
DP: Edit Distance and 
Knapsack



Admin
• Midterm review Tuesday Oct 27 at 7PM 

• Bring questions!!! 

• No office hours next week (but some tomorrow!) 

• No class on Wednesday next week (midterm instead) 

• Reminder: email me if you’re interested in a study group.  
I’ll be sending out the groups tonight 

• Assignment 4 back tonight hopefully, Assignment 5 over 
the weekend if possible



Edit Distance
• Problem.  Given two strings find the minimum number of edits 

(letter insertions, deletions and substitutions) that transform one 
string into the other 

• Measure of similarity between strings 

• For example, the edit distance between FOOD and MONEY is at 
most four: 
 

• Not hard to see that 3 edits don’t work 

• Edit distance = 4 in this case



Visualizing Alignment
• Visualize editing process by aligning source string above final string 

• Gaps: represent insertions and deletions (insertions in the top 
string, deletion in bottom) 

• Mismatches: columns with two different characters correspond to 
substitutions 

• Cost of an alignment: number of gaps + mismatches

Cost  = 6 (three gaps + three mismatches)



Recursive Structure
• Before we develop a dynamic program, we need to figure out the 

recursive structure of the problem 

• Our alignment representation has an optimal substructure 

• Suppose we have the mismatch/gap representation of the 
shortest edit sequence of two strings  

• If we remove the last column, the remaining columns must 
represent the shortest edit sequence of the remaining prefixes! 



Recursive Structure
• Before we develop a dynamic program, we need to figure out the 

recursive structure of the problem 

• For any prefix of our input strings  and , 
 and , the edit distance problem can be 

recursively formulated by using subproblem 

• Subproblem. 

• :  edit distance between the strings  and 
 

• Final answer. 

•

A[1,…i] B[1,…j]
1 ≤ i ≤ m 1 ≤ j ≤ n

Edit(i, j) A[1,…i]
B[1,…, j]

Edit(m, n)



Recurrence
• Three possibilities for the last column in the optimal 

alignment of  and , : 

• Insertion: Last entry in the top row is empty. In this 
case,  

• Deletion: Last entry in bottom row is empty. In this 
case  

• Substitution: Both rows have characters, 
if same:  

,  
else:  

A[1,…, i] B[1,…, j] i, j > 0

Edit(i, j) = Edit(i, j − 1) + 1

Edit(i, j) = Edit(i − 1, j) + 1

Edit(i, j) = Edit(i − 1, j − 1)

Edit(i, j) = Edit(i − 1, j − 1) + 1



What About the Base Cases?
• Base cases occur when  or  

• But these are easy to deal with 

• :  Transforming an empty string to a string of length 
, takes min  insertions 

• :  Transforming a string of length  to a string of 
length , takes min  deletions 

• Sanity check, does our base case to compute the edit distance 
between two empty strings? 

• Yes, gives us 0.

i = 0 j = 0

Edit(0, j) = j
j j
Edit(i, 0) = i i

0 i



Final Recurrence
• We have everything we need for our final recurrence 

 
 
 
 
 
 
 
 

• Uses the shorthand:  which is 1 if it is true (and they 
mismatch), and zero otherwise

[A[i] ≠ B[ j]]



From Recurrence to DP
• We can now transform it into a dynamic program  

• Subproblems: Each recursive subproblem  is defined by 
two indices  and  

• Memoization Structure: We can memoize all possible values of 
 in a table/ two-dimensional array 

• Dependencies: Each entry  depends on three neighboring 
entries: ,  and  

• Evaluation order?

Edit[i, j]
1 ≤ i ≤ m 1 ≤ j ≤ n

Edit[i, j]
Edit[i, j]

Edit[i − 1,j] Edit[i, j − 1] Edit[i − 1,j − 1]



From Recurrence to DP
• Evaluation order

• We can fill in row major order, which is row by row from top 
down, each row from left to right:  when we reach an entry in the 
table, it depends only on filled-in entries 



Space and Time
• The memoization uses  space 

• We can compute each in  time 

• Overall running time: 

O(nm)
Edit[i, j] O(1)

O(nm)



Memoization Table:  Example
• Memoization table for ALGORITHM and ALTRUISTIC 

• Bold numbers indicate where characters are same 

• Horizontal arrow: deletion 

• Vertical arrow: insertion 

• Diagonal: substitution 

• Bold red: free substitution 

• Only draw an arrow if used in DP 

• Any directed path of arrows  
from top left to bottom right  
represents an optimal  
edit distance sequence



Reconstructing the Edits
• We don’t need to store the arrow! 

• Can be reconstructed on the fly in 
 time using the numerical values 

• Once the table is built, we can 
construct the shortest edit 
distance sequence in  time 

• Think at home: can you reconstruct 
the solution for the other dynamic 
programs we’ve seen in the same 
way?

O(1)

O(n + m)



Edit Distance Fun Facts
• Can we do better than  if ? 

• Yes; can get  [Masek Paterson ’80] (uses “bit 
packing” trick called “Four Russians Technique”) 

• (Probably) cannot get  for any constant  
[Bakurs Indyk ’15]. 

•  (In fact, some evidence that we can’t get too many more 
log factors [AHWW16]) 

• Can approximate to any  factor in  time! [Andoni 
Nosatski ’20]

O(n2) n = m

O(n2/log2 n)

O(n2−ϵ) ϵ > 0

1 + ϵ O(n)



A figure from [CDGKS’18], the first approximation 
algorithm for edit distance.  The idea: rule out large 

portions of the dynamic programming table



Knapsack Problem
• Problem.  Pack a knapsack to maximize total value 

• There are  items, each with weight  and value , where 
.  Weights must be integers! 

• Knapsack has total capacity  

•
Output: subset  of items fit in the knapsack, that is,  

and maximizes the total value  

• Assumption.  All values are integral

n wi vi
vi, wi > 0

C

S ∑
i∈S

wi ≤ C

∑
i∈S

vi



• Example (Knapsack capacity C = 11) 

• {1, 2, 5} has value $35 (and weight 10) 

• {3, 4} has value $40 (and weight 11)

Knapsack Problem

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg
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Subproblems and Optimality
• When items are selected we need to fill the remaining capacity 

optimally 
• Subproblem associated with a given remaining capacity can be 

solved in different ways 
 
 
 
 
 
 
 
 
 
 

• In both cases, remaining capacity: 13 but items left are different

Partial Selection #1 Partial Selection #2



Idea #1: Capacity Table
• Let's create a table  where  

 contains the optimal  
solution using capacity . 

• Optimal solution:   

• How do come up with a recurrence? 

• Not obvious with just  capacities

T
T[c]

≤ c
T[C]



DP: Right Recurrence 
• What else can we keep track of to get a recurrence with an optimal 

substructure? 

• Let  be the optimal solution using items  with total 
capacity  

• What are our two cases? 

• Case 1.  If item  is not in the optimal solution 

•  

• Case 2.  If item  is in the optimal solution then 

•

T[ j, c] [1,…j]
≤ c

j
T[ j, c] = T[ j − 1,c]

j
T[ j, c] = vj + T[ j − 1,c − wj]



Recurrence & Memoization
• Base case. 

•  if  or  

• For  

•  

• Now that we have the recurrence, we can memoize and figure out 
the evaluation order  

• We will store  for  

• Evaluation order?  

• Row by row (i.e. item by item: for each item fill in each capacity 
one by one) 

• Final answer?    

T[ j, c] = 0 j = 0, c = 0
j, c > 0

T[ j, c] = max{T[ j − 1, c], vj + T[ j − 1, c − wj]}

T[ j, c] 1 ≤ j ≤ n, 1 ≤ c ≤ C

T[n, c]



Running Time
• Takes  to fill out a cell,  total cells 

• Is this polynomial?  By which I mean polynomial in the size of the input 

• How large is the input to knapsack? 

• Store  items, plus need to store  

•  

• Is  polynomial? 

• No! 

• “Pseudopolynomial” - polynomial in the value of the input 

• To think about: does this work if the weights are not integers?

O(1) O(nC)

n C

O(n + log C)

O(nC)
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