Last Topics in Dynamic Programming:
Knapsack, and Shortest Paths
Revisited

Admin

Assignment 5 largely graded, back soon

* You did well!

Midterm review tomorrow at 7PM

* Bring questions! Mostly Q&A

24 hour midterm starts Wed Oct 28 at 10:40 AM

No office hours Wed or Thur this week (Mon still on)

DP Explanations

Some recipe points do not require explanation
(subproblem, memoization data structure)

Some should have a 1 sentence (maybe 2 sentence)
explanation: the recurrence, the base cases

Some it depends a bit on the context: final output,
evaluation order (sometimes these are VERY obvious, but
sometimes they can be tricky. Best to include a very short
sentence)

When in doubt: is your rationale for a choice completely
obvious? It not, should probably write something

Knapsack Problem

Problem. Pack a knapsack to maximize total value

There are n items, each with weight w; and value v;, where
v;, w; > 0. Weights must be integers!

Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, Z w; < C
IS

and maximizes the total value Z V;

€S

Assumption. All weights are integral

ldea #1: Capacity Table

Let's create a table T where
T[c] contains the optimal
solution using capacity < c.

Optimal solution: T|C]
How do come up with a recurrence?

Not obvious with just capacities

capacity

items value
S0
$2/1kg $2
$2/1kg $1/1kg $3
$2/1kg $2/2kg $4
$10/4kg $10
$2/1kg $10/4kg $12
$2/1kg $10/4kg $13
$1/1kg
[activity]

Table for the item set

S4/12kgl $2/1kg $10/4kg
$1/1kg $2/2kg

DP: Right Recurrence

What else can we keep track of to get a recurrence with an optimal
substructure?

Let T J, c] be the optimal solution using items [1,...j] with total
capacity < ¢

What are our two cases?

Case 1. If itemJis not in the optimal solution
» Tlj,cl=T11j— 1]

Case 2. If item J is in the optimal solution then

o« Tlj,cl=v;+T[j—1l,c—w]

Recurrence & Memoization

e Base case.
e« T1j,c]=0ifj=0,0orc=0
Recurrence

« Forj,c >0,
Tlj,cl=max{T[j— 1, cl,vi+T[j— 1, c —w]l}

* Now that we have the recurrence, we can memoize and figure out
the evaluation order

« Wewillstore T[j,c]forl <j<n, 1 <c< Cina?2D array
* Evaluation order?

 Row by row (i.e. item by item: for each item fill in each capacity
one by one)

« Final answer? TJn,c]

Running Time

Takes O(1) to fill out a cell, O(nC) total cells

s this polynomial? By which | mean polynomial in the size of the input
How large is the input to knapsack?

 Store n items, plus need to store C

« O(n+log()

s O(nC) polynomial?

* No!

e “Pseudopolynomial” - polynomial in the value of the input

To think about: does this work if the weights are not integers”?

Shortest Path Problem

Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w, on
each e € E and a a source node s, find the shortest path from
s to to all nodes in G.

Negative weights. The edge-weights w,in G can be negative.

(When we studied Dijkstra's, we assumed non-negative
weights.)

Let P be a path from s to t, denoted s ~ t.

« The length of P is the number of edges in P
The cost or weight of P is w(P) = 2 w,

ecP

Goal: cost of the shortest path from s to all nodes

Remember Dijkstra’s Algorithm?

- ————————————————————————————— —

Estimate at vertex v is the weight of
shortest path in T followed by a
single edge fromTto G — T

Negative Weights & Dijkstra's

* Dijkstra’s Algorithm. Does the greedy approach work for
graphs with negative edge weights”?

o Dijkstra's will explore s's neighbor and add #, with
d[t] = w, = 2 to the shortest path tree

* Dijkstra assumes that there cannot be a "longer path” that
has lower cost (relies on edge weights being non-negative)

: 6 i We fixed it later—why Is

2 4 I this not OK in general??
PO

But the shortes

Negative Weights: Failed Attempt

« What if we add a large enough constant C such that all weights
become positive

e Wy=w; +C>0
« Run Dijkstra’s algorithm based with w’

* Does this give us the shortest path in the original graph?

@_"C‘?
@__é

Adding C = 8 to all weights does not work

Negative Cycles

« Definition. A negative cycle is a directed cycle C such that the
sum of all the edge weights in C'is less than zero

 Question. How do negative cycles affect shortest path?

N

Q
=
M
«Q
Q
=
<
(¢°)
N
<
o
m
=
PN
—~~
=
|
N
Q)
A
-

Negative Cycles & Shortest Paths

« Claim. If a path from s to some node v contains a negative cycle,
then there does not exist a shortest path from s to v.

e Proof.

« Suppose there exists a shortest § ~r v path with cost d that
traverses the negative cycle f times for t > 0.

« Can construct a shorter path by traversing the cycle t + 1 times

=< B

« Assumption. G has no negative cycle.

« Later in the lecture: how can we detect whether the input graph G
contains a negative cycle”

Dynamic Programming Approach

e First step to a dynamic program? Recursive formulation
e Subproblem with an “optimal substructure”

e Structure of the problem. Interested in optimal cost path
(can have any length)

* Easier to build on subproblems it we keep track of length
of paths considered so far

« How long can the shortest path from s to any node u be,
assuming no negative cycle?

« Claim. If G has no negative cycles, then exists a shortest
path from s to any node u that uses at most n — 1 edges.

No. of Edges in Shortest Path

« Claim. If G has no negative cycles, then exists a shortest path
from s to any node u that uses at most n — 1 edges.

« Proof. Suppose there exists a shortest path from s to u made
up of n or more edges

« A path of length at least n must visit at least n + 1 nodes

e Jhere exists a node x that is visited more than once
(pigeonhole principle). Let P denote the portion of the path
between the successive Visits.

« Can remove P without increasing cost of path. B

o) (x)

P

(W

w(P) = 0

Shortest Paths: Dynamic Program

Subproblem. D]v,i]: (optimal) cost of shortest path from s to v
using <1 edges

e Base cases.

e Dls,i] =0foranyi

e Dv,0]=o0foranyv #s

Final answer for shortest path cost to node v
« Dlv,n—1]
* How do we formulate the recurrence?
« Case 1. Shortest path to v uses exactly 1 edges

« Case 2. Shortest path to v uses less than 1 edges
(that is, uses < i — 1 edges)

Shortest Paths: Recurrence

« Subproblem. D|v,i]: (optimal) cost of shortest path from s to v
using <1 edges

e Base cases.

e Dls,i] =0foranyi

e Dv,0]=o0foranyv #s

« Final answer for shortest path cost to node v U

« Dlv,n—1] \S

 Recurrence. / ‘7

D[v,i] = min{DJ[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE

* (Called the Bellman-Ford-Moore algorithm

Bellman-Ford-Moore Algorithm

Subproblem. D]v,i]: (optimal) cost of shortest path from s to v
using <1 edges

« Base cases. D[s,i] = Oforanyiand D[v,0] = oo forany v # s
« Final answer for shortest path cost to node v: D[v,n — 1]

e Recurrence.

D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)ek

 Memoization structure. Two-dimensional array
 Evaluation order.
e 1:1 —> n—1 (column major order)

e Starting from s, the row of vertices can
be in any order

Bellman-Ford: Running Time

 Recurrence.
D[v,i] = min{D[v,i — 1], min {D[u,i—1]+w,}}
(u,v)eE
. Naive analysis. O(n>) time
. Each entry takes O(n) to compute, there are O(n?) entries

. Improved analysis. For a given i, v, d[v, i] looks at each incoming
edge of v

. Takes indegree(v) accesses to the table

For a given i, filling d| — , i] takes Z indegree(v) accesses

vevV

. At most O(n + m) = O(m) accesses for connected graphs
wherem > n — 1

 Overall running time is O(nm)

* Shortest-Path Summary. Assuming there are no negative
cycles in G, we can compute the shortest path from s to all nodes
in G in O(nm) time using the Bellman-Ford-Moore algorithm

Dynamic Programming
Shortest Path:
Bellman-Ford-Moore Example

e« Di|s,i] =0foranyi
e DIv,0] =00 foranyv # s

INf

INf

O O Q0 o

INf

, D[v,1] = min{D[v,0], min {D[u,0] +w,,}

uyvek
-3

0 2 3 S >
S 0 0 0 0 1

: 2] 1
a INf
b Inf = =

. b < C
C inf | 1

, D[v,1] = min{D[v,0], min {D[u,0] +w,,}

uyvek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf = =

. b <« C
C inf | 1

, D[v,1] = min{D[v,0], min {D[u,0] +w,,}

uyvek

-3

0 2 3) >
S 0 0 0 0 1

- 2] 1
a INf -3
b INf 2 = =

. b <« C
C inf | 1

, D[v,1] = min{D[v,0], min {D[u,0] +w,,}

uyvek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

uyvek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

uyvek

-3

0 2 3 \ >
S 0 0 0 0 1

- 2) 1
a inf | -3 -3
b inf 2 Y Y

. . b < C
C inf | inf , 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

uyvek

-3

0 2 3 \) >
S 0 0 0 0 1

: 2] 1
a INf -3 -3
b Inf 2 2 = =

. . b < C
C inf | inf 1

. D[v,2] = min{D[v,1], min {D[u,1]+w,,}

uyvek

-3
0 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

uyvek

-3
0 1 2 3 S >
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 = =
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

uyvek

-3
0 1 2 3 S >
S 0 0 0 0) 1
- 2] 1
a Inf -3 -3 -3
b Inf 2 2 -1 Y ¥
C inf | inf -2 2 1 ¢

. D[v,3] = min{D[v,2], min {D[u,2] +w,,}

uyvek

-3
0 1 2 3 \) > a
S 0 0 0 0 1
: 2] 1
a INf -3 -3 -3
b INf 2 2 -1 = =
C INf INf -2 -2 b < 1 ¢

Acknowledgments

e Some of the material in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

