
Dynamic Programming

“Those who cannot remember the past are
condemned to repeat it.”

— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

Admin

• Assignment 3 back

• Some common issues with greedy/exchange
arguments

• “Greedy worksheet” linked to on course webpage

• We’ll go over greedy again in midterm review

Student solutions!
• PDF on glow containing student solutions to some

assignment problems

• Idea: give you an idea of how non-polished proofs
might look

• (No promises of perfect correctness, or ideal
length, or everything being explained)

• Don’t distribute

Assignments
• Assignment 5 due Saturday

• Make sure to keep up with assignments!

• Midterm soon

• Weighted heavily

• Much better to let me know beforehand if there’s
an issue

Midterm review
• Next Monday evening

• (Any questions/comments about that time?)

• All remote

• I’ll send around a survey about when people can
make it

• You can send in questions if you can’t attend

• Will post a recording

Apply to be a TA!
• Application form on dept website

• Fun, educational

• OK if remote (need to live in US)

Apply to be a TA!
• Application form on dept website

• Fun, educational

• OK if remote (need to live in US)

• This naive recurrence is horribly slow

• Let denote the # of recursive calls

•

• Can we lower bound this?

T(n)

T(n) = T(n − 1) + T(n − 2) + 1

Slow Recursion: Fibonnacci

• Correct answer:

• for all

•
 where (exponential!)

T(n) ≥ Fn n ≥ 1

Fn ≥ ϕn−2 ϕ = (1 + 5
2) ≈ 1.6n−2

Slow Recursion: Fibonnacci

Memo(r)ization
• Recursive Fibonacci algorithm is slow because it computes the

same functions over and over

• Can speed it up considerably by writing down the results of our
recursive calls, and looking them up when we need them later

Dynamic Programming: Smart Recursion
• Dynamic programming is all about smart recursion by using

memoization

• Here it cuts down on all useless recursive calls

T[n] = T[n − 1] + T[n − 2] + 1

Memoization

• Memoization: technique to store expensive function
calls so that they can be looked up later

• (Avoids calling the expensive function multiple
times)

• A core concept of dynamic programming, but also
used elsewhere

Memoizing Fibonacci
• Write each entry down in an array when you compute it

• How do we compute the th Fibonacci number?

• Fill in the first two Fibonacci numbers.

• Use those to fill in the third, then fourth, etc.

• Takes to fill in a table entry

• overall

n

O(1)

O(n)

A = 1 |1 |2 |3 |5 |8 |13 |21

Dynamic Programming
• Formalized by Richard Bellman in the 1950s

• Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Weighted Scheduling
• Input. Given intervals labeled with starting and finishing

times and each interval has a non-negative
value or weight

• Output. We must select non-overlapping intervals with the maximum
weight. That is, output that are pairwise non-
overlapping that maximize

• Optimal cost. Can we just find the value of the best solution? Find
the largest where intervals in are compatible.

• Let be the value of the optimal schedule

n 1,…, n
(s1, f1), …, (sn, fn)

vi

I ⊆ {1,…, n}

∑
i∈I

vi

∑
i∈I

vi I

Opt-Schedule(n)

Remember Greedy?
• Greedy algorithm earliest-finish-time first

• Considers jobs in order of finish times

• Greedily picks jobs that are non-overlapping

• We proved greedy is optimal when all weights are one

• How about the weighted interval scheduling problem?

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1

Greedy fails spectacularly

Helpful Information
• Suppose the intervals are sorted by finish times

• Let be the predecessors of that is, largest index such
that intervals and are not overlapping

• Define if all intervals overlap with

p(j) j i < j
i j

p(j) = 0 i < j j

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
• Let be the predecessors of that is, largest index such

that intervals and are not overlapping

• , ,

p(j) j i < j
i j

p(8) = ? p(7) = ? p(2) = ?

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Helpful Information
• Let be the predecessors of that is, largest index such

that intervals and are not overlapping

• , ,

p(j) j i < j
i j

p(8) = 1 p(7) = 3 p(2) = 0

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Subproblem for our DP
• Subproblem.

• For let be the value of the optimal
schedule that only uses intervals

• Notice the optimal substructure

• Figuring out how we can build from smaller subproblems

• Let us consider the last interval with

• Case 1. Interval is not in the optimal solution, then

• Case 2. Interval is in the optimal solution

• No two intervals in the schedule can overlap: cannot have
such that

• Only intervals can be in the same schedule as

1 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

i (si, ti)
i

Opt-Schedule(i) = Opt-Schedule(i − 1)
i

j < i
si ≤ fj

j ≤ p(i) i

• Subproblem.

• For let be the value of the optimal
schedule that only uses intervals

• Notice the optimal substructure

• Recurrence. Going from one subproblem to the next

•

• Base case.

• (no intervals to schedule)

• Correctness.

• Using induction based on the recurrence

1 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Opt-Scheduler(0) = 0

Recurrence for our DP

Finding p(i)
• Can do a linear scan in time

• Or: we have the intervals in sorted order by finishing
time. Binary search for (the start time of) in this
list

• Finds the largest interval with

• Then

• Time is

O(i)

si i

j fj ≤ si

p(i) = j

O(log i) = O(log n)

Running Time?
• How many subproblems do we need to solve?

•

• How long does it take to solve a subproblem?

• to take the max

• to find

• Do we need to do any preprocessing?

• Need to sort;

• Overall running time:

O(n)

O(1)

O(log n) p(i)

O(n log n)

O(n log n)

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Recursive Solution?
Suppose for now that we do not memoize: just a divide and conquer
recursion approach to the problem.

:

• If , return

• Else

• Return

• How many recursive calls in the worst case?

• Depends on

• Can we create a bad instance?

Opt-Schedule(i)
j = 0 0

max(Opt-Schedule(j − 1), vj + Opt-Schedule(p(j)))

p(i)

Recursive Solution: Exponential
• For this example, asymptotically how many recursive calls?

• Grows like the Fibonacci sequence: exponential time!

• Lots of redundancy!

• How many distinct subproblems are there to solve?

• for Opt-Schedule(i) 1 ≤ i ≤ n + 1

3

4

5

1

2

p(1) = 0, p(j) = j-2

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

5

Dynamic Programming Tips
• Recurrence/subproblem is the key!

• DP is a lot like divide and conquer, while writing extra
things down

• When coming to a new problem, ask yourself what
subproblems may be useful? How can you break that
subproblem into smaller subproblems?

• Be clear while writing the subproblem and recurrence!

• In DP we usually keep track of the cost of a solution, rather
than the solution itself

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

