Last Topics in Dynamic Programming: Knapsack, and Shortest Paths Revisited

Admin

- Assignment 5 largely graded, back soon
 - You did well!
- Midterm review tomorrow at 7PM
 - Bring questions! Mostly Q&A
- 24 hour midterm starts Wed Oct 28 at 10:40 AM
- No office hours Wed or Thur this week (Mon still on)

DP Explanations

- Some recipe points do not require explanation (subproblem, memoization data structure)
- Some should have a 1 sentence (maybe 2 sentence) explanation: the recurrence, the base cases
- Some it depends a bit on the context: final output, evaluation order (sometimes these are VERY obvious, but sometimes they can be tricky. Best to include a very short sentence)
- When in doubt: is your rationale for a choice completely obvious? If not, should probably write something

Knapsack Problem

i∈S

- **Problem**. Pack a knapsack to maximize total value
- There are *n* items, each with weight w_i and value v_i , where $v_i, w_i > 0$. Weights must be integers!
- Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, $\sum w_i \leq C$

 $\sum_{i \in S} w_i \le C$

and maximizes the total value $\sum v_i$

• Assumption. All weights are integral

Idea #1: Capacity Table

- Let's create a table T where T[c] contains the optimal solution using capacity $\leq c$.
- Optimal solution: T[C]
- How do come up with a recurrence?
- Not obvious with just capacities

capacity	items	value
c = 0		\$0
c = 1	\$2/1kg	\$2
c = 2	\$2/1kg <mark>\$1/1kg</mark>	\$3
c = 3	\$2/1kg <mark>\$2/2kg</mark>	\$4
c = 4	\$10/4kg	\$10
c = 5	\$2/1kg <mark>\$10/4kg</mark>	\$12
c = 6	\$2/1kg <mark>\$10/4kg</mark> \$1/1kg	\$13
c = 7	[activity]	

Table for the item set \$4/12kg \$2/1kg \$10/4kg \$1/1kg \$2/2kg

DP: Right Recurrence

- What else can we keep track of to get a recurrence with an optimal substructure?
- Let T[j, c] be the optimal solution using items $[1, \ldots j]$ with total capacity $\leq c$
- What are our two cases?
- Case 1. If item j is not in the optimal solution
 - T[j, c] = T[j 1, c]
- Case 2. If item j is in the optimal solution then

•
$$T[j, c] = v_j + T[j - 1, c - w_j]$$

Recurrence & Memoization

- Base case.
 - T[j, c] = 0 if j = 0, or c = 0
- Recurrence
 - For j, c > 0, $T[j, c] = \max\{T[j-1, c], v_j + T[j-1, c-w_j]\}$
- Now that we have the recurrence, we can memoize and figure out the evaluation order
- We will store T[j, c] for $1 \le j \le n$, $1 \le c \le C$ in a 2D array
- Evaluation order?
 - Row by row (i.e. item by item: for each item fill in each capacity one by one)
- Final answer? T[n, c]

Running Time

- Takes O(1) to fill out a cell, O(nC) total cells
- Is this polynomial? By which I mean polynomial in the size of the input
- How large is the input to knapsack?
 - Store n items, plus need to store C
 - $O(n + \log C)$
- Is O(nC) polynomial?
 - No!
 - "Pseudopolynomial" polynomial in the *value* of the input
- To think about: does this work if the weights are not integers?

Shortest Path Problem

• Single-Source Shortest Path Problem.

Given a directed graph G = (V, E) with edge weights w_e on each $e \in E$ and a a source node s, find the shortest path from s to to all nodes in G.

- Negative weights. The edge-weights w_e in G can be negative. (When we studied Dijkstra's, we assumed non-negative weights.)
- Let *P* be a path from *s* to *t*, denoted $s \sim t$.

- The length of P is the number of edges in P

The cost or weight of P is
$$w(P) = \sum_{e \in P} w_e$$

• Goal: **cost** of the shortest path from *s* to all nodes

Remember Dijkstra's Algorithm?

Estimate at vertex v is the weight of shortest path in T followed by a single edge from T to G - T

Negative Weights & Dijkstra's

- **Dijkstra's Algorithm**. Does the greedy approach work for graphs with negative edge weights?
 - Dijkstra's will explore *s*'s neighbor and add *t*, with $d[t] = w_{sv} = 2$ to the shortest path tree
 - Dijkstra assumes that there cannot be a "longer path" that has lower cost (relies on edge weights being non-negative)

We fixed it later—why is Dijkstra's will fi But the shortes this not OK in general??

Negative Weights: Failed Attempt

- What if we add a large enough constant C such that all weights become positive
 - $w'_{ij} = w_{ij} + C > 0$
 - Run Dijkstra's algorithm based with w'
- Does this give us the shortest path in the original graph?

Negative Cycles

- **Definition**. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- **Question**. How do negative cycles affect shortest path?

a negative cycle W :
$$\ell(W) = \sum_{e \in W} \ell_e < 0$$

Negative Cycles & Shortest Paths

- **Claim.** If a path from *s* to some node *v* contains a negative cycle, then there does not exist a shortest path from *s* to *v*.
- Proof.
 - Suppose there exists a shortest $s \sim v$ path with cost d that traverses the negative cycle t times for $t \geq 0$.
 - Can construct a shorter path by traversing the cycle t + 1 times

 $\Rightarrow \in \blacksquare$

- Assumption. *G* has no negative cycle.
- Later in the lecture: how can we detect whether the input graph G contains a negative cycle?

Dynamic Programming Approach

- First step to a dynamic program? Recursive formulation
 - Subproblem with an "optimal substructure"
- Structure of the problem. Interested in optimal cost path (can have any length)
 - Easier to build on subproblems if we keep track of length of paths considered so far
- How long can the shortest path from *s* to any node *u* be, assuming no negative cycle?
- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n 1 edges.

No. of Edges in Shortest Path

- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n 1 edges.
- **Proof**. Suppose there exists a shortest path from *s* to *u* made up of *n* or more edges
- A path of length at least n must visit at least n + 1 nodes
- There exists a node x that is visited more than once (pigeonhole principle). Let P denote the portion of the path between the successive visits.
- Can remove P without increasing cost of path.

Shortest Paths: Dynamic Program

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases.
 - D[s, i] = 0 for any i
 - $D[v,0] = \infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
 - D[v, n-1]
- How do we formulate the recurrence?
 - **Case 1**. Shortest path to *v* uses exactly *i* edges
 - **Case 2**. Shortest path to *v* uses less than *i* edges (that is, uses $\leq i 1$ edges)

Shortest Paths: Recurrence

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases.
 - D[s, i] = 0 for any i
 - $D[v,0] = \infty$ for any $v \neq s$
- Final answer for shortest path cost to node v
 - D[v, n-1]
- Recurrence.

- $D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$
- Called the Bellman-Ford-Moore algorithm

Bellman-Ford-Moore Algorithm

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using $\leq i$ edges
- Base cases. D[s, i] = 0 for any i and $D[v, 0] = \infty$ for any $v \neq s$
- Final answer for shortest path cost to node v: D[v, n-1]
- Recurrence. $D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$
- Memoization structure. Two-dimensional array
- Evaluation order.
 - $i: 1 \rightarrow n-1$ (column major order)
 - Starting from *s*, the row of vertices can be in any order

Bellman-Ford: Running Time

- Recurrence. $D[v, i] = \min\{D[v, i-1], \min_{(u,v)\in E} \{D[u, i-1] + w_{uv}\}\}$
- Naive analysis. $O(n^3)$ time
 - Each entry takes O(n) to compute, there are $O(n^2)$ entries
- Improved analysis. For a given i, v, d[v, i] looks at each incoming edge of v
 - Takes indegree(v) accesses to the table

• For a given *i*, filling d[-, i] takes $\sum_{v \in V}$ indegree(*v*) accesses

- At most O(n + m) = O(m) accesses for connected graphs where $m \ge n 1$
- Overall running time is O(nm)

Shortest-Path Summary. Assuming there are no negative cycles in G, we can compute the shortest path from s to all nodes in G in O(nm) time using the Bellman-Ford-Moore algorithm

Dynamic Programming Shortest Path: Bellman-Ford-Moore Example

- D[s, i] = 0 for any i
- $D[v,0] = \infty$ for any $v \neq s$

	0	1	2	3
S	0	0	0	0
а	inf			
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf			
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf			
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf			

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3		
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2		
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2	2	
С	inf	inf		

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	
b	inf	2	2	
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	-1
С	inf	inf	-2	

	0	1	2	3
S	0	0	0	0
а	inf	-3	-3	-3
b	inf	2	2	-1
С	inf	inf	-2	-2

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)