# Dynamic Programming: LIS, Partitioning Books, and Edit Distance 

## Admin

- Student solutions updated
- Thursday 6:15-8:15 and 8-10 TA office hours moved to Saturday 4-6PM and 6-8PM
- Check the schedule


## Study Buddy System

- Less socializing this semester!
- Email me and l'll set up groups of 3-4 students
- sam@cs.williams.edu
- Up to you what you do in these groups
- Ideally something like:
- Ask each other questions
- Work through assignment questions or other questions in the textbook
- Reading proofs to each other will help you in this class.


## Longest Increasing Subsequence

- Given a sequence of integers as an array $A[1, \ldots n]$, find the longest subsequence whose elements are in increasing order
- Find the longest possible sequence of indices $1 \leq i_{1}<i_{2}<\ldots<i_{\ell} \leq n$ such that $A\left[i_{k}\right]<A\left[i_{k+1}\right]$
- E.g., $A=[3,8,4,5,9,2]$
- The longest increasing subsequence of $A$ is $1,4,5,9$
- Length of the longest increasing subsequence is 4
- To simplify, we will only compute length of the LIS


## LIS: Recursive Subproblem

- The most important part of a dynamic program: subproblems
- Subproblem. $L[i]$ denote the length of the longest increasing subsequence that ends in $A[i]$
- Our goal (in terms of the subproblem): $\max L[i]$

$$
1 \leq i \leq n
$$

- Base case. $L[1]=1$
- How do we go from one subproblem to the next, that is, how do we compute $L[i]$ assuming I know the values of $L[1], \ldots, L[i-1]$


## 12103764811

## Recurrence

- Let's say we know the length of the longest subsequence ending at $A[1], A[2], \ldots A[i-1]$
- What is the longest subsequence ending at $A[i]$ ?
- Must be:
- The longest subsequence ending at some $A[k]$
- With $A[k]<A[i]$
- OK, let's try all $k$ to get the answer


## Towards a Recurrence

- Let us take an example $A=[5,2,8,6,3,6,9,7]$
- $L[1]=1$ (just the sequence 5 )
- What is $L[2]$ ?
- Since $A[2]<A[1]$ it does not extend prev LIS, so it starts a new one: just 2
- $L(2)=1$
- What about $L(3)$ ?
- Since $A(3)>A(1)$ and $A(3)>A(2)$ is extends both subsequences, maximum length is 2
- $L(3)=2$


## Towards a Recurrence

- Let us take an example $A=[5,2,8,6,3,6,9,7]$
- So far $L(1,3)=[1,1,2]$
- What about $L(4)$ ?
- Either it extends a prev LIS ending at $A[1], A[2], A[3]$ (and we take maximum) + 1
- Or it doesn't extend any of them, and $L(4)=1$
- Do we need to remember the subsequences to check this?
- No we just see if $A(4)>A(i)$ for $i=1,2,3$
- Or it doesn't extend any of them, and $L(4)=1$


## LIS: Recursive Subproblem

- $L(j)=1+\max \{L(i) \mid i<j$ and $A[i]<A[j]\}$
- Assuming $\max \varnothing=0$


## Recursion to Dynamic Program

- If we used recursion (without memoization) we'll be inefficient-we'll do a lot of repeated work
- Once you have your recurrence, the remaining pieces of the dynamic programming algorithm are
- Evaluation order. In what order should I evaluate my subproblems so that everything I need to evaluate a new subproblem?
- For LIS we just left-to-right on array indices
- Memoization structure. Need a table (array or multi-dimensional array) to store computed values
- For LIS, we just need a one dimensional array
- For others, we may need a table (two-dimensional array)


## Dynamic Programming Practice

- Suppose we have to scan through a shelf of books, and this task can be split between $k$ workers
- We do not want to reorder/rearrange the books, so instead we divide the shelf into $k$ regions
- Each worker is assigned one of the regions
- What is the fairest way to divide the shelf up?



## DP: Dividing Work

- Suppose we have to scan through a shelf of books, and this task can be split between $k$ workers
- We do not want to reorder/rearrange the books, so instead we divide the shelf into $k$ regions
- Each worker is assigned one of the regions
- What is the fairest way to divide the shelf up?
- If the books are equal length, we can just give each worker the same number of books
- What if books are not equal size?
- How can we find the fairest partition of work?


## The Linear Partition Problem

- Input. A input arrangement $S$ of nonnegative integers $\left\{s_{1}, \ldots, s_{n}\right\}$ and an integer $k$
- Problem. Partition $S$ into $k$ ranges such that the maximum sum over all the ranges is minimized
- Example.
- Consider the following arrangement

100200300400500600700800900

- Suppose $k=3$, where should we partition to minimize the maximum sum over all ranges?

100200300400500 | $600700 \mid 800900$

## Optimal Substructure

- Notice that the $k$ th partition starts after we place the ( $k-1$ )st "divider"
- Let us try to construct an optimal solution. Where can we place the last divider?
- Between some elements, suppose between $i$ th and $(i+1)$ st element where $1 \leq i \leq n-1$
- What is the cost of placing the last divider here? Max of:
- Cost of the last partition $\sum_{j=i+1}^{n} s_{j}$
- Cost of the optimal way to partition the elements to the "left" - this is a smaller version of the same problem!
- Question: Can you come up with the subproblem for the dynamic program?


## Dividing Work: DP Algorithm

- Subproblem. $M[i, j]$ be the minimum cost over all partitions of first $i$ books into $j$ partitions, $1 \leq i \leq n, 1 \leq j \leq k$
- Base cases.
- $M[1, j]=s_{1}$ for all $1 \leq j \leq k$
- $M[i, 1]=\sum_{t=1}^{i} s_{t}$ for all $1 \leq i \leq n$
- Recurrence.
- Dictates how we go from one subproblem to the next
- Now we have a two dimensional table so we also need to think about which order to go in (what the dependencies are...)


## Dividing Work: DP Algorithm

- Subproblem. $M[i, j]$ be the minimum cost over all partitions of first $i$ books into $j$ partitions, $1 \leq i \leq n, 1 \leq j \leq k$
- Base cases.
- $M[1, j]=s_{1}$ for all $1 \leq j \leq k$
- $M[i, 1]=\sum_{t=1}^{i} s_{t}$ for all $1 \leq i \leq n$
. Recurrence. $M[i, j]=\min _{1 \leq i^{\prime} \leq i} \max \left\{M\left(i^{\prime}, j-1\right), \sum_{t=i^{\prime}+1}^{i} s_{t}\right\}$
- Final solution. $M[n, k]$
- Memoization structure. Two-dimensional array.
- Evaluation order.?


## Evaluation Order

- What do we need filled in so that we can fill in $M[i, j]$ ?
- For all $i^{\prime}<i$, need $M\left[i^{\prime}, j-1\right]$
- Plan: fill in all $M[i, 1]$, then all $M[i, 2]$ (in increasing order of $i$ ), then all $M[i, 3]$, and so on
- Let's draw out $M$ where each value of $j$ is a row of M


## Dividing Work: Final Pieces

- Evaluation order.
- To fill out one cell, we need to take min over the values to the left in the previous row
- Thus, we fill out rows one-by-one
- Called row major order
- Running time?
- Size of table: $O(k \cdot n)$
- How long to compute a single cell?
- Depends on $n$ other cells


Row-major order

- $O\left(n^{2} \cdot k\right)$ time


## Running Time

- Running time
- Size of table: $O(k \cdot n)$
- How long to compute a single cell?
- Depends on $n$ other cells
- $O\left(n^{2} \cdot k\right)$ time
- Is this a polynomial running time?
- How big can $k$ get?
- At most $n$ non-empty partitions of $n$ elements
- $O\left(n^{3}\right)$ algorithm in the worst case


## Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!


## Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

