DP: Edit Distance and Knapsack

Admin

- Midterm review Tuesday Oct 27 at 7PM
- Bring questions!!!
- No office hours next week (but some tomorrow!)
- No class on Wednesday next week (midterm instead)
- Reminder: email me if you're interested in a study group. I'll be sending out the groups tonight
- Assignment 4 back tonight hopefully, Assignment 5 over the weekend if possible

Edit Distance

- Problem. Given two strings find the minimum number of edits (letter insertions, deletions and substitutions) that transform one string into the other
- Measure of similarity between strings
- For example, the edit distance between FOOD and MONEY is at most four:

$$
\underline{\text { FOOD }} \rightarrow \text { MOODD } \rightarrow \text { MOND } \rightarrow \text { MONED } \rightarrow \text { MONEY }
$$

- Not hard to see that 3 edits don't work
- Edit distance $=4$ in this case

Visualizing Alignment

- Visualize editing process by aligning source string above final string
- Gaps: represent insertions and deletions (insertions in the top string, deletion in bottom)
- Mismatches: columns with two different characters correspond to substitutions
- Cost of an alignment: number of gaps + mismatches

Cost $=6$ (three gaps + three mismatches)

Recursive Structure

- Before we develop a dynamic program, we need to figure out the recursive structure of the problem
- Our alignment representation has an optimal substructure
- Suppose we have the mismatch/gap representation of the shortest edit sequence of two strings
- If we remove the last column, the remaining columns must represent the shortest edit sequence of the remaining prefixes!

Recursive Structure

- Before we develop a dynamic program, we need to figure out the recursive structure of the problem
- For any prefix of our input strings $A[1, \ldots i]$ and $B[1, \ldots j]$, $1 \leq i \leq m$ and $1 \leq j \leq n$, the edit distance problem can be recursively formulated by using subproblem
- Subproblem.
- Edit (i, j) : edit distance between the strings $A[1, \ldots i]$ and $B[1, \ldots, j]$
- Final answer.
- Edit (m, n)

Recurrence

- Three possibilities for the last column in the optimal alignment of $A[1, \ldots, i]$ and $B[1, \ldots, j], i, j>0$:
- Insertion: Last entry in the top row is empty. In this

ALGOR ALTR case, $\mathrm{Edit}(i, j)=\mathrm{Edit}(i, j-1)+1$

- Deletion: Last entry in bottom row is empty. In this case $\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j)+1$
- Substitution: Both rows have characters, if same:
$\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j-1)$, else:
$\operatorname{Edit}(i, j)=\operatorname{Edit}(i-1, j-1)+1$

What About the Base Cases?

- Base cases occur when $i=0$ or $j=0$
- But these are easy to deal with
- Edit $(0, j)=j$: Transforming an empty string to a string of length j, takes min j insertions
- Edit $(i, 0)=i$: Transforming a string of length i to a string of length 0 , takes min i deletions
- Sanity check, does our base case to compute the edit distance between two empty strings?
- Yes, gives us 0 .

Final Recurrence

- We have everything we need for our final recurrence

$$
\operatorname{Edit}(i, j)= \begin{cases}i & \begin{array}{l}
\text { if } j=0 \\
j \\
\min \left\{\begin{array}{c}
\operatorname{Edit}(i, j-1)+1 \\
\operatorname{Edit}(i-1, j)+1 \\
E \operatorname{dit}(i-1, j-1)+[A[i] \neq B[j]]
\end{array}\right\}
\end{array}\end{cases}
$$

- Uses the shorthand: $[A[i] \neq B[j]]$ which is 1 if it is true (and they mismatch), and zero otherwise

From Recurrence to DP

- We can now transform it into a dynamic program
- Subproblems: Each recursive subproblem Edit $[i, j]$ is defined by two indices $1 \leq i \leq m$ and $1 \leq j \leq n$
- Memoization Structure: We can memoize all possible values of Edit $[i, j]$ in a table/ two-dimensional array
- Dependencies: Each entry Edit $[i, j]$ depends on three neighboring entries: $\operatorname{Edit}[i-1, j]$, $\operatorname{Edit}[i, j-1]$ and $\operatorname{Edit}[i-1, j-1]$
- Evaluation order?

From Recurrence to DP

- Evaluation order

- We can fill in row major order, which is row by row from top down, each row from left to right: when we reach an entry in the table, it depends only on filled-in entries

Space and Time

- The memoization uses $O(n m)$ space
- We can compute each Edit $[i, j]$ in $O(1)$ time
- Overall running time: $O(n m)$

Memoization Table: Example

- Memoization table for ALGORITHM and ALTRUISTIC
- Bold numbers indicate where characters are same
- Horizontal arrow: deletion
- Vertical arrow: insertion
- Diagonal: substitution
- Bold red: free substitution
- Only draw an arrow if used in DP
- Any directed path of arrows from top left to bottom right represents an optimal edit distance sequence

Reconstructing the Edits

- We don't need to store the arrow!
- Can be reconstructed on the fly in $O(1)$ time using the numerical values
- Once the table is built, we can construct the shortest edit distance sequence in $O(n+m)$ time
- Think at home: can you reconstruct the solution for the other dynamic programs we've seen in the same way?

Edit Distance Fun Facts

- Can we do better than $O\left(n^{2}\right)$ if $n=m$?
- Yes; can get $O\left(n^{2} / \log ^{2} n\right)$ [Masek Paterson '80] (uses "bit packing" trick called "Four Russians Technique")
- (Probably) cannot get $O\left(n^{2-\epsilon}\right)$ for any constant $\epsilon>0$ [Bakurs Indyk '15].
- (In fact, some evidence that we can't get too many more log factors [AHWW16])
- Can approximate to any $1+\epsilon$ factor in $O(n)$ time! [Andoni Nosatski '20]

A figure from [CDGKS'18], the first approximation algorithm for edit distance. The idea: rule out large portions of the dynamic programming table

Knapsack Problem

- Problem. Pack a knapsack to maximize total value
- There are n items, each with weight w_{i} and value v_{i}, where $v_{i}, w_{i}>0$. Weights must be integers!
- Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, $\sum_{i \in S} w_{i} \leq C$ and maximizes the total value $\sum_{i \in S} v_{i}$

- Assumption. All values are integral

Knapsack Problem

- Example (Knapsack capacity C = 11)
- $\{1,2,5\}$ has value $\$ 35$ (and weight 10)
- $\{3,4\}$ has value $\$ 40$ (and weight 11)

Creative Commons Attribution-Share Alike 2.5
by Dake

i	v_{i}	w_{i}
1	$\$ 1$	1 kg
2	$\$ 6$	2 kg
3	$\$ 18$	5 kg
4	$\$ 22$	6 kg
5	$\$ 28$	7 kg
knapsack instance (weight limit $\mathbf{W}=11)$		

Subproblems and Optimality

- When items are selected we need to fill the remaining capacity optimally
- Subproblem associated with a given remaining capacity can be solved in different ways

Partial Selection \#2

- In both cases, remaining capacity: 13 but items left are different

Idea \#1: Capacity Table

- Let's create a table T where $T[c]$ contains the optimal solution using capacity $\leq c$.
- Optimal solution: $T[C]$
- How do come up with a recurrence?
- Not obvious with just capacities

capacity	items	value
$\mathrm{c}=0$		$\$ 0$
$\mathrm{c}=1$	$\$ 2 / 1 \mathrm{~kg}$	$\$ 2$
$\mathrm{c}=2$	$\$ 2 / 1 \mathrm{~kg} \$ 1 / 1 \mathrm{~kg}$	$\$ 3$
$\mathrm{c}=3$	$\$ 2 / 1 \mathrm{~kg} \$ 2 / 2 \mathrm{~kg}$	$\$ 4$
$\mathrm{c}=4$	$\$ 10 / 4 \mathrm{~kg}$	$\$ 10$
$\mathrm{c}=5$	$\$ 2 / 1 \mathrm{~kg}$ \$10/4kg	$\$ 12$
$\mathrm{c}=6$	$\$ 2 / 1 \mathrm{~kg} \$ 10 / 4 \mathrm{~kg}$	$\$ 13$
$\mathrm{c}=7$	$\$ 1 / 1 \mathrm{~kg}$	
\ldots	\ldots	
$\ldots \mathrm{activity]}$	\ldots	

Table for the item set

DP: Right Recurrence

- What else can we keep track of to get a recurrence with an optimal substructure?
- Let $T[j, c]$ be the optimal solution using items $[1, \ldots j]$ with total capacity $\leq c$
- What are our two cases?
- Case 1. If item j is not in the optimal solution
- $T[j, c]=T[j-1, c]$
- Case 2. If item j is in the optimal solution then
- $T[j, c]=v_{j}+T\left[j-1, c-w_{j}\right]$

Recurrence \& Memoization

- Base case.
- $T[j, c]=0$ if $j=0$, or $c=0$
- For $j, c>0$

$$
\text { - } T[j, c]=\max \left\{T[j-1, c], v_{j}+T\left[j-1, c-w_{j}\right]\right\}
$$

- Now that we have the recurrence, we can memoize and figure out the evaluation order
- We will store $T[j, c]$ for $1 \leq j \leq n, \quad 1 \leq c \leq C$
- Evaluation order?
- Row by row (i.e. item by item: for each item fill in each capacity one by one)
- Final answer? $T[n, c]$

Running Time

- Takes $O(1)$ to fill out a cell, $O(n C)$ total cells
- Is this polynomial? By which I mean polynomial in the size of the input
- How large is the input to knapsack?
- Store n items, plus need to store C
- $O(n+\log C)$
- Is $O(n C)$ polynomial?
- No!
- "Pseudopolynomial" - polynomial in the value of the input
- To think about: does this work if the weights are not integers?

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

