DP: Edit Distance and Knapsack

Admin

- Midterm review Tuesday Oct 27 at 7PM
 - Bring questions!!!
- No office hours next week (but some tomorrow!)
- No class on Wednesday next week (midterm instead)
- Reminder: email me if you're interested in a study group.
 I'll be sending out the groups tonight
- Assignment 4 back tonight hopefully, Assignment 5 over the weekend if possible

Edit Distance

- **Problem**. Given two strings find the minimum number of edits (letter insertions, deletions and substitutions) that transform one string into the other
- Measure of similarity between strings
- For example, the edit distance between FOOD and MONEY is at most four:

$$\underline{FOOD} \rightarrow \underline{MOOD} \rightarrow \underline{MOND} \rightarrow \underline{MONED} \rightarrow \underline{MONEY}$$

- Not hard to see that 3 edits don't work
- Edit distance = 4 in this case

Visualizing Alignment

- Visualize editing process by aligning source string above final string
- **Gaps:** represent insertions and deletions (insertions in the top string, deletion in bottom)
- **Mismatches**: columns with two different characters correspond to substitutions
- Cost of an alignment: number of gaps + mismatches

Cost = 6 (three gaps + three mismatches)

Recursive Structure

- Before we develop a dynamic program, we need to figure out the recursive structure of the problem
- Our alignment representation has an optimal substructure
 - Suppose we have the mismatch/gap representation of the shortest edit sequence of two strings
 - If we remove the last column, the remaining columns must represent the shortest edit sequence of the remaining prefixes!

Recursive Structure

- Before we develop a dynamic program, we need to figure out the recursive structure of the problem
- For any prefix of our input strings A[1,...i] and B[1,...j], $1 \le i \le m$ and $1 \le j \le n$, the edit distance problem can be recursively formulated by using subproblem
- Subproblem.
 - Edit(i, j): edit distance between the strings $A[1, \ldots i]$ and $B[1, \ldots, j]$
- Final answer.
 - Edit(*m*, *n*)

Recurrence

- Three possibilities for the last column in the optimal alignment of A[1,...,i] and B[1,...,j], i, j > 0:
- **Insertion**: Last entry in the top row is empty. In this case, $\operatorname{Edit}(i, j) = \operatorname{Edit}(i, j 1) + 1$
- **Deletion**: Last entry in bottom row is empty. In this case $\operatorname{Edit}(i, j) = \operatorname{Edit}(i 1, j) + 1$
- Substitution: Both rows have characters, if same: Edit(i, j) = Edit(i - 1, j - 1),else:
 - Edit(i, j) = Edit(i 1, j 1) + 1

What About the Base Cases?

- Base cases occur when i = 0 or j = 0
- But these are easy to deal with
 - Edit(0, j) = j: Transforming an empty string to a string of length j, takes min j insertions
 - Edit(i, 0) = i: Transforming a string of length i to a string of length 0, takes min i deletions
- **Sanity check**, does our base case to compute the edit distance between two empty strings?
 - Yes, gives us 0.

Final Recurrence

• We have everything we need for our final recurrence

$$Edit(i, j) = \begin{cases} i & \text{if } j = 0\\ j & \text{if } i = 0\\ Edit(i, j - 1) + 1\\ min \begin{cases} Edit(i - 1, j) + 1\\ Edit(i - 1, j - 1) + [A[i] \neq B[j]] \end{cases} \text{ otherwise} \end{cases}$$

• Uses the shorthand: $[A[i] \neq B[j]]$ which is 1 if it is true (and they mismatch), and zero otherwise

From Recurrence to DP

- We can now transform it into a dynamic program
- Subproblems: Each recursive subproblem $\operatorname{Edit}[i, j]$ is defined by two indices $1 \le i \le m$ and $1 \le j \le n$
- Memoization Structure: We can memoize all possible values of Edit[i, j] in a table/ two-dimensional array
- **Dependencies:** Each entry Edit[i, j] depends on three neighboring entries: Edit[i 1, j], Edit[i, j 1] and Edit[i 1, j 1]
- Evaluation order?

From Recurrence to DP

Evaluation order

 We can fill in *row major order*, which is row by row from top down, each row from left to right: when we reach an entry in the table, it depends only on filled-in entries

Space and Time

- The memoization uses O(nm) space
- We can compute each $\operatorname{Edit}[i, j]$ in O(1) time
- Overall running time: O(nm)

Memoization Table: Example

- Memoization table for **ALGORITHM** and **ALTRUISTIC**
- Bold numbers indicate where characters are same
- Horizontal arrow: deletion
- Vertical arrow: insertion
- Diagonal: substitution
- Bold red: free substitution
- Only draw an arrow if used in DP
- Any directed path of arrows from top left to bottom right represents an optimal edit distance sequence

		Α	L	G	0	R	I	Т	Н	Μ
	0-	→1-	→2-	→3-	→4-	→5-	→6-	→7-	→8-	→9
Α	$\begin{vmatrix} \downarrow \\ 1 \end{vmatrix}$	0-	→1-	→2-	→3–	→4-	→5-	→6-	→7-	→8
L	2	1	0-	→1-	→2-	→3-	→4-	→5-	→6-	→7
т	3	↓ 2	1	1-	→2-	→3-	4	4-	→5_	⇒6
R	4	→ 3	2	2	2	2-	→3_	→4_	⊸5–	⊸6
U	↓ 5	↓ 4	3	3	3	3 3	3-	⊸4–	⇒5–	` ⇒6
I	6	↓ 5	4	4	↓ 	_↓ 4	3-	⊸4–	⊸5–	` →6
S	↓ 7	↓ 6	5	5	5	5	↓ 4	4	5	6
Т	8	↓ 7	6	6	6	6	↓ 5	4-	⇒5–	` ⇒6
I	9	⇒8	↓ 7	7 7	√ 7	√ 7	6	↓ 5	5-	` ⇒6
С		↓ 9	8	_↓ 8	_↓ 8	√↓ 8	↓ 7	6	_↓ 6	6

Reconstructing the Edits

- We don't need to store the arrow!
- Can be reconstructed on the fly in O(1) time using the numerical values
- Once the table is built, we can construct the shortest edit distance sequence in O(n + m) time
- Think at home: can you reconstruct the solution for the other dynamic programs we've seen in the same way?

Edit Distance Fun Facts

- Can we do better than $O(n^2)$ if n = m?
- Yes; can get $O(n^2/\log^2 n)$ [Masek Paterson '80] (uses "bit packing" trick called "Four Russians Technique")
- (Probably) cannot get $O(n^{2-\epsilon})$ for any constant $\epsilon > 0$ [Bakurs Indyk '15].
 - (In fact, some evidence that we can't get too many more log factors [AHWW16])
- Can approximate to any $1 + \epsilon$ factor in O(n) time! [Andoni Nosatski '20]

A figure from [CDGKS'18], the first approximation algorithm for edit distance. The idea: rule out large portions of the dynamic programming table

Knapsack Problem

 $i \in S$

- **Problem**. Pack a knapsack to maximize total value
- There are *n* items, each with weight w_i and value v_i , where $v_i, w_i > 0$. Weights must be integers!
- Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, $\sum w_i \leq C$

and maximizes the total value $\sum v_i$

• Assumption. All values are integral

Knapsack Problem

- Example (Knapsack capacity C = 11)
 - {1, 2, 5} has value \$35 (and weight 10)
 - {3, 4} has value \$40 (and weight 11)

i	Vi	Wi
1	\$1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

knapsack instance (weight limit W = 11)

by Dake

Subproblems and Optimality

- When items are selected we need to fill the remaining capacity optimally
- Subproblem associated with a given remaining capacity can be solved in different ways

• In both cases, remaining capacity: 13 but items left are different

Idea #1: Capacity Table

- Let's create a table T where T[c] contains the optimal solution using capacity $\leq c$.
- Optimal solution: T[C]
- How do come up with a recurrence?
- Not obvious with just capacities

capacity	items	value
c = 0		\$0
c = 1	\$2/1kg	\$2
c = 2	\$2/1kg <mark>\$1/1kg</mark>	\$3
c = 3	\$2/1kg <mark>\$2/2kg</mark>	\$4
c = 4	\$10/4kg	\$10
c = 5	\$2/1kg <mark>\$10/4kg</mark>	\$12
c = 6	\$2/1kg <mark>\$10/4kg</mark> \$1/1kg	\$13
c = 7	[activity]	

Table for the item set \$4/12kg \$2/1kg \$10/4kg \$1/1kg \$2/2kg

DP: Right Recurrence

- What else can we keep track of to get a recurrence with an optimal substructure?
- Let T[j, c] be the optimal solution using items $[1, \ldots j]$ with total capacity $\leq c$
- What are our two cases?
- Case 1. If item j is not in the optimal solution
 - T[j, c] = T[j 1, c]
- Case 2. If item j is in the optimal solution then

•
$$T[j, c] = v_j + T[j - 1, c - w_j]$$

Recurrence & Memoization

- Base case.
 - T[j, c] = 0 if j = 0, or c = 0
- For *j*, *c* > 0
 - $T[j,c] = \max\{T[j-1, c], v_j + T[j-1, c-w_j]\}$
- Now that we have the recurrence, we can memoize and figure out the evaluation order
- We will store T[j,c] for $1 \le j \le n, \ 1 \le c \le C$
- Evaluation order?
 - Row by row (i.e. item by item: for each item fill in each capacity one by one)
- Final answer? T[n, c]

Running Time

- Takes O(1) to fill out a cell, O(nC) total cells
- Is this polynomial? By which I mean polynomial in the size of the input
- How large is the input to knapsack?
 - Store n items, plus need to store C
 - $O(n + \log C)$
- Is O(nC) polynomial?
 - No!
 - "Pseudopolynomial" polynomial in the *value* of the input
- To think about: does this work if the weights are not integers?

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)