
Last Topics in Dynamic Programming:  
Knapsack, and Shortest Paths 

Revisited



Admin
• Assignment 5 largely graded, back soon 

• You did well! 

• Midterm review tomorrow at 7PM 

• Bring questions!  Mostly Q&A 

• 24 hour midterm starts Wed Oct 28 at 10:40 AM 

• No office hours Wed or Thur this week (Mon still on)



DP Explanations
• Some recipe points do not require explanation 

(subproblem, memoization data structure) 

• Some should have a 1 sentence (maybe 2 sentence) 
explanation: the recurrence, the base cases 

• Some it depends a bit on the context: final output, 
evaluation order (sometimes these are VERY obvious, but 
sometimes they can be tricky.  Best to include a very short 
sentence) 

• When in doubt: is your rationale for a choice completely 
obvious?  If not, should probably write something



Knapsack Problem
• Problem.  Pack a knapsack to maximize total value 

• There are  items, each with weight  and value , where 
.  Weights must be integers! 

• Knapsack has total capacity  

•
Output: subset  of items fit in the knapsack, that is,  

and maximizes the total value  

• Assumption.  All weights are integral
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Idea #1: Capacity Table
• Let's create a table  where  

 contains the optimal  
solution using capacity . 

• Optimal solution:   

• How do come up with a recurrence? 

• Not obvious with just  capacities

T
T[c]

≤ c
T[C]



DP: Right Recurrence 
• What else can we keep track of to get a recurrence with an optimal 

substructure? 

• Let  be the optimal solution using items  with total 
capacity  

• What are our two cases? 

• Case 1.  If item  is not in the optimal solution 

•  

• Case 2.  If item  is in the optimal solution then 

•

T[ j, c] [1,…j]
≤ c

j
T[ j, c] = T[ j − 1,c]

j
T[ j, c] = vj + T[ j − 1,c − wj]



Recurrence & Memoization
• Base case. 

•  if  or  

• Recurrence

• For , 
 

• Now that we have the recurrence, we can memoize and figure out 
the evaluation order  

• We will store  for  in a 2D array 

• Evaluation order?  

• Row by row (i.e. item by item: for each item fill in each capacity 
one by one) 

• Final answer?    

T[ j, c] = 0 j = 0, c = 0

j, c > 0
T[ j, c] = max{T[ j − 1, c], vj + T[ j − 1, c − wj]}

T[ j, c] 1 ≤ j ≤ n, 1 ≤ c ≤ C

T[n, c]



Running Time
• Takes  to fill out a cell,  total cells 

• Is this polynomial?  By which I mean polynomial in the size of the input 

• How large is the input to knapsack? 

• Store  items, plus need to store  

•  

• Is  polynomial? 

• No! 

• “Pseudopolynomial” - polynomial in the value of the input 

• To think about: does this work if the weights are not integers?

O(1) O(nC)

n C

O(n + log C)

O(nC)



Shortest Path Problem
• Single-Source Shortest Path Problem.  

Given a directed graph  with edge weights  on 
each  and a a source node , find the shortest path from 
 to to all nodes in . 

• Negative weights.  The edge-weights in  can be negative.  
(When we studied Dijkstra's, we assumed non-negative 
weights.) 

• Let  be a path from  to , denoted .   

• The length of  is the number of edges in  

•
The cost or weight of  is   

• Goal: cost of the shortest path from  to all nodes

G = (V, E) we
e ∈ E s

s G
we G

P s t s ↝ t
P P

P w(P) = ∑
e∈P

we

s



Remember Dijkstra’s Algorithm?

Estimate at vertex  is the weight of 
shortest path in  followed by a 
single edge from  to 

v
T

T G − T



Negative Weights & Dijkstra's
• Dijkstra’s Algorithm.  Does the greedy approach work for 

graphs with negative edge weights? 

• Dijkstra's will explore 's neighbor and add , with 
 to the shortest path tree  

• Dijkstra assumes that there cannot be a "longer path" that 
has lower cost (relies on edge weights being non-negative)

s t
d[t] = wsv = 2

t

v

2

6

−8

3

Dijkstra's will find  as shortest path with cost 
But the shortest path is  with cost 

s → t 2
s → v → w → t 14

s

w

We fixed it later—why is 
this not OK in general??



Negative Weights: Failed Attempt
• What if we add a large enough constant  such that all weights 

become positive 

•  

• Run Dijkstra’s algorithm based with  

• Does this give us the shortest path in the original graph?

C

w′ ij = wij + C > 0
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Adding C = 8 to all weights does not work
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Negative Cycles
• Definition.  A negative cycle is a directed cycle  such that the 

sum of all the edge weights in  is less than zero 

• Question.  How do negative cycles affect shortest path?  

C
C
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a negative cycle W :  �(W ) =
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e�W

�e < 0
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Negative Cycles & Shortest Paths
• Claim.  If a path from  to some node  contains a negative cycle, 

then there does not exist a shortest path from  to . 

• Proof.  

• Suppose there exists a shortest  path with cost  that 
traverses the negative cycle  times for .   

• Can construct a shorter path by traversing the cycle  times 

  

• Assumption.  has no negative cycle. 

• Later in the lecture:  how can we detect whether the input graph  
contains a negative cycle?

s v
s v

s ↝ v d
t t ≥ 0
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Dynamic Programming Approach
• First step to a dynamic program? Recursive formulation 

• Subproblem with an “optimal substructure”  
• Structure of the problem.  Interested in optimal cost path 

(can have any length)  
• Easier to build on subproblems if we keep track of length 

of paths considered so far 

• How long can the shortest path from  to any node  be, 
assuming no negative cycle? 

• Claim.  If  has no negative cycles, then exists a shortest 
path from  to any node  that uses at most  edges.

s u

G
s u n − 1



No. of Edges in Shortest Path
• Claim.  If  has no negative cycles, then exists a shortest path 

from  to any node  that uses at most  edges. 

• Proof.  Suppose there exists a shortest path from  to  made 
up of  or more edges 

• A path of length at least  must visit at least  nodes   

• There exists a node  that is visited more than once 
(pigeonhole principle). Let  denote the portion of the path 
between the successive visits. 

• Can remove  without increasing cost of path. 

G
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Shortest Paths: Dynamic Program
• Subproblem.  : (optimal) cost of shortest path from  to  

using   edges  

• Base cases. 

•  for any  

•  for any  

• Final answer for shortest path cost to node   

•  

• How do we formulate the recurrence? 

• Case 1. Shortest path to  uses exactly  edges 

• Case 2. Shortest path to  uses less than  edges  
(that is, uses  edges)

D[v, i] s v
≤ i

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

v
D[v, n − 1]

v i
v i

≤ i − 1



Shortest Paths: Recurrence
• Subproblem.  : (optimal) cost of shortest path from  to  

using   edges  

• Base cases. 

•  for any  

•  for any  

• Final answer for shortest path cost to node   

•  

• Recurrence. 

 

• Called the Bellman-Ford-Moore algorithm

D[v, i] s v
≤ i

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s

v
D[v, n − 1]

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}
v

u



Bellman-Ford-Moore Algorithm
• Subproblem.  : (optimal) cost of shortest path from  to  

using   edges  

• Base cases.  for any  and  for any  

• Final answer for shortest path cost to node :    

• Recurrence.  
 

• Memoization structure. Two-dimensional array 

• Evaluation order. 

•  (column major order) 

• Starting from , the row of vertices can  
be in any order

D[v, i] s v
≤ i

D[s, i] = 0 i D[v,0] = ∞ v ≠ s
v D[v, n − 1]

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

i : 1 → n − 1
s



Bellman-Ford: Running Time
• Recurrence. 

 

• Naive analysis.  time  

• Each entry takes  to compute, there are  entries 

• Improved analysis.  For a given ,   looks at each incoming 
edge of  

• Takes  accesses to the table 

•
For a given  filling  takes  accesses 

• At most  accesses for connected graphs 
where   

• Overall running time is  

D[v, i] = min{D[v, i − 1], min
(u,v)∈E

{D[u, i − 1] + wuv}}

O(n3)

O(n) O(n2)
i, v d[v, i]

v
indegree(v)

i, d[ − , i] ∑
v∈V

indegree(v)

O(n + m) = O(m)
m ≥ n − 1

O(nm)



• Shortest-Path Summary.  Assuming there are no negative 
cycles in , we can compute the shortest path from  to all nodes 
in  in  time using the Bellman-Ford-Moore algorithm

G s
G O(nm)



Dynamic Programming  
Shortest Path:   

Bellman-Ford-Moore Example



•  for any  

•  for any 

D[s, i] = 0 i
D[v,0] = ∞ v ≠ s
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• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}
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• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf
c inf

s a

b c
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• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf

s a

b c
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• D[v,1] = min{D[v,0], min
u,v∈E

{D[u,0] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a
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• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3
b inf 2
c inf inf

s a
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• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}

0 1 2 3
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a inf -3 -3
b inf 2
c inf inf
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0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf

s a

b c
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• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}



0 1 2 3
s 0 0 0 0
a inf -3 -3
b inf 2 2
c inf inf -2

s a

b c
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12 -1
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• D[v,2] = min{D[v,1], min
u,v∈E

{D[u,1] + wuv}



• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
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a inf -3 -3 -3
b inf 2 2
c inf inf -2
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• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}

0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2
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b c
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12 -1
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0 1 2 3
s 0 0 0 0
a inf -3 -3 -3
b inf 2 2 -1
c inf inf -2 -2

s a

b c

-3

1

1

2 -1

• D[v,3] = min{D[v,2], min
u,v∈E

{D[u,2] + wuv}
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