Last Topics in Dynamic Programming: Knapsack, and Shortest Paths Revisited

Admin

- Assignment 5 largely graded, back soon
- You did well!
- Midterm review tomorrow at 7PM
- Bring questions! Mostly Q\&A
- 24 hour midterm starts Wed Oct 28 at 10:40 AM
- No office hours Wed or Thur this week (Mon still on)

DP Explanations

- Some recipe points do not require explanation (subproblem, memoization data structure)
- Some should have a 1 sentence (maybe 2 sentence) explanation: the recurrence, the base cases
- Some it depends a bit on the context: final output, evaluation order (sometimes these are VERY obvious, but sometimes they can be tricky. Best to include a very short sentence)
- When in doubt: is your rationale for a choice completely obvious? If not, should probably write something

Knapsack Problem

- Problem. Pack a knapsack to maximize total value
- There are n items, each with weight w_{i} and value v_{i}, where $v_{i}, w_{i}>0$. Weights must be integers!
- Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, $\sum_{i \in S} w_{i} \leq C$ and maximizes the total value $\sum_{i \in S} v_{i}$

- Assumption. All weights are integral

Idea \#1: Capacity Table

- Let's create a table T where $T[c]$ contains the optimal solution using capacity $\leq c$.
- Optimal solution: $T[C]$
- How do come up with a recurrence?
- Not obvious with just capacities

capacity	items	value
$\mathrm{c}=0$		$\$ 0$
$\mathrm{c}=1$	$\$ 2 / 1 \mathrm{~kg}$	$\$ 2$
$\mathrm{c}=2$	$\$ 2 / 1 \mathrm{~kg} \$ 1 / 1 \mathrm{~kg}$	$\$ 3$
$\mathrm{c}=3$	$\$ 2 / 1 \mathrm{~kg} \$ 2 / 2 \mathrm{~kg}$	$\$ 4$
$\mathrm{c}=4$	$\$ 10 / 4 \mathrm{~kg}$	$\$ 10$
$\mathrm{c}=5$	$\$ 2 / 1 \mathrm{~kg}$ \$10/4kg	$\$ 12$
$\mathrm{c}=6$	$\$ 2 / 1 \mathrm{~kg} \$ 10 / 4 \mathrm{~kg}$	$\$ 13$
$\mathrm{c}=7$	$\$ 1 / 1 \mathrm{~kg}$	
\ldots	\ldots	
$\ldots \mathrm{activity]}$	\ldots	

Table for the item set

DP: Right Recurrence

- What else can we keep track of to get a recurrence with an optimal substructure?
- Let $T[j, c]$ be the optimal solution using items $[1, \ldots j]$ with total capacity $\leq c$
- What are our two cases?
- Case 1. If item j is not in the optimal solution
- $T[j, c]=T[j-1, c]$
- Case 2. If item j is in the optimal solution then
- $T[j, c]=v_{j}+T\left[j-1, c-w_{j}\right]$

Recurrence \& Memoization

- Base case.
- $T[j, c]=0$ if $j=0$, or $c=0$
- Recurrence
- For $j, c>0$, $T[j, c]=\max \left\{T[j-1, c], v_{j}+T\left[j-1, c-w_{j}\right]\right\}$
- Now that we have the recurrence, we can memoize and figure out the evaluation order
- We will store $T[j, c]$ for $1 \leq j \leq n, \quad 1 \leq c \leq C$ in a 2 D array
- Evaluation order?
- Row by row (i.e. item by item: for each item fill in each capacity one by one)
- Final answer? $T[n, c]$

Running Time

- Takes $O(1)$ to fill out a cell, $O(n C)$ total cells
- Is this polynomial? By which I mean polynomial in the size of the input
- How large is the input to knapsack?
- Store n items, plus need to store C
- $O(n+\log C)$
- Is $O(n C)$ polynomial?
- No!
- "Pseudopolynomial" - polynomial in the value of the input
- To think about: does this work if the weights are not integers?

Shortest Path Problem

- Single-Source Shortest Path Problem.

Given a directed graph $G=(V, E)$ with edge weights w_{e} on each $e \in E$ and a a source node s, find the shortest path from s to to all nodes in G.

- Negative weights. The edge-weights w_{e} in G can be negative. (When we studied Dijkstra's, we assumed non-negative weights.)
- Let P be a path from s to t, denoted $s \leadsto t$.
- The length of P is the number of edges in P

The cost or weight of P is $w(P)=\sum_{e \in P} w_{e}$

- Goal: cost of the shortest path from s to all nodes

Remember Dijkstra's Algorithm?

Estimate at vertex v is the weight of shortest path in T followed by a single edge from T to $G-T$

Negative Weights \& Dijkstra's

- Dijkstra's Algorithm. Does the greedy approach work for graphs with negative edge weights?
- Dijkstra's will explore s 's neighbor and add t, with $d[t]=w_{s v}=2$ to the shortest path tree
- Dijkstra assumes that there cannot be a "longer path" that has lower cost (relies on edge weights being non-negative)

> We fixed it later-why is this not OK in general??

Negative Weights: Failed Attempt

- What if we add a large enough constant C such that all weights become positive
- $w_{i j}^{\prime}=w_{i j}+C>0$
- Run Dijkstra's algorithm based with w^{\prime}
- Does this give us the shortest path in the original graph?

Negative Cycles

- Definition. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- Question. How do negative cycles affect shortest path?

a negative cycle $\mathbf{W}: \quad \ell(W)=\sum_{e \in W} \ell_{e}<0$

Negative Cycles \& Shortest Paths

- Claim. If a path from s to some node v contains a negative cycle, then there does not exist a shortest path from s to v.
- Proof.
- Suppose there exists a shortest $s \leadsto v$ path with cost d that traverses the negative cycle t times for $t \geq 0$.
- Can construct a shorter path by traversing the cycle $t+1$ times $\Rightarrow \Leftarrow \square$
- Assumption. G has no negative cycle.
- Later in the lecture: how can we detect whether the input graph G contains a negative cycle?

Dynamic Programming Approach

- First step to a dynamic program? Recursive formulation
- Subproblem with an "optimal substructure"
- Structure of the problem. Interested in optimal cost path (can have any length)
- Easier to build on subproblems if we keep track of length of paths considered so far
- How long can the shortest path from s to any node u be, assuming no negative cycle?
- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most $n-1$ edges.

No. of Edges in Shortest Path

- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most $n-1$ edges.
- Proof. Suppose there exists a shortest path from s to u made up of n or more edges
- A path of length at least n must visit at least $n+1$ nodes
- There exists a node x that is visited more than once (pigeonhole principle). Let P denote the portion of the path between the successive visits.
- Can remove P without increasing cost of path. \square

Shortest Paths: Dynamic Program

- Subproblem. $D[v, i]$: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases.
- $D[s, i]=0$ for any i
- $D[v, 0]=\infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
- $D[v, n-1]$
- How do we formulate the recurrence?
- Case 1. Shortest path to v uses exactly i edges
- Case 2. Shortest path to v uses less than i edges (that is, uses $\leq i-1$ edges)

Shortest Paths: Recurrence

- Subproblem. $D[v, i]$: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases.
- $D[s, i]=0$ for any i
- $D[v, 0]=\infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
- $D[v, n-1]$
- Recurrence.

$$
D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}
$$

- Called the Bellman-Ford-Moore algorithm

Bellman-Ford-Moore Algorithm

- Subproblem. $D[v, i]$: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases. $D[s, i]=0$ for any i and $D[v, 0]=\infty$ for any $v \neq s$
- Final answer for shortest path cost to node $v: D[v, n-1]$
- Recurrence.

$$
D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}
$$

- Memoization structure. Two-dimensional array
- Evaluation order.
- $i: 1 \rightarrow n-1$ (column major order)
- Starting from s, the row of vertices can be in any order

Bellman-Ford: Running Time

- Recurrence.
$D[v, i]=\min \left\{D[v, i-1], \min _{(u, v) \in E}\left\{D[u, i-1]+w_{u v}\right\}\right\}$
- Naive analysis. $O\left(n^{3}\right)$ time
- Each entry takes $O(n)$ to compute, there are $O\left(n^{2}\right)$ entries
- Improved analysis. For a given $i, v, d[v, i]$ looks at each incoming edge of v
- Takes indegree (v) accesses to the table
- For a given i, filling $d[-, i]$ takes $\sum_{v \in V}$ indegree (v) accesses
- At most $O(n+m)=O(m)$ accesses for connected graphs where $m \geq n-1$
- Overall running time is $O(\mathrm{~nm})$
- Shortest-Path Summary. Assuming there are no negative cycles in G, we can compute the shortest path from s to all nodes in G in $O(n m)$ time using the Bellman-Ford-Moore algorithm

Dynamic Programming Shortest Path:
 Bellman-Ford-Moore Example

- $D[s, i]=0$ for any i
- $D[v, 0]=\infty$ for any $v \neq s$

	0	1	2	3
s	0	0	0	0
a	\inf			
b	\inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf			
b	\inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf			
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3		
b	inf	2		
c	inf			

- $D[v, 1]=\min \left\{D[v, 0], \min _{u, v \in E}\left\{D[u, 0]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3		
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2		
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2	2	
c	inf	inf		

- $D[v, 2]=\min \left\{D[v, 1], \min _{u, v \in E}\left\{D[u, 1]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	
b	inf	2	2	
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	inf	-3	-3	-3
b	inf	2	2	
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3	-3	-3
b	inf	2	2	-1
c	inf	inf	-2	

- $D[v, 3]=\min \left\{D[v, 2], \min _{u, v \in E}\left\{D[u, 2]+w_{u v}\right\}\right.$

	0	1	2	3
s	0	0	0	0
a	\inf	-3	-3	-3
b	\inf	2	2	-1
c	\inf	\inf	-2	-2

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

