
Dynamic Programming:
LIS, Partitioning Books, and

Edit Distance

Admin

• Student solutions updated

• Thursday 6:15-8:15 and 8-10 TA office hours
moved to Saturday 4-6PM and 6-8PM

• Check the schedule

Study Buddy System
• Less socializing this semester!

• Email me and I’ll set up groups of 3-4 students

• sam@cs.williams.edu

• Up to you what you do in these groups

• Ideally something like:

• Ask each other questions

• Work through assignment questions or other questions in the textbook

• Reading proofs to each other will help you in this class.

mailto:sam@cs.williams.edu
mailto:sam@cs.williams.edu

Longest Increasing Subsequence
• Given a sequence of integers as an array , find the longest

subsequence whose elements are in increasing order

• Find the longest possible sequence of indices
 such that

• E.g.,

• The longest increasing subsequence of is

• Length of the longest increasing subsequence is

• To simplify, we will only compute length of the LIS

A[1,…n]

1 ≤ i1 < i2 < … < iℓ ≤ n A[ik] < A[ik+1]

A = [3 , 8 , 4 , 5 , 9 , 2]

A 1, 4, 5, 9

4

LIS: Recursive Subproblem
• The most important part of a dynamic program: subproblems

• Subproblem. denote the length of the longest increasing
subsequence that ends in

• Our goal (in terms of the subproblem):

• Base case.

• How do we go from one subproblem to the next, that is, how do we
compute assuming I know the values of

L[i]
A[i]

max
1≤i≤n

L[i]

L[1] = 1

L[i] L[1], …, L[i − 1]

1 2 10 3 7 6 4 8 11

Recurrence
• Let’s say we know the length of the longest

subsequence ending at

• What is the longest subsequence ending at ?

• Must be:

• The longest subsequence ending at some

• With

• OK, let’s try all to get the answer

A[1], A[2], …A[i − 1]

A[i]

A[k]

A[k] < A[i]

k

Towards a Recurrence
• Let us take an example

• (just the sequence 5)

• What is

• Since it does not extend prev LIS, so it starts a
new one: just

•

• What about ?

• Since and is extends both
subsequences, maximum length is 2

•

A = [5, 2, 8, 6, 3, 6, 9, 7]

L[1] = 1

L[2]?

A[2] < A[1]
2

L(2) = 1

L(3)

A(3) > A(1) A(3) > A(2)

L(3) = 2

• Let us take an example

• So far

• What about

• Either it extends a prev LIS ending at (and
we take maximum) + 1

• Or it doesn’t extend any of them, and

• Do we need to remember the subsequences to check this?

• No we just see if for

• Or it doesn’t extend any of them, and

A = [5, 2, 8, 6, 3, 6, 9, 7]
L(1,3) = [1,1,2]

L(4)?
A[1], A[2], A[3]

L(4) = 1

A(4) > A(i) i = 1,2,3
L(4) = 1

Towards a Recurrence

LIS: Recursive Subproblem
•

• Assuming

L(j) = 1 + max{L(i) | i < j and A[i] < A[j]}
max ∅ = 0

Recursion to Dynamic Program
• If we used recursion (without memoization) we’ll be inefficient—we’ll

do a lot of repeated work

• Once you have your recurrence, the remaining pieces of the
dynamic programming algorithm are

• Evaluation order. In what order should I evaluate my
subproblems so that everything I need to evaluate a new
subproblem?

• For LIS we just left-to-right on array indices

• Memoization structure. Need a table (array or multi-dimensional
array) to store computed values

• For LIS, we just need a one dimensional array

• For others, we may need a table (two-dimensional array)

Dynamic Programming Practice
• Suppose we have to scan through a shelf of books, and this task

can be split between workers

• We do not want to reorder/rearrange the books, so instead we
divide the shelf into regions

• Each worker is assigned one of the regions

• What is the fairest way to divide the shelf up?

k

k

DP: Dividing Work
• Suppose we have to scan through a shelf of books, and this task

can be split between workers

• We do not want to reorder/rearrange the books, so instead we
divide the shelf into regions

• Each worker is assigned one of the regions

• What is the fairest way to divide the shelf up?

• If the books are equal length, we can just give each worker the
same number of books

• What if books are not equal size?

• How can we find the fairest partition of work?

k

k

The Linear Partition Problem
• Input. A input arrangement of nonnegative integers

and an integer

• Problem. Partition into ranges such that the maximum sum over
all the ranges is minimized

• Example.

• Consider the following arrangement

• Suppose , where should we partition to minimize the
maximum sum over all ranges?

S {s1, …, sn}
k

S k

100 200 300 400 500 600 700 800 900
k = 3

100 200 300 400 500 | 600 700 | 800 900

Optimal Substructure
• Notice that the th partition starts after we place the

st “divider”

• Let us try to construct an optimal solution. Where can we place the
last divider?

• Between some elements, suppose between th and st
element where

• What is the cost of placing the last divider here? Max of:

•
Cost of the last partition

• Cost of the optimal way to partition the elements to the “left”
— this is a smaller version of the same problem!

• Question: Can you come up with the subproblem for the dynamic
program?

k
(k − 1)

i (i + 1)
1 ≤ i ≤ n − 1

n

∑
j=i+1

sj

• Subproblem. be the minimum cost over all partitions of first
 books into partitions,

• Base cases.

• for all

•
 for all

• Recurrence.

• Dictates how we go from one subproblem to the next

• Now we have a two dimensional table so we also need to think
about which order to go in (what the dependencies are…)

M[i, j]
i j 1 ≤ i ≤ n, 1 ≤ j ≤ k

M[1, j] = s1 1 ≤ j ≤ k

M[i, 1] =
i

∑
t=1

st 1 ≤ i ≤ n

Dividing Work: DP Algorithm

Dividing Work: DP Algorithm
• Subproblem. be the minimum cost over all partitions of first

 books into partitions,

• Base cases.

• for all

•
 for all

•
Recurrence.

• Final solution.

• Memoization structure. Two-dimensional array.

• Evaluation order. ?

M[i, j]
i j 1 ≤ i ≤ n, 1 ≤ j ≤ k

M[1, j] = s1 1 ≤ j ≤ k

M[i, 1] =
i

∑
t=1

st 1 ≤ i ≤ n

M[i, j] = min
1≤i′ ≤i

max{M(i′ , j − 1),
i

∑
t=i′ +1

st}

M[n, k]

Evaluation Order
• What do we need filled in so that we can fill in

?

• For all , need

• Plan: fill in all , then all (in increasing
order of), then all , and so on

• Let’s draw out where each value of is a row of

M[i, j]

i′ < i M[i′ , j − 1]

M[i,1] M[i,2]
i M[i,3]

M j
M

• Evaluation order.

• To fill out one cell, we need to take min over the values to the
left in the previous row

• Thus, we fill out rows one-by-one

• Called row major order

• Running time?

• Size of table:

• How long to compute a single cell?

• Depends on other cells

• time

O(k ⋅ n)

n

O(n2 ⋅ k)

Dividing Work: Final Pieces

Row-major order

Running Time
• Running time

• Size of table:

• How long to compute a single cell?

• Depends on other cells

• time

• Is this a polynomial running time?

• How big can get?

• At most non-empty partitions of elements

• algorithm in the worst case

O(k ⋅ n)

n

O(n2 ⋅ k)

k
n n

O(n3)

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

