
DP: Edit Distance and
Knapsack

Admin
• Midterm review Tuesday Oct 27 at 7PM

• Bring questions!!!

• No office hours next week (but some tomorrow!)

• No class on Wednesday next week (midterm instead)

• Reminder: email me if you’re interested in a study group.
I’ll be sending out the groups tonight

• Assignment 4 back tonight hopefully, Assignment 5 over
the weekend if possible

Edit Distance
• Problem. Given two strings find the minimum number of edits

(letter insertions, deletions and substitutions) that transform one
string into the other

• Measure of similarity between strings

• For example, the edit distance between FOOD and MONEY is at
most four:

• Not hard to see that 3 edits don’t work

• Edit distance = 4 in this case

Visualizing Alignment
• Visualize editing process by aligning source string above final string

• Gaps: represent insertions and deletions (insertions in the top
string, deletion in bottom)

• Mismatches: columns with two different characters correspond to
substitutions

• Cost of an alignment: number of gaps + mismatches

Cost = 6 (three gaps + three mismatches)

Recursive Structure
• Before we develop a dynamic program, we need to figure out the

recursive structure of the problem

• Our alignment representation has an optimal substructure

• Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

• If we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

Recursive Structure
• Before we develop a dynamic program, we need to figure out the

recursive structure of the problem

• For any prefix of our input strings and ,
 and , the edit distance problem can be

recursively formulated by using subproblem

• Subproblem.

• : edit distance between the strings and

• Final answer.

•

A[1,…i] B[1,…j]
1 ≤ i ≤ m 1 ≤ j ≤ n

Edit(i, j) A[1,…i]
B[1,…, j]

Edit(m, n)

Recurrence
• Three possibilities for the last column in the optimal

alignment of and , :

• Insertion: Last entry in the top row is empty. In this
case,

• Deletion: Last entry in bottom row is empty. In this
case

• Substitution: Both rows have characters,
if same:

,
else:

A[1,…, i] B[1,…, j] i, j > 0

Edit(i, j) = Edit(i, j − 1) + 1

Edit(i, j) = Edit(i − 1, j) + 1

Edit(i, j) = Edit(i − 1, j − 1)

Edit(i, j) = Edit(i − 1, j − 1) + 1

What About the Base Cases?
• Base cases occur when or

• But these are easy to deal with

• : Transforming an empty string to a string of length
, takes min insertions

• : Transforming a string of length to a string of
length , takes min deletions

• Sanity check, does our base case to compute the edit distance
between two empty strings?

• Yes, gives us 0.

i = 0 j = 0

Edit(0, j) = j
j j
Edit(i, 0) = i i

0 i

Final Recurrence
• We have everything we need for our final recurrence

• Uses the shorthand: which is 1 if it is true (and they
mismatch), and zero otherwise

[A[i] ≠ B[j]]

From Recurrence to DP
• We can now transform it into a dynamic program

• Subproblems: Each recursive subproblem is defined by
two indices and

• Memoization Structure: We can memoize all possible values of
 in a table/ two-dimensional array

• Dependencies: Each entry depends on three neighboring
entries: , and

• Evaluation order?

Edit[i, j]
1 ≤ i ≤ m 1 ≤ j ≤ n

Edit[i, j]
Edit[i, j]

Edit[i − 1,j] Edit[i, j − 1] Edit[i − 1,j − 1]

From Recurrence to DP
• Evaluation order

• We can fill in row major order, which is row by row from top
down, each row from left to right: when we reach an entry in the
table, it depends only on filled-in entries

Space and Time
• The memoization uses space

• We can compute each in time

• Overall running time:

O(nm)
Edit[i, j] O(1)

O(nm)

Memoization Table: Example
• Memoization table for ALGORITHM and ALTRUISTIC

• Bold numbers indicate where characters are same

• Horizontal arrow: deletion

• Vertical arrow: insertion

• Diagonal: substitution

• Bold red: free substitution

• Only draw an arrow if used in DP

• Any directed path of arrows
from top left to bottom right
represents an optimal
edit distance sequence

Reconstructing the Edits
• We don’t need to store the arrow!

• Can be reconstructed on the fly in
 time using the numerical values

• Once the table is built, we can
construct the shortest edit
distance sequence in time

• Think at home: can you reconstruct
the solution for the other dynamic
programs we’ve seen in the same
way?

O(1)

O(n + m)

Edit Distance Fun Facts
• Can we do better than if ?

• Yes; can get [Masek Paterson ’80] (uses “bit
packing” trick called “Four Russians Technique”)

• (Probably) cannot get for any constant
[Bakurs Indyk ’15].

• (In fact, some evidence that we can’t get too many more
log factors [AHWW16])

• Can approximate to any factor in time! [Andoni
Nosatski ’20]

O(n2) n = m

O(n2/log2 n)

O(n2−ϵ) ϵ > 0

1 + ϵ O(n)

A figure from [CDGKS’18], the first approximation
algorithm for edit distance. The idea: rule out large

portions of the dynamic programming table

Knapsack Problem
• Problem. Pack a knapsack to maximize total value

• There are items, each with weight and value , where
. Weights must be integers!

• Knapsack has total capacity

•
Output: subset of items fit in the knapsack, that is,

and maximizes the total value

• Assumption. All values are integral

n wi vi
vi, wi > 0

C

S ∑
i∈S

wi ≤ C

∑
i∈S

vi

• Example (Knapsack capacity C = 11)

• {1, 2, 5} has value $35 (and weight 10)

• {3, 4} has value $40 (and weight 11)

Knapsack Problem

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

https://creativecommons.org/licenses/by-sa/2.5/
https://creativecommons.org/licenses/by-sa/2.5/

Subproblems and Optimality
• When items are selected we need to fill the remaining capacity

optimally
• Subproblem associated with a given remaining capacity can be

solved in different ways

• In both cases, remaining capacity: 13 but items left are different

Partial Selection #1 Partial Selection #2

Idea #1: Capacity Table
• Let's create a table where

 contains the optimal
solution using capacity .

• Optimal solution:

• How do come up with a recurrence?

• Not obvious with just capacities

T
T[c]

≤ c
T[C]

DP: Right Recurrence
• What else can we keep track of to get a recurrence with an optimal

substructure?

• Let be the optimal solution using items with total
capacity

• What are our two cases?

• Case 1. If item is not in the optimal solution

•

• Case 2. If item is in the optimal solution then

•

T[j, c] [1,…j]
≤ c

j
T[j, c] = T[j − 1,c]

j
T[j, c] = vj + T[j − 1,c − wj]

Recurrence & Memoization
• Base case.

• if or

• For

•

• Now that we have the recurrence, we can memoize and figure out
the evaluation order

• We will store for

• Evaluation order?

• Row by row (i.e. item by item: for each item fill in each capacity
one by one)

• Final answer?

T[j, c] = 0 j = 0, c = 0
j, c > 0

T[j, c] = max{T[j − 1, c], vj + T[j − 1, c − wj]}

T[j, c] 1 ≤ j ≤ n, 1 ≤ c ≤ C

T[n, c]

Running Time
• Takes to fill out a cell, total cells

• Is this polynomial? By which I mean polynomial in the size of the input

• How large is the input to knapsack?

• Store items, plus need to store

•

• Is polynomial?

• No!

• “Pseudopolynomial” - polynomial in the value of the input

• To think about: does this work if the weights are not integers?

O(1) O(nC)

n C

O(n + log C)

O(nC)

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

