Dynamic Programming

“Those who cannot remember the past are
condemned to repeat it.”

— Jorge Agustin Nicolas Ruiz de Santayana y Borras,

Admin

Assignment 3 back

Some common issues with greedy/exchange
arguments

“Greedy worksheet” linked to on course webpage

We'll go over greedy again in midterm review

Student solutions!

PDF on glow containing student solutions to some
assignment problems

|[dea: give you an idea of how non-polished proofs
might look

(No promises of perfect correctness, or ideal
length, or everything being explained)

Don’t distribute

Assignments

* Assignment 5 due Saturday

* Make sure to keep up with assignments!
* Midterm soon
* Weighted heavily

e Much better to let me know beforehand if there’s
an Issue

Midterm review

Next Monday evening
(Any gquestions/comments about that time?)
All remote

I'll send around a survey about when people can
make It

You can send in questions it you can't attend

Will post a recording

Apply to be a TA!

* Application form on dept website
e Fun, educational

 OK if remote (need to live in US)

Apply to be a TA!

* Application form on dept website
e Fun, educational

 OK if remote (need to live in US)

Slow Recursion: Fibonnacci

* This naive recurrence is horribly slow
« Let 7T(n) denote the # of recursive calls
e TM)=Th—-1)+Tn-2)+1

e Can we lower bound this?

RecF1Bo(n):
ifn=0
return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + ReEcFiBo(n — 2)

Slow Recursion: Fibonnacci

e (Correct answer:

e« T(n) > F foralln >1

1 +4/5
B2 "% where ¢p = (2\/_) ~ 1.6"% (exponential!)

RecF1Bo(n):
ifn=0
return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + ReEcFiBo(n — 2)

Memo(r)ization

* Recursive Fibonacci algorithm is slow because it computes the
same functions over and over

 Can speed it up considerably by writing down the results of our
recursive calls, and looking them up when we need them later

912% (£ (B (&) EF_z% F) E) (R (F) (R
EF_z% F) (7 (R (7 (R

Dynamic Programming: Smart Recursion

* Dynamic programming is all about smart recursion by using
memoization

e Here it cuts down on all useless recursive calls

T[n]=T[n—1]+T[n—2]+1

T
=
i

Memoization

 Memoization: technigue to store expensive function
calls so that they can be looked up later

* (Avoids calling the expensive function multiple
times)

* A core concept of dynamic programming, but also
used elsewhere

Memoizing Fibonacci

* Write each entry down in an array when you compute it
« How do we compute the nth Fibonacci number?

* Fill in the first two Fibonacci numbers.

* Use those to fill in the third, then fourth, etc.

« Takes O(1) to fill in a table entry

e O(n) overall

A=1]1]2|3]5/8|13|21

Dynamic Programming

 Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense,
and he actually had a pathological fear and hatred of the word “research”. I'm not using the term
lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term “research” in his presence. You can imagine how he felt, then, about the
term “mathematical’. .. .1 felt | had to do something to shield Wilson and the Air Force from the fact

that | was really doing mathematics inside the RAND Corporation. What title, what name, could |
choose?

 Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

« Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |[dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

Analyze space and running time. As always!

Weighted Scheduling

Input. Given n intervals labeled 1,..., n with starting and finishing
times (sy, /1), ---,(S,, f,) and each interval has a non-negative
value or weight v;

Output. We must select non-overlapping intervals with the maximum
weight. Thatis, output I C {1,...,n} that are pairwise non-
overlapping that maximize 2 V;
el
Optimal cost. Can we just find the value of the best solution? Find
the largest Z v; where intervals in I are compatible.
el

Let Opt-Schedule(n) be the value of the optimal schedule

Remember Greedy?

* Greedy algorithm earliest-finish-time first

e Considers jobs in order of finish times

* Greedily picks jobs that are non-overlapping

 We proved greedy is optimal when all weights are one

 How about the weighted interval scheduling problem?

weight =999 —>

weight=1 —>

h

v

weight = 1
, Ve19

0

4 5 6 7 8

Greedy fails spectacularly

9

10

11

>

time

Helpful Information

e Suppose the intervals are sorted by finish times

« Let p(j) be the predecessors of j that is, largest index i < j such
that intervals 1 and J are not overlapping

« Define p(j) = O if all intervals i < j overlap with j

»> time

Helpful Information

« Let p(j) be the predecessors of j that is, largest index i < j such
that intervals 1 and J are not overlapping

» pB) =7, p()=7 pl)=7?

»> time

Helpful Information

« Let p(j) be the predecessors of j that is, largest index i < j such
that intervals 1 and J are not overlapping

+ p& =1, p(7)=3, p2)=0

»> time

Subproblem for our DP

 Subproblem.

« Forl <1i < n, let Opt-Schedule(i) be the value of the optimal
schedule that only uses intervals {1,..., 1}

* Notice the optimal substructure

e Figuring out how we can build from smaller subproblems

« Let us consider the last interval i with (s, 1,)

« Case 1. Interval 1 is not in the optimal solution, then
Opt-Schedule(i) = Opt-Schedule(i — 1)

« Case 2. Interval 1 is in the optimal solution

« No two intervals in the schedule can overlap: cannot have J < 1
such that s; < f;

« Only intervals j < p(i) can be in the same schedule as i

Recurrence for our DP

Subproblem.

« Forl <1i < n, let Opt-Schedule(i) be the value of the optimal
schedule that only uses intervals {1,...,1}

* Notice the optimal substructure

Recurrence. Going from one subproblem to the next

« Opt-Schedule(i) =
max | Opt-Schedule(i — 1), v; + Opt-Schedule(p(i)) }

Base case.
« Opt-Scheduler(0) = 0 (no intervals to schedule)

Correctness.

* Using induction based on the recurrence

Finding p(1)

« Can do a linear scan in O(i) time

* Or: we have the intervals in sorted order by finishing
time. Binary search for s; (the start time of 1) in this

st
. Finds the largest interval j with f; < s;

e Thenp(i) =7
« Time is O(logi) = O(log n)

Running Time?

How many subproblems do we need to solve?
. O(n)

How long does it take to solve a subproblem?
« O(1) to take the max

« O(logn) to find p(i)

Do we need to do any preprocessing?
 Need to sort; O(nlog n)

Overall running time: O(n log n)

Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

« Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |[dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

Analyze space and running time. As always!

Recursive Solution?

Suppose for now that we do not memoize: just a divide and conquer
recursion approach to the problem.

Opt-Schedule(i):
e Ifj=20,return0
 Else

. Return max(Opt-Schedule(j — 1), v; + Opt-Schedule(p(j)))

« How many recursive calls in the worst case?
« Depends on p(i)

e (Can we create a bad instance?

Recursive Solution: Exponential

* For this example, asymptotically how many recursive calls?
 Grows like the Fibonacci sequence: exponential time!
* Lots of redundancy!

« How many distinct subproblems are there to solve?

e Opt-Schedule(i)forl <i<n+1

’ ONONONONBONO,
p(1) = 0, p() = j-2 @ @

recursion tree

Dynamic Programming Tips

* Recurrence/subproblem is the key!

 DP is alot like divide and conquer, while writing extra
things down

* \When coming to a new problem, ask yourselt what
subproblems may be useful? How can you break that
subproblem into smaller subproblems?

* Be clear while writing the subproblem and recurrence!

* In DP we usually keep track of the cost of a solution, rather
than the solution itself

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

