
Dynamic Programming:  
LIS, Partitioning Books, and 

Edit Distance



Admin

• Student solutions updated 

• Thursday 6:15-8:15 and 8-10 TA office hours 
moved to Saturday 4-6PM and 6-8PM 

• Check the schedule



Study Buddy System
• Less socializing this semester! 

• Email me and I’ll set up groups of 3-4 students 

• sam@cs.williams.edu 

• Up to you what you do in these groups 

• Ideally something like: 

• Ask each other questions 

• Work through assignment questions or other questions in the textbook 

• Reading proofs to each other will help you in this class.

mailto:sam@cs.williams.edu
mailto:sam@cs.williams.edu


Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest 

subsequence whose elements are in increasing order 

• Find the longest possible sequence of indices 
 such that  

• E.g.,  

• The longest increasing subsequence of  is  

• Length of the longest increasing subsequence is  

• To simplify, we will only compute length of the LIS

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

A = [3 , 8 , 4 , 5 , 9 , 2]

A 1, 4, 5, 9

4



LIS: Recursive Subproblem
• The most important part of a dynamic program:  subproblems 

• Subproblem.   denote the length of the longest increasing 
subsequence that ends in  

• Our goal (in terms of the subproblem):     

• Base case.    

• How do we go from one subproblem to the next, that is, how do we 
compute  assuming I know the values of 

L[i]
A[i]

max
1≤i≤n

L[i]

L[1] = 1

L[i] L[1], …, L[i − 1]

1  2  10  3  7  6  4  8  11



Recurrence
• Let’s say we know the length of the longest 

subsequence ending at  

• What is the longest subsequence ending at ? 

• Must be: 

• The longest subsequence ending at some  

• With  

• OK, let’s try all  to get the answer

A[1], A[2], …A[i − 1]

A[i]

A[k]

A[k] < A[i]

k



Towards a Recurrence
• Let us take an example  

•  (just the sequence 5) 

• What is  

• Since  it does not extend prev LIS, so it starts a 
new one: just  

•  

• What about ? 

• Since  and  is extends both 
subsequences, maximum length is 2 

•

A = [5, 2, 8, 6, 3, 6, 9, 7]

L[1] = 1

L[2]?

A[2] < A[1]
2

L(2) = 1

L(3)

A(3) > A(1) A(3) > A(2)

L(3) = 2



• Let us take an example  

• So far  

• What about  

• Either it extends a prev LIS ending at  (and 
we take maximum) + 1 

• Or it doesn’t extend any of them, and  

• Do we need to remember the subsequences to check this? 

• No we just see if  for  

• Or it doesn’t extend any of them, and 

A = [5, 2, 8, 6, 3, 6, 9, 7]
L(1,3) = [1,1,2]

L(4)?
A[1], A[2], A[3]

L(4) = 1

A(4) > A(i) i = 1,2,3
L(4) = 1

Towards a Recurrence



LIS: Recursive Subproblem
•  

• Assuming 

L( j) = 1 + max{L(i) | i < j and A[i] < A[ j]}
max ∅ = 0



Recursion to Dynamic Program
• If we used recursion (without memoization) we’ll be inefficient—we’ll 

do a lot of repeated work 

• Once you have your recurrence, the remaining pieces of the 
dynamic programming algorithm are 

• Evaluation order. In what order should I evaluate my 
subproblems so that everything I need to evaluate a new 
subproblem? 

• For LIS we just left-to-right on array indices 

• Memoization structure. Need a table (array or multi-dimensional 
array) to store computed values 

• For LIS, we just need a one dimensional array 

• For others, we may need a table (two-dimensional array)



Dynamic Programming Practice
• Suppose we have to scan through a shelf of books, and this task 

can be split between  workers 

• We do not want to reorder/rearrange the books, so instead we 
divide the shelf into  regions 

• Each worker is assigned one of the regions 

• What is the fairest way to divide the shelf up?

k

k



DP: Dividing Work
• Suppose we have to scan through a shelf of books, and this task 

can be split between  workers 

• We do not want to reorder/rearrange the books, so instead we 
divide the shelf into  regions 

• Each worker is assigned one of the regions 

• What is the fairest way to divide the shelf up? 

• If the books are equal length, we can just give each worker the 
same number of books 

• What if books are not equal size?  

• How can we find the fairest partition of work?

k

k



The Linear Partition Problem
• Input.  A input arrangement  of nonnegative integers  

and an integer  

• Problem.  Partition  into  ranges such that the maximum sum over 
all the ranges is minimized 

• Example.

• Consider the following arrangement 
 

 

• Suppose , where should we partition to minimize the 
maximum sum over all ranges? 
 

S {s1, …, sn}
k

S k

100 200 300 400 500 600 700 800 900
k = 3

100 200 300 400 500 | 600 700 | 800 900



Optimal Substructure
• Notice that the th partition starts after we place the  

st “divider” 

• Let us try to construct an optimal solution.  Where can we place the 
last divider? 

• Between some elements, suppose between th and st 
element where  

• What is the cost of placing the last divider here? Max of: 

•
Cost of the last partition   

• Cost of the optimal way to partition the elements to the “left” 
— this is a smaller version of the same problem!

• Question:  Can you come up with the subproblem for the dynamic 
program?

k
(k − 1)

i (i + 1)
1 ≤ i ≤ n − 1

n

∑
j=i+1

sj



• Subproblem.   be the minimum cost over all partitions of first 
 books into  partitions,  

• Base cases. 

•  for all  

•
 for all  

• Recurrence.   

• Dictates how we go from one subproblem to the next 

• Now we have a two dimensional table so we also need to think 
about which order to go in (what the dependencies are…)

M[i, j]
i j 1 ≤ i ≤ n, 1 ≤ j ≤ k

M[1, j] = s1 1 ≤ j ≤ k

M[i, 1] =
i

∑
t=1

st 1 ≤ i ≤ n

Dividing Work:  DP Algorithm



Dividing Work:  DP Algorithm
• Subproblem.   be the minimum cost over all partitions of first 

 books into  partitions,  

• Base cases. 

•  for all  

•
 for all  

•
Recurrence.   

• Final solution.   

• Memoization structure.  Two-dimensional array. 

• Evaluation order. ?

M[i, j]
i j 1 ≤ i ≤ n, 1 ≤ j ≤ k

M[1, j] = s1 1 ≤ j ≤ k

M[i, 1] =
i

∑
t=1

st 1 ≤ i ≤ n

M[i, j] = min
1≤i′ ≤i

max{M(i′ , j − 1),
i

∑
t=i′ +1

st}

M[n, k]



Evaluation Order
• What do we need filled in so that we can fill in 

? 

• For all , need  

• Plan: fill in all , then all  (in increasing 
order of ), then all , and so on 

• Let’s draw out  where each value of  is a row of 

M[i, j]

i′ < i M[i′ , j − 1]

M[i,1] M[i,2]
i M[i,3]

M j
M



• Evaluation order.   

• To fill out one cell, we need to take min over the values to the 
left in the previous row 

• Thus, we fill out rows one-by-one 

• Called row major order 

• Running time? 

• Size of table:  

• How long to compute a single cell? 

• Depends on  other cells 

•  time

O(k ⋅ n)

n

O(n2 ⋅ k)

Dividing Work:  Final Pieces

Row-major order



Running Time
• Running time 

• Size of table:  

• How long to compute a single cell? 

• Depends on  other cells 

•  time 

• Is this a polynomial running time? 

• How big can  get? 

• At most  non-empty partitions of  elements 

•  algorithm in the worst case

O(k ⋅ n)

n

O(n2 ⋅ k)

k
n n

O(n3)



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!
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