DP:

Edit Distance and

Knapsack

c $

Admin

Midterm review Tuesday Oct 27 at 7PM

e Bring questions!!!

No office hours next week (but some tomorrow!)

No class on Wednesday next week (midterm instead)

Reminder: email me if you're interested in a study group.
I'll be sending out the groups tonight

Assignment 4 back tonight hopefully, Assignment 5 over
the weekend if possible

Edit Distance

Problem. Given two strings find the minimum number of edits
(letter insertions, deletions and substitutions) that transform one
string into the other

Measure of similarity between strings

For example, the edit distance between FOOD and MONEY is at
most four:

FOOD — MOOD — MOND — MONED — MONEY

Not hard to see that 3 edits don't work

Edit distance = 4 in this case

Visualizing Alignment

Visualize editing process by aligning source string above final string

Gaps: represent insertions and deletions (insertions in the top
string, deletion in bottom)

Mismatches: columns with two different characters correspond to
substitutions

Cost of an alignment: number of gaps + mismatches

AL GOR I T H M
A L T RUISTIC

Cost = 6 (three gaps + three mismatches)

Recursive Structure

Before we develop a dynamic program, we need to figure out the
recursive structure of the problem

Our alignment representation has an optimal substructure

* Suppose we have the mismatch/gap representation of the
shortest edit sequence of two strings

* |f we remove the last column, the remaining columns must
represent the shortest edit sequence of the remaining prefixes!

Recursive Structure

Before we develop a dynamic program, we need to figure out the
recursive structure of the problem

For any prefix of our input strings A[1,...7] and B[1,...j],
1 <i<mand 1 < j < n,the edit distance problem can be
recursively formulated by using subproblem

Subproblem.

« Edit(i, j): edit distance between the strings A[1,...i] and
B[1,...,7]]

Final answer.

o Edit(m, n)

Recurrence

Three possibilities for the last column in the optimal
alignment of A[1,...,i] and B[1,...,j], 1,7 > O:

Insertion: Last entry in the top row is empty. In this
case, Edit(i, j) = Edit(i,j— 1) + 1

Deletion: Last entry in bottom row is empty. In this
case Edit(i, j) = Editi — 1, j) + 1

Substitution: Both rows have characters,

ALGOR
ALTR j U

ALGO | R
ALTRU

If same:

Edit(i, /) = Edit(i — 1, j— 1), ALGO I R
else:

Edit(z,j) = EditGt— 1, j— 1) + 1 ALTR | U

ALT

ALGO I

R
R

What About the Base Cases?

« Base cases occurwheni=0o0rj=0

* But these are easy to deal with

« Edit(0, j) = j: Transforming an empty string to a string of length
J, takes min j insertions

« Edit(i, 0) = i: Transforming a string of length i to a string of
length O, takes min i deletions

* Sanity check, does our base case to compute the edit distance
between two empty strings”

* Yes, gives us 0.

Final Recurrence

 We have everything we need for our final recurrence

(i if j=0
j ifi=0
Edit(i, j) = { (Edit(i,j—1)+1)
min { Edit(i—1,j)+1 } otherwise
\ \Edit(i—1,j—1)+[Ali] #B[j]])

« Uses the shorthand: [Ali] # Bl j]] which is 1 if it is true (and they
mismatch), and zero otherwise

From Recurrence to DP

 We can now transform it into a dynamic program

Subproblems: Each recursive subproblem Edit[1, j] is defined by
twoindices] <i<mand1<j<n

Memoization Structure: We can memoize all possible values of
Edit[z, j] in a table/ two-dimensional array

Dependencies: Each entry Edit|i, j] depends on three neighboring
entries: Edit[i — 1,j], Edit[i,j — 1] and Edit[i — 1,7 — 1]

Evaluation order?

From Recurrence to DP

Evaluation order

« We canfill in row major order, which is row by row from top
down, each row from left to right: when we reach an entry in the
table, it depends only on filled-in entries

Space and Time

« The memoization uses O(nm) space

« We can compute each Edit[i, j]in O(1) time

« Overall running time: O(nm)

Memoization Table: Example

e Memoization table for ALGORITHM and ALTRUISTIC

e Bold numbers indicate where characters are same

e Horizontal arrow: deletion ALGORTITHM
0123456 7 89
* Vertical arrow: insertion al1 012 3 4 5.6 .78
* Diagonal: substitution L]2 1 01234567
_— T[3 21 1234 456
e Bold red: free substitution
RI4 3 2 2 2 23456
Only draw an arrow if used in DP Jls 2 373733 3. 456
* Any directed path of arrows I/16 5 4 4 4 4 3456
from top left to bolttom right s|7 6 5 555 4 45 6
represents an optimal
. T|8 7 6 6 6 6 5 456
edit distance sequence
119 8 77 7 7 6 5 56
C|l10 9 8 8 8 8 7 6 6 6

Reconstructing the Edits

We don’t need to store the arrow!

Can be reconstructed on the fly in
O(1) time using the numerical values

Once the table is built, we can
construct the shortest edit
distance sequence in O(n + m) time

Think at home: can you reconstruct
the solution for the other dynamic
programs we've seen in the same
way"?

AL G ORI THWM
0O-1-:2-3:4:5:6:7:8"°9
1 0-1-2-3+4-:5:6°7-8
2 1 01234 567
3 2 1 1234 4 56
4 3 2 2 2 23456
S 4 3 3 3 3 3456
6 5 4 4 4 4 3 456
7 6 55 5 5 4 4 5 6
8 7 6 6 6 6 5 4 56
9 8 7 7 7 7 6 5 56
10 9 8 8 8 8 7 6 6 6

Edit Distance Fun Facts

Can we do better than O(n?) if n = m?

Yes; can get O(n?/log? n) [Masek Paterson '80] (uses “bit
packing” trick called “Four Russians Technique”)

(Probably) cannot get O(n>~€) for any constant € > 0
[Bakurs Indyk '15].

* (Infact, some evidence that we can’t get too many more
log factors [AHWW16])

Can approximate to any 1 + € factor in O(n) time! [Andoni
Nosatski '20]

A figure from [CDGKS 18], the first approximation
algorithm for edit distance. The idea: rule out large
portions of the dynamic programming table

Knapsack Problem

Problem. Pack a knapsack to maximize total value

There are n items, each with weight w; and value v;, where
v;, w; > 0. Weights must be integers!

Knapsack has total capacity C

Output: subset S of items fit in the knapsack, that is, Z w; < C
IS

and maximizes the total value Z V;

ieS

Assumption. All values are integral

Knapsack Problem

* Example (Knapsack capacity C = 11)
* {1, 2, 5} has value $35 (and weight 10)
* {3, 4} has value $40 (and weight 11)

’ ' [Vi Wi
@ Q@ 1 $1 1 kg
% 2 $6 2 kg

g, 3 $18 5k
=) g
4 $22 6 kg

5 $28 7 kg

@ $23 | 79
knapsack instance

Creative Commons Attribution-Share Alike 2.5 (WElght limit W = 11)
by Dake

https://creativecommons.org/licenses/by-sa/2.5/
https://creativecommons.org/licenses/by-sa/2.5/

Subproblems and Optimality

 When items are selected we need to fill the remaining capacity
optimally

* Subproblem associated with a given remaining capacity can be
solved in different ways

= e
item Qﬂ m il
item 5 item 1 Qﬂ
< .
gﬂ item 5
item 2 g By
item 3 item 4 item 2 ’gﬂ
ol item 3 item 4
Partial Selection #1 Partial Selection #2

* |n both cases, remaining capacity: 13 but items left are different

ldea #1: Capacity Table

Let's create a table T where
T[c] contains the optimal
solution using capacity < c.

Optimal solution: T|C]
How do come up with a recurrence?

Not obvious with just capacities

capacity

items value
S0
$2/1kg $2
$2/1kg $1/1kg $3
$2/1kg $2/2kg $4
$10/4kg $10
$2/1kg $10/4kg $12
$2/1kg $10/4kg $13
$1/1kg
[activity]

Table for the item set

S4/12kgl $2/1kg $10/4kg
$1/1kg $2/2kg

DP: Right Recurrence

What else can we keep track of to get a recurrence with an optimal
substructure?

Let T J, c] be the optimal solution using items [1,...j] with total
capacity < ¢

What are our two cases?

Case 1. If itemJis not in the optimal solution
» Tlj,cl=T11j— 1]

Case 2. If item J is in the optimal solution then

o« Tlj,cl=v;+T[j—1l,c—w]

Recurrence & Memoization

 Base case.
e« T1j,c]=0ifj=0,0orc=0
« Forj,c>0
o« Tlj,cl=max{T[j—-1,¢c],vi+T[j—-1,c—w]}

 Now that we have the recurrence, we can memoize and figure out
the evaluation order

« WewillstoreT|j,c]forl <j<n, 1<c<LC
* Evaluation order?

 Row by row (i.e. item by item: for each item fill in each capacity
one by one)

« Final answer? T|n,c]

Running Time

Takes O(1) to fill out a cell, O(nC) total cells

s this polynomial? By which | mean polynomial in the size of the input
How large is the input to knapsack?

 Store n items, plus need to store C

« O(n+log()

s O(nC) polynomial?

* No!

e “Pseudopolynomial” - polynomial in the value of the input

To think about: does this work if the weights are not integers”?

Acknowledgments

e Some of the material in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

