Selection and Intro to Dynamic Programming

Admin

- Assignment 4 due tomorrow (Saturday), Oct 17
- Assignment 5 due next Saturday, Oct 24
 - Shorter problem set, 3 problems
 - I'll get Assignment 5 and graded Assignment 3 back as soon as possible
- Midterm prep resources announced soon

October

November 2015									
	S	М	т	W	т	F	S		
	1	2	з	4	5	6	7		
	8	9	10	11	12	13	14		
	15	16	17	18	19	20	21		
	22	23	24	25	26	27	28		
	29	30							

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27	28	29	30	1	2	3
4	5	6	7	8	9	10
11	12 Columbus Day	13	14	15	16	17 A4
18	19	20	21	22	23	²⁴ A5
25	26	27	28 M	29	30	31 Halloween

Selection Algorithm: Idea

Select (A, k):

If |A| = 1: return A[1]

Else:

- Choose a pivot $p \leftarrow A[1, ..., n]$; let r be the rank of p
- $r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$
- If k = = r, return p
- Else:
 - If k < r: Select $(A_{< p}, k)$
 - Else: Select $(A_{>p}, k r)$

Selection: Problem Statement

Example. Take this array of size 10:

A = 12 | 2 | 4 | 5 | 3 | 1 | 10 | 7 | 9 | 8

Suppose we want to find 4th smallest element

- Choose pivot 8
- What is its rank?
 - Rank 7
- So let's find all of the smaller elements of A:
 - A' = 2|4|5|3|1|7
- Want to find the element of rank 4 in this new array

Selection: Problem Statement

Example. Take this array of size 10:

A = 12 |2|4|5|3|1|10|7|9|8

Suppose we want to find 4th smallest element

- Choose as pivot 3
- What is its rank?
 - Rank 3
- So let's find all of the **larger** elements of A:
 - A' = 12 | 4 | 5 | 10 | 7 | 9 | 8
- Want to find the element of rank 4 3 = 1 in this new array

When is this method good?

- If we guess the pivot right! (but we can't always do that)
- If we partition the array pretty evenly (the pivot is close to the middle)
 - Let's say our pivot is not in the first or last 3/10ths of the array
 - What is our recurrence?
 - $T(n) \le T(7n/10) + O(n)$
 - T(n) = O(n)

Our high-level goal

- Find a pivot that's close to the median—has a rank between 3n/10 and 7n/10, in time O(n)
- But the array is unsorted? How do we do that?
- Want to *always* be successful

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group

n = 54

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n/5 \rceil$ medians —- how???

- Divide the array of size n into [n/5] groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n/5 \rceil$ medians recursively

What did we gain?

- How can I show that the median of medians is "close to the center" of the array?
- What elements can I say, for sure, are ≤ the median of medians?
 - The smaller half of the medians
 - n/10 elements
- Any other elements?
 - Another 2 elements in each median's list

Visualizing MoM

- In the $5 \times n/5$ grid, each column represents five consecutive elements
- Imagine each column is sorted top down
- Imagine the columns as a whole are sorted left-right
 - We don't actually sort anything!
- MoM is the element closest to center of grid

Visualizing MoM

• Red cells (at least 3n/10) are smaller than M

How Good is the MoM?

Claim. Median of medians M is a good pivot, that is, at least 3/10th of the elements are $\geq M$ and at least 3/10th of the elements are $\leq M$.

Proof.

- Let $g = \lceil n/5 \rceil$ be the size of each group.
- M is the median of g medians
 - So $M \ge g/2$ of the group medians
 - Each median is greater than 2 elements in its group
 - Thus $M \ge 3g/2 \ge 3n/10$ elements
- Symmetrically, $M \leq 3n/10$ elements.

How to Use the MoM?

- There are 3n/10 elements smaller than the MoM
- By the same argument: 3n/10 elements larger than the MoM
- So we can throw out 3n/10 elements, adjust the value of k we are looking for, and recurse!
- Don't forget: we *also* recursed to find the MoM!

Recall: Selection

Select (A, k):

If |A| = 1: return A[1]

Else:

- Choose a pivot $p \leftarrow A[1, ..., n]$; let r be the rank of p
- $r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$
- If k = = r, return p
- Else:
 - If k < r: Select $(A_{< p}, k)$
 - Else: Select $(A_{>p}, k r)$

Linear time Selection

Select (A, k):

$$T(n/5) + O(n)$$

Larger subproblem

has size $\leq 7n/10$

- If |A| = 1: return A[1]; else:
 - Group elements into subarrays of size 5; find median in each
 - Choose a pivot p as the median of these medians
 - $r, A_{< p}, A_{> p} \leftarrow \text{Partition}((A, p)$
 - If k = = r, return p
 - Else:
 - If k < r: Select $(A_{< p}, k)$
 - Else: Select $(A_{>p}, k r)$

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence

- Okay, so we have a good pivot
- We are still doing two recursive calls
 - $T(n) \le T(n/5) + T(7n/10) + O(n)$
- Key: total work at each level still goes down!
- Decaying series gives us : T(n) = O(n)

Why the Magic Number 5?

- What was so special about 5 in our algorithm?
- It is the smallest odd number that works!
 - (Even numbers are problematic for medians)
- Let us analyze the recurrence with groups of size 3
 - $T(n) \le T(n/3) + T(2n/3) + O(n)$
 - Work is equal at each level of the tree!
 - $T(n) = \Theta(n \log n)$

Theory vs Practice

- O(n)-time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]
 - Does $\leq 5.4305n$ compares
- Upper bound:
 - [Dor–Zwick 1995] $\leq 2.95n$ compares
- Lower bound:
 - [Dor-Zwick 1999] $\geq (2 + 2^{-80})n$ compares.
- Constants are still too large for practice
- Random pivot works well in most cases!
 - We will analyze this when we do randomized algorithms

Recall Challenge Recurrence

• Recall the challenge recurrence

$$T(n) = \sqrt{n}T(\sqrt{n}) + O(n)$$

- How much work at each level? O(n)
- Analyzing how quickly the problem size goes down
- $n \to n^{1/2} \to n^{1/4} \to \ldots \to n^{1/2^L}$
- What is *L* for this to be a small constant?
- $L = \log \log n$ (number of levels)
- $T(n) = \Theta(n \log \log n)$,

Floors and Ceilings

- Why doesn't floors and ceilings matter?
- Suppose $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$
- First, for upper bound, we can safely overestimate
 - $T(n) \le 2T(\lceil n/2 \rceil) + n \le 2T(n/2 + 1) + n$
- Second, we can define a function $S(n) = T(n + \alpha)$, so that S(n) satisfies $S(n) \le S(n/2) + O(n)$

$$S(n) = T(n + \alpha) \le 2T(n/2 + \alpha/2 + 1) + n + \alpha$$

= $2T(n/2 + \alpha - \alpha/2 + 1) + n + \alpha$
= $2S(n/2 - \alpha/2 + 1) + n + \alpha$
 $\le 2S(n/2) + n + 2$, for $\alpha = 2$

Floors & Ceilings Don't Matter

- Why doesn't floors and ceilings matter?
- Suppose $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$
- First, for upper bound, we can safely overestimate
 - $T(n) \le 2T(\lceil n/2 \rceil) + n \le 2T(n/2 + 1) + n$
- Second, we can define a function $S(n) = T(n + \alpha)$, so that S(n)satisfies $S(n) \le S(n/2) + O(n)$
 - Setting $\alpha = 2$ works
- Finally, we know $S(n) = O(n \log n) = T(n+2)$

•
$$T(n) = O((n-2)\log(n-2)) = O(n\log n)$$

Can Assume Powers of 2

- Why doesn't taking powers of 2 matter?
- Running time T(n) is monotonically increasing
- Suppose *n* is not a power of 2, let $n' = 2^{\ell}$ be such that $n \le n' \le 2n$; then
- We can upper bound our asymptotic using n' and lower bound using n'/2
- In particular, let $T(n) \leq T(n')$
- And $T(n) \ge T(n'/2)$
- That is, $T(n) = \Theta(T(n'))$

Dynamic Programming

"Those who cannot remember the past are condemned to repeat it."

— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

- So far we have seen recursion examples that are smart and lead to efficient solutions
- This is not always the case
- For example,
 - Recursive Fibonacci

Definition. Recall Fibonacci numbers are defined by the following recurrence

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

- This naive recurrence is horribly slow
- Let T(n) denote the # of recursive calls
 - T(n) = T(n-1) + T(n-2) + 1
 - Can we lower bound this?

```
\frac{\text{RecFibo}(n):}{\text{if } n = 0}
return 0
else if n = 1
return 1
else
return RecFibo(n - 1) + \text{RecFibo}(n - 2)
```

- Correct answer:
- $T(n) \ge F_n$ for all $n \ge 1$

•
$$F_n \ge \phi^{n-2}$$
 where $\phi = \left(\frac{1+\sqrt{5}}{2}\right) \approx 1.6^{n-2}$ (exponential!)

$$\frac{\text{RecFibo}(n):}{\text{if } n = 0}$$
return 0
else if $n = 1$
return 1
else
return RecFibo $(n - 1) + \text{RecFibo}(n - 2)$

- Let's prove it's exponential; can we lower bound the running time using techniques we already have?
- $T(n) = T(n-1) + T(n-2) + \Theta(1)$
- $T(n) \ge 2T(n-2) + \Omega(1)$
- Level i has cost 2^i .
- There are n/2 levels
- $T(n) = \Omega(2^{n/2})$

Memo(r)ization

- Recursive Fibonacci algorithm is slow because it computes the same functions over and over
- Can speed it up considerably by writing down the results of our recursive calls, and looking them up when we need them later

Dynamic Programming: Smart Recursion

- Dynamic programming is all about smart recursion by using memoization
- Here it cuts down on all useless recursive calls

Memoization

- Memoization: technique to store expensive function calls so that they can be looked up later
- (Avoids calling the expensive function multiple times)
- A core concept of dynamic programming, but also used elsewhere

Memoizing Fibonacci

- Write each entry down in an array when you compute it
- How do we compute the *n*th Fibonacci number?
 - Fill in the first two Fibonacci numbers.
 - Use those to fill in the third, then fourth, etc.
 - Takes O(1) to fill in a table entry
 - O(n) overall

A = 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21

Dynamic Programming

• Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a pathological fear and hatred of the word "*research*". I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term "*research*" in his presence. You can imagine how he felt, then, about the term "*mathematical*"....I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose?

• Chose the name "dynamic programming" to hide the mathematical nature of the work from military bosses

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/</u> <u>teaching/algorithms/book/Algorithms-JeffE.pdf</u>)