Dynamic Programming:
LIS, Partitioning Books, and
Edit Distance

Admin

e Student solutions updated

e Thursday 6:15-8:15 and 8-10 TA office hours
moved to Saturday 4-6PM and 6-8PM

e Check the schedule

Study Buddy System

Less socializing this semester!
Email me and I'll set up groups of 3-4 students

e sam@cs.williams.edu

Up to you what you do in these groups

ldeally something like:
* Ask each other questions
* Work through assignment questions or other questions in the textbook

Reading proofs to each other will help you in this class.

mailto:sam@cs.williams.edu
mailto:sam@cs.williams.edu

Longest Increasing Subsequence

« Given a sequence of integers as an array A[1,...n], find the longest

subsequence whose elements are in increasing order

* Find the longest possible sequence of indices

« Eg,A=[3,8,4,5,9, 2]
« The longest increasing subsequence of Ais 1, 4, 5, 9
« Length of the longest increasing subsequence is 4

* To simplity, we will only compute length of the LIS

LIS: Recursive Subproblem

* The most important part of a dynamic program: subproblems

« Subproblem. L|i] denote the length of the longest increasing
subsequence that ends in Ali]

. Our goal (in terms of the subproblem): max L|i]
1<i<n

Basecase. L[1] =1

 How do we go from one subproblem to the next, that is, how do we
compute L[i] assuming | know the values of L[1], ..., L[i — 1]

12103 7064 8 11

Recurrence

Let’s say we know the length of the longest
subsequence ending at A[1], A[2], ...A]i — 1]

What is the longest subsequence ending at A[i]?
Must be:

« The longest subsequence ending at some A[K]
. With Alk] < A[i]

OK, let’s try all k to get the answer

Towards a Recurrence

Let us take an example A =[5, 2, 8, 6, 3, 6, 9, 7]
L[1] =1 (just the sequence 5)
What is L[2]?

« Since A[2] < A[1] it does not extend prev LIS, so it starts a
new one: just 2

« L(2)=1
What about L(3)?
e SinceA(3) > A(l) and A(3) > A(2) is extends both

subsequences, maximum length is 2

. L(3) =2

Towards a Recurrence

e Letustake anexampleA =15, 2, 8,6, 3, 6,9, 7]
e SofarL(1,3) =1[1,1,2]
« What about L.(4)?

Either it extends a prev LIS ending at A[1], A[2], A[3] (and
we take maximum) + 1

Or it doesn’t extend any of them, and L(4) = 1

Do we need to remember the subseguences to check this?
No we just see if A(4) > A(i) fori = 1,2,3

Or it doesn’t extend any of them, and L(4) = 1

LIS: Recursive Subproblem

e L(j)=14+max{L() | i<jandAl[i] < A[J]}

e Assuming max @ = 0

Recursion to Dynamic Program

e |f we used recursion (without memoization) we’ll be inefficient—we’ll
do a lot of repeated work

* Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

Evaluation order. In what order should | evaluate my
subproblems so that everything | need to evaluate a new

subproblem?
- For LIS we just left-to-right on array indices

Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

—or LIS, we just need a one dimensional array

—or others, we may need a table (two-dimensional array)

Dynamic Programming Practice

* Suppose we have to scan through a shelf of books, and this task
can be split between k workers

 We do not want to reorder/rearrange the books, so instead we
divide the shelf into k regions

 Each worker is assigned one of the regions

 What is the fairest way to divide the shelf up?

')
)
-
-
A
-/
7

of LIFE &

RETICAL PHYSICS
ASIC COURSE

ICS & ENGINEERING
f QA LR BF F RE/N C E

SOPHY

DP: Dividing Work

Suppose we have to scan through a shelf of books, and this task
can be split between k workers

We do not want to reorder/rearrange the books, so instead we
divide the shelf into k regions

Each worker is assigned one of the regions
What is the fairest way to divide the shelf up?

It the books are equal length, we can just give each worker the
same number of books

What if books are not equal size?

« How can we find the fairest partition of work?

The Linear Partition Problem

« Input. A input arrangement § of nonnegative integers {sy, ..., S, }
and an integer k

« Problem. Partition § into k ranges such that the maximum sum over
all the ranges is minimized

- Example.

e (Consider the following arrangement

100 200 300 400 500 600 700 800 900

e Suppose k = 3, where should we partition to minimize the
maximum sum over all ranges?

100 200 300 400 500 | 600 700 | 800 900

Optimal Substructure

« Notice that the kth partition starts after we place the
(k — 1)st “divider”

e Letustryto construct an optimal solution. Where can we place the
last divider?

. Between some elements, suppose between ith and (i + 1)st
elementwhere]l <i<n-1

 What is the cost of placing the last divider here” Max of:

n

Cost of the last partition Z S;

j=i+1

o (Cost of the optimal way to partition the elements to the “left”
— this is a smaller version of the same problem!

* Question: Can you come up with the subproblem for the dynamic
program?

Dividing Work: DP Algorithm

« Subproblem. M|i, j] be the minimum cost over all partitions of first
I books into j partitions, 1 <i<n, 1 <j<k

e Base cases.

e« M[1,jl=sforalll £j<k

_ M[i, 1]=Zstforall 1 <i<n

=1
e Recurrence.

e Dictates how we go from one subproblem to the next

e Now we have a two dimensional table so we also need to think
about which order to go in (what the dependencies are...)

Dividing Work: DP Algorithm

« Subproblem. M|i, j] be the minimum cost over all partitions of first
1 books into j partitions, 1 <i<n, 1 <j<k

e Base cases.

« M[1,j]l=sforalll £j<k

. M[i, 1] = Zstforall 1 <i<nm

=1

i
Recurrence. M[i,j] = min max{M(@’,j — 1), Z s,
. l<rst r=i"+1

 Final solution. M|n, k]

* Memoization structure. Two-dimensional array.

 Evaluation order. ?

Evaluation Order

What do we need filled in so that we can fill In
Mz, j7?

Foralli’ < i, need M|i’,j — 1]

Plan: fill in all M|i,1], then all M[i,2] (in increasing
order of 1), then all M[i,3], and so on

Let's draw out M where each value of J is a row of
M

Dividing Work: Final Pieces

e Evaluation order.

 Jo fill out one cell, we need to take min over the values to the
left in the previous row

* Thus, we fill out rows one-by-one

e Called row major order

s s .
> >
* Running time? g i — -
| o <
 Size of table: O(k - n) g —
e et p- -

 How long to compute a single cell? t
Row-major order

« Depends on n other cells

. O(n? - k) time

Running Time

* Running time
 Size of table: O(k - n)
 How long to compute a single cell?
« Depends on n other cells
. O(n?-k)time
* |s this a polynomial running time?
« How big can k get?
« At most n non-empty partitions of n elements

. O(n?) algorithm in the worst case

Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

« Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |[dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

Analyze space and running time. As always!

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

