
Dynamic Programming

“Those who cannot remember the past are 
condemned to repeat it.”  
 
— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,



Admin

• Assignment 3 back 

• Some common issues with greedy/exchange 
arguments 

• “Greedy worksheet” linked to on course webpage 

• We’ll go over greedy again in midterm review



Student solutions!
• PDF on glow containing student solutions to some 

assignment problems 

• Idea: give you an idea of how non-polished proofs 
might look 

• (No promises of perfect correctness, or ideal 
length, or everything being explained) 

• Don’t distribute



Assignments
• Assignment 5 due Saturday 

• Make sure to keep up with assignments! 

• Midterm soon 

• Weighted heavily 

• Much better to let me know beforehand if there’s 
an issue



Midterm review
• Next Monday evening 

• (Any questions/comments about that time?) 

• All remote 

• I’ll send around a survey about when people can 
make it 

• You can send in questions if you can’t attend 

• Will post a recording



Apply to be a TA!
• Application form on dept website 

• Fun, educational 

• OK if remote (need to live in US)
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• This naive recurrence is horribly slow 

• Let  denote the # of recursive calls 

•  

• Can we lower bound this?

T(n)

T(n) = T(n − 1) + T(n − 2) + 1

Slow Recursion: Fibonnacci



• Correct answer: 

•  for all  

•
 where  (exponential!)

T(n) ≥ Fn n ≥ 1

Fn ≥ ϕn−2 ϕ = ( 1 + 5
2 ) ≈ 1.6n−2

Slow Recursion: Fibonnacci



Memo(r)ization
• Recursive Fibonacci algorithm is slow because it computes the 

same functions over and over 

• Can speed it up considerably by writing down the results of our 
recursive calls, and looking them up when we need them later



Dynamic Programming: Smart Recursion
• Dynamic programming is all about smart recursion by using 

memoization  

• Here it cuts down on all useless recursive calls

T[n] = T[n − 1] + T[n − 2] + 1



Memoization

• Memoization: technique to store expensive function 
calls so that they can be looked up later 

• (Avoids calling the expensive function multiple 
times) 

• A core concept of dynamic programming, but also 
used elsewhere



Memoizing Fibonacci
• Write each entry down in an array when you compute it 

• How do we compute the th Fibonacci number? 

• Fill in the first two Fibonacci numbers. 

• Use those to fill in the third, then fourth, etc. 

• Takes  to fill in a table entry 

•  overall

n

O(1)

O(n)

A = 1 |1 |2 |3 |5 |8 |13 |21



Dynamic Programming
• Formalized by Richard Bellman in the 1950s 

 
 
 
 
 
 
 
 
 

• Chose the name “dynamic programming” to hide the 
mathematical nature of the work from military bosses



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!



Weighted Scheduling
• Input. Given  intervals labeled  with starting and finishing 

times   and each interval has a non-negative 
value or weight   

• Output. We must select non-overlapping intervals with the maximum 
weight.  That is, output  that are pairwise non-
overlapping that maximize  

• Optimal cost. Can we just find the value of the best solution? Find 
the largest  where intervals in  are compatible. 

• Let  be the value of the optimal schedule

n 1,…, n
(s1, f1), …, (sn, fn)

vi

I ⊆ {1,…, n}

∑
i∈I

vi

∑
i∈I

vi I

Opt-Schedule(n)



Remember Greedy?
• Greedy algorithm earliest-finish-time first 

• Considers jobs in order of finish times 

• Greedily picks jobs that are non-overlapping 

• We proved greedy is optimal when all weights are one 

• How about the weighted interval scheduling problem?

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

weight = 1

Greedy fails spectacularly 



Helpful Information
• Suppose the intervals are sorted by finish times 

• Let  be the predecessors of  that is, largest index  such 
that intervals  and  are not overlapping  

• Define  if all intervals  overlap with 

p( j) j i < j
i j

p( j) = 0 i < j j
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Helpful Information
• Let  be the predecessors of  that is, largest index  such 

that intervals  and  are not overlapping 

• ,   ,   

p( j) j i < j
i j

p(8) = 1 p(7) = 3 p(2) = 0

time
0 1 2 3 4 5 6 7 8 9 10 11
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Subproblem for our DP
• Subproblem. 

• For  let  be the value of the optimal 
schedule that only uses intervals  

• Notice the optimal substructure 

• Figuring out how we can build from smaller subproblems 

• Let us consider the last interval  with  

• Case 1. Interval  is not in the optimal solution, then 
  

• Case 2. Interval  is in the optimal solution 

• No two intervals in the schedule can overlap: cannot have  
such that  

• Only intervals  can be in the same schedule as 

1 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

i (si, ti)
i

Opt-Schedule(i) = Opt-Schedule(i − 1)
i

j < i
si ≤ fj

j ≤ p(i) i



• Subproblem. 

• For  let  be the value of the optimal 
schedule that only uses intervals  

• Notice the optimal substructure 

• Recurrence.  Going from one subproblem to the next 

•

 

• Base case. 

•  (no intervals to schedule) 

• Correctness. 

• Using induction based on the recurrence

1 ≤ i ≤ n, Opt-Schedule(i)
{1,…, i}

Opt-Schedule(i) =
max{Opt-Schedule(i − 1), vi + Opt-Schedule(p(i))}

Opt-Scheduler(0) = 0

Recurrence for our DP



Finding p(i)
• Can do a linear scan in  time 

• Or: we have the intervals in sorted order by finishing 
time.  Binary search for  (the start time of ) in this 
list 

• Finds the largest interval  with  

• Then  

• Time is 

O(i)

si i

j fj ≤ si

p(i) = j

O(log i) = O(log n)



Running Time?
• How many subproblems do we need to solve? 

•  

• How long does it take to solve a subproblem? 

•  to take the max 

•  to find  

• Do we need to do any preprocessing? 

• Need to sort;  

• Overall running time: 

O(n)

O(1)

O(log n) p(i)

O(n log n)

O(n log n)



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!



Recursive Solution?
Suppose for now that we do not memoize:  just a divide and conquer 
recursion approach to the problem. 

: 

• If , return  

• Else 

• Return  

• How many recursive calls in the worst case? 

• Depends on  

• Can we create a bad instance?

Opt-Schedule(i)
j = 0 0

max(Opt-Schedule( j − 1), vj + Opt-Schedule(p( j)))

p(i)



Recursive Solution: Exponential
• For this example, asymptotically how many recursive calls? 

• Grows like the Fibonacci sequence: exponential time! 

• Lots of redundancy! 

• How many distinct subproblems are there to solve? 

•  for Opt-Schedule(i) 1 ≤ i ≤ n + 1

3

4

5

1

2

p(1) = 0, p(j) = j-2

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

5



Dynamic Programming Tips
• Recurrence/subproblem is the key! 

• DP is a lot like divide and conquer, while writing extra 
things down 

• When coming to a new problem, ask yourself what 
subproblems may be useful?  How can you break that 
subproblem into smaller subproblems? 

• Be clear while writing the subproblem and recurrence! 

• In DP we usually keep track of the cost of a solution, rather 
than the solution itself
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