Dynamic Programming

"Those who cannot remember the past are condemned to repeat it."

- Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

Admin

- Assignment 3 back
- Some common issues with greedy/exchange arguments
- "Greedy worksheet" linked to on course webpage
- We'll go over greedy again in midterm review

Student solutions!

- PDF on glow containing student solutions to some assignment problems
- Idea: give you an idea of how non-polished proofs might look
- (No promises of perfect correctness, or ideal length, or everything being explained)
- Don't distribute

Assignments

- Assignment 5 due Saturday
- Make sure to keep up with assignments!
- Midterm soon
- Weighted heavily
- Much better to let me know beforehand if there's an issue

Midterm review

- Next Monday evening
- (Any questions/comments about that time?)
- All remote
- I'll send around a survey about when people can make it
- You can send in questions if you can't attend
- Will post a recording

Apply to be a TA!

- Application form on dept website
- Fun, educational
- OK if remote (need to live in US)

Apply to be a TA!

- Application form on dept website
- Fun, educational
- OK if remote (need to live in US)

Slow Recursion: Fibonnacci

- This naive recurrence is horribly slow
- Let $T(n)$ denote the \# of recursive calls
- $T(n)=T(n-1)+T(n-2)+1$
- Can we lower bound this?

$$
\begin{aligned}
& \frac{\operatorname{RecFibo}(n):}{\text { if } n=0} \\
& \quad \text { return } 0 \\
& \text { else if } n=1 \\
& \quad \text { return } 1 \\
& \text { else } \quad \text { return } \operatorname{RECFibo}(n-1)+\operatorname{RecFibo}(n-2) \\
& \quad
\end{aligned}
$$

Slow Recursion: Fibonnacci

- Correct answer:
- $T(n) \geq F_{n}$ for all $n \geq 1$
- $F_{n} \geq \phi^{n-2}$ where $\phi=\left(\frac{1+\sqrt{5}}{2}\right) \approx 1.6^{n-2}$ (exponential!)

$$
\begin{aligned}
& \frac{\operatorname{ReCFibo}(n):}{\text { if } n=0} \\
& \quad \text { return } 0 \\
& \text { else if } n=1 \\
& \quad \text { return } 1 \\
& \text { else } \quad \text { return } \operatorname{RECFibo}(n-1)+\operatorname{RecFibo}(n-2) \\
& \quad
\end{aligned}
$$

Memo(r)ization

- Recursive Fibonacci algorithm is slow because it computes the same functions over and over
- Can speed it up considerably by writing down the results of our recursive calls, and looking them up when we need them later

Dynamic Programming: Smart Recursion

- Dynamic programming is all about smart recursion by using memoization
- Here it cuts down on all useless recursive calls

$$
T[n]=T[n-1]+T[n-2]+1
$$

Memoization

- Memoization: technique to store expensive function calls so that they can be looked up later
- (Avoids calling the expensive function multiple times)
- A core concept of dynamic programming, but also used elsewhere

Memoizing Fibonacci

- Write each entry down in an array when you compute it
- How do we compute the nth Fibonacci number?
- Fill in the first two Fibonacci numbers.
- Use those to fill in the third, then fourth, etc.
- Takes $O(1)$ to fill in a table entry
- $O(n)$ overall

$$
A=1|1| 2|3| 5|8| 13 \mid 21
$$

Dynamic Programming

- Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a pathological fear and hatred of the word "research". I'm not using the term lightly; l'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term "research" in his presence. You can imagine how he felt, then, about the term "mathematical". .. I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose?

- Chose the name "dynamic programming" to hide the mathematical nature of the work from military bosses

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Weighted Scheduling

- Input. Given n intervals labeled $1, \ldots, n$ with starting and finishing times $\left(s_{1}, f_{1}\right), \ldots,\left(s_{n}, f_{n}\right)$ and each interval has a non-negative value or weight v_{i}
- Output. We must select non-overlapping intervals with the maximum weight. That is, output $I \subseteq\{1, \ldots, n\}$ that are pairwise nonoverlapping that maximize $\sum_{i \in I} v_{i}$
- Optimal cost. Can we just find the value of the best solution? Find the largest $\sum_{i \in I} v_{i}$ where intervals in I are compatible.
- Let Opt-Schedule(n) be the value of the optimal schedule

Remember Greedy?

- Greedy algorithm earliest-finish-time first
- Considers jobs in order of finish times
- Greedily picks jobs that are non-overlapping
- We proved greedy is optimal when all weights are one
- How about the weighted interval scheduling problem?

Helpful Information

- Suppose the intervals are sorted by finish times
- Let $p(j)$ be the predecessors of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- Define $p(j)=0$ if all intervals $i<j$ overlap with j

Helpful Information

- Let $p(j)$ be the predecessors of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- $p(8)=?, p(7)=?, \quad p(2)=$?

Helpful Information

- Let $p(j)$ be the predecessors of j that is, largest index $i<j$ such that intervals i and j are not overlapping
- $p(8)=1, p(7)=3, p(2)=0$

Subproblem for our DP

- Subproblem.
- For $1 \leq i \leq n$, let Opt-Schedule (i) be the value of the optimal schedule that only uses intervals $\{1, \ldots, i\}$
- Notice the optimal substructure
- Figuring out how we can build from smaller subproblems
- Let us consider the last interval i with $\left(s_{i}, t_{i}\right)$
- Case 1. Interval i is not in the optimal solution, then Opt-Schedule $(i)=$ Opt-Schedule $(i-1)$
- Case 2. Interval i is in the optimal solution
- No two intervals in the schedule can overlap: cannot have $j<i$ such that $s_{i} \leq f_{j}$
- Only intervals $j \leq p(i)$ can be in the same schedule as i

Recurrence for our DP

- Subproblem.
- For $1 \leq i \leq n$, let Opt-Schedule (i) be the value of the optimal schedule that only uses intervals $\{1, \ldots, i\}$
- Notice the optimal substructure
- Recurrence. Going from one subproblem to the next
- Opt-Schedule $(i)=$ $\max \left\{\right.$ Opt-Schedule $(i-1), v_{i}+$ Opt-Schedule $\left.(p(i))\right\}$
- Base case.
- Opt-Scheduler(0) $=0$ (no intervals to schedule)
- Correctness.
- Using induction based on the recurrence

Finding $p(i)$

- Can do a linear scan in $O(i)$ time
- Or: we have the intervals in sorted order by finishing time. Binary search for s_{i} (the start time of i) in this list
- Finds the largest interval j with $f_{j} \leq s_{i}$
- Then $p(i)=j$
- Time is $O(\log i)=O(\log n)$

Running Time?

- How many subproblems do we need to solve?
- $O(n)$
- How long does it take to solve a subproblem?
- $O(1)$ to take the max
- $O(\log n)$ to find $p(i)$
- Do we need to do any preprocessing?
- Need to sort; $O(n \log n)$
- Overall running time: $O(n \log n)$

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Recursive Solution?

Suppose for now that we do not memoize: just a divide and conquer recursion approach to the problem.

Opt-Schedule(i):

- If $j=0$, return 0
- Else
- Return max(Opt-Schedule $\left.(j-1), v_{j}+\operatorname{Opt-Schedule~}(p(j))\right)$
- How many recursive calls in the worst case?
- Depends on $p(i)$
- Can we create a bad instance?

Recursive Solution: Exponential

- For this example, asymptotically how many recursive calls?
- Grows like the Fibonacci sequence: exponential time!
- Lots of redundancy!
- How many distinct subproblems are there to solve?
- Opt-Schedule(i) for $1 \leq i \leq n+1$

recursion tree

Dynamic Programming Tips

- Recurrence/subproblem is the key!
- DP is a lot like divide and conquer, while writing extra things down
- When coming to a new problem, ask yourself what subproblems may be useful? How can you break that subproblem into smaller subproblems?
- Be clear while writing the subproblem and recurrence!
- In DP we usually keep track of the cost of a solution, rather than the solution itself

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

