP Explanations
• Some recipe points do not require explanation

(subproblem, memoization data structure)

• Some should have a 1 sentence (maybe 2 sentence)
explanation: the recurrence, the base cases

• Some it depends a bit on the context: final output,
evaluation order (sometimes these are VERY obvious, but
sometimes they can be tricky. Best to include a very short
sentence)

• When in doubt: is your rationale for a choice completely
obvious? If not, should probably write something

Knapsack Problem
• Problem. Pack a knapsack to maximize total value

• There are items, each with weight and value , where
. Weights must be integers!

• Knapsack has total capacity

•
Output: subset of items fit in the knapsack, that is,

and maximizes the total value

• Assumption. All weights are integral

n wi vi
vi, wi > 0

C

S ∑
i∈S

wi ≤ C

∑
i∈S

vi

Idea #1: Capacity Table
• Let's create a table where

 contains the optimal
solution using capacity .

• Optimal solution:

• How do come up with a recurrence?

• Not obvious with just capacities

T
T[c]

≤ c
T[C]

DP: Right Recurrence
• What else can we keep track of to get a recurrence with an optimal

substructure?

• Let be the optimal solution using items with total
capacity

• What are our two cases?

• Case 1. If item is not in the optimal solution

•

• Case 2. If item is in the optimal solution then

•

T[j, c] [1,…j]
≤ c

j
T[j, c] = T[j − 1,c]

j
T[j, c] = vj + T[j − 1,c − wj]

Recurrence & Memoization
• Base case.

• if or

• Recurrence

• For ,

• Now that we have the recurrence, we can memoize and figure out
the evaluation order

• We will store for in a 2D array

• Evaluation order?

• Row by row (i.e. item by item: for each item fill in each capacity
one by one)

• Final answer?

T[j, c] = 0 j = 0, c = 0

j, c > 0
T[j, c] = max{T[j − 1, c], vj + T[j − 1, c − wj]}

T[j, c] 1 ≤ j ≤ n, 1 ≤ c ≤ C

T[n, c]

Running Time
• Takes to fill out a cell, total cells

• Is this polynomial? By which I mean polynomial in the size of the input

• How large is the input to knapsack?

• Store items, plus need to store

•

• Is polynomial?

• No!

• “Pseudopolynomial” - polynomial in the value of the input

• To think about: does this work if the weights are not integers?

O(1) O(nC)

n C

O(n + log C)

O(nC)

Shortest Path Problem
• Single-Source Shortest Path Problem.

Given a directed graph with edge weights on
each and a a source node , find the shortest path from
 to to all nodes in .

• Negative weights. The edge-weights in can be negative.
(When we studied Dijkstra's, we assumed non-negative
weights.)

• Let be a path from to , denoted .

• The length of is the number of edges in

•
The cost or weight of is

• Goal: cost of the shortest path from to all nodes

G = (V, E) we
e ∈ E s

s G
we G

P s t s ↝ t
P P

P w(P) = ∑
e∈P

we

s

Remember Dijkstra’s Algorithm?

Estimate at vertex is the weight of
shortest path in followed by a
single edge from to

v
T

T G − T

Negative Weights & Dijkstra's
• Dijkstra’s Algorithm. Does the greedy approach work for

graphs with negative edge weights?

• Dijkstra's will explore 's neighbor and add , with
 to the shortest path tree

• Dijkstra assumes that there cannot be a "longer path" that
has lower cost (relies on edge weights being non-negative)

s t
d[t] = wsv = 2

t

v

2

6

−8

3

Dijkstra's will find as shortest path with cost
But the shortest path is with cost

s → t 2
s → v → w → t 14

s

w

We fixed it later—why is
this not OK in general??

Negative Weights: Failed Attempt
• What if we add a large enough constant such that all weights

become positive

•

• Run Dijkstra’s algorithm based with

• Does this give us the shortest path in the original graph?

C

w′ ij = wij + C > 0

w′

t

v

2

6

−8

3

Adding C = 8 to all weights does not work
4

s

w

10

14

0

11

Negative Cycles
• Definition. A negative cycle is a directed cycle such that the

sum of all the edge weights in is less than zero

• Question. How do negative cycles affect shortest path?

C
C

−3

5

−3

−44

a negative cycle W : �(W) =
�

e�W

�e < 0
<latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit><latexit sha1_base64="RSPr2SRjQX4pLklN8jDnfDJBxfc=">AAACWHicbVDLSsNAFJ3ER+u7rUs3g0XQTU1EsKKC4MZlBWuFpoTJ9FYHJ5MwcyMtoZ/h17jVjxB/xknbha1emMvhnPuYe6JUCoOe9+W4S8srq6Xy2vrG5tb2TqVaezBJpjm0eSIT/RgxA1IoaKNACY+pBhZHEjrRy02hd15BG5Goexyl0IvZkxIDwRlaKqwcByDlYeeIBhf0qkiByeIwBxoIRTtjWsghFMJlkbywUvca3iToX+DPQJ3MohVWnVrQT3gWg0IumTFd30uxlzONgksYrweZgZTxF/YEXQsVi8H08sllY3pgmT4dJNo+hXTC/u7IWWzMKI5sZczw2SxqBfmf1s1w0OzlQqUZguLTRYNMUkxoYRPtCw0c5cgCxrWwf6X8mWnG0Zo5t2UyOwU+d0k+zJTgSR8WWIlD1GxsXfQXPfsL2ieN84Z/d1q/bs7sLJM9sk8OiU/OyDW5JS3SJpy8kXfyQT6db9dxS+7atNR1Zj27ZC7c2g+AELL2</latexit>

Negative Cycles & Shortest Paths
• Claim. If a path from to some node contains a negative cycle,

then there does not exist a shortest path from to .

• Proof.

• Suppose there exists a shortest path with cost that
traverses the negative cycle times for .

• Can construct a shorter path by traversing the cycle times

• Assumption. has no negative cycle.

• Later in the lecture: how can we detect whether the input graph
contains a negative cycle?

s v
s v

s ↝ v d
t t ≥ 0

t + 1
⇒⇐ ∎

G
G

Dynamic Programming Approach
• First step to a dynamic program? Recursive formulation

• Subproblem with an “optimal substructure”
• Structure of the problem. Interested in optimal cost path

(can have any length)
• Easier to build on subproblems if we keep track of length

of paths considered so far

• How long can the shortest path from to any node be,
assuming no negative cycle?

• Claim. If has no negative cycles, then exists a shortest
path from to any node that uses at most edges.

s u

G
s u n − 1

No. of Edges in Shortest Path
• Claim. If has no negative cycles, then exists a shortest path

from to any node that uses at most edges.

• Proof. Suppose there exists a shortest path from to made
up of or more edges

• A path of length at least must visit at least nodes

• There exists a node that is visited more than once
(pigeonhole principle). Let denote the portion of the path
between the successive visits.

• Can remove without increasing cost of path.

G
s u n − 1

s u
n

n n + 1
x

P

P ∎

P

w(P) ≥ 0

s u
x

Shortest Paths: Dynamic Program
• Subproblem. : (optimal) cost of shortest path from to

using edges

• Base cases.

• for any

• for any

• Final answer for shortest path cost to node

•

• How do we formulate the recurrence?

• Case 1. Shortest path to uses exactly edges

• Case 2. Shortest path to uses less than edges
(that is, uses edges)

D[v, i] s v
≤ i

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

v
D[v, n − 1]

v i
v i

≤ i − 1

Shortest Paths: Recurrence
• Subproblem. : (optimal) cost of shortest path from to

using edges

• Base cases.

• for any

• for any

• Final answer for shortest path cost to node

•

• Recurrence.

• Called the Bellman-Ford-Moore algorithm

D[v, i] s v
≤ i

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

v
D[v, n − 1]

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}
v

u

Bellman-Ford-Moore Algorithm
• Subproblem. : (optimal) cost of shortest path from to

using edges

• Base cases. for any and for any

• Final answer for shortest path cost to node :

• Recurrence.

• Memoization structure. Two-dimensional array

• Evaluation order.

• (column major order)

• Starting from , the row of vertices can
be in any order

D[v, i] s v
≤ i

D[s, i] = 0 i D[v,0] = ∞ v ≠ s
v D[v, n − 1]

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

i : 1 → n − 1
s

Bellman-Ford: Running Time
• Recurrence.

• Naive analysis. time

• Each entry takes to compute, there are entries

• Improved analysis. For a given , looks at each incoming
edge of

• Takes accesses to the table

•
For a given filling takes accesses

• At most accesses for connected graphs
where

• Overall running time is

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

O(n3)

O(n) O(n2)
i, v d[v, i]

v
indegree(v)

i, d[− , i] ∑
v∈V

indegree(v)

O(n + m) = O(m)
m ≥ n − 1

O(nm)

• Shortest-Path Summary. Assuming there are no negative
cycles in , we can compute the shortest path from to all nodes
in in time using the Bellman-Ford-Moore algorithm

G s
G O(nm)

Dynamic Programming
Shortest Path:

Bellman-Ford-Moore Example

• for any

• for any

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf
b inf
c inf

s a

b c

-3

1

1

2 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf

s a

b c

-3

12 -1

1

• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2
c inf inf

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2
c inf inf -2

s a

b c

-3

12 -1

1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2

s a

b c

-3

12 -1

1

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2 -2

s a

b c

-3

1

1

2 -1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

