
Selection and Intro to
Dynamic Programming

Admin
• Assignment 4 due tomorrow (Saturday), Oct 17

• Assignment 5 due next Saturday, Oct 24

• Shorter problem set, 3 problems

• I’ll get Assignment 5 and graded Assignment 3
back as soon as possible

• Midterm prep resources announced soon

A4

A5

M

Selection Algorithm: Idea
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose pivot

• What is its rank?

• Rank

• So let’s find all of the smaller elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• Choose as pivot

• What is its rank?

• Rank

• So let’s find all of the larger elements of :

•

• Want to find the element of rank in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1

When is this method good?
• If we guess the pivot right! (but we can’t always do that)

• If we partition the array pretty evenly (the pivot is close to
the middle)

• Let’s say our pivot is not in the first or last ths of the
array

• What is our recurrence?

•

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)

Our high-level goal

• Find a pivot that’s close to the median—-has a rank
between and , in time

• But the array is unsorted? How do we do that?

• Want to always be successful

3n/10 7n/10 O(n)

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians —- how???

n ⌈n/5⌉ 5

M ← ⌈n/5⌉

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians recursively
• Use median of medians as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

What did we gain?
• How can I show that the median of medians is “close to

the center” of the array?

• What elements can I say, for sure, are the median of
medians?

• The smaller half of the medians

• elements

• Any other elements?

• Another elements in each median’s list

≤

n/10

2

Visualizing MoM
• In the grid, each column represents five consecutive

elements

• Imagine each column is sorted top down

• Imagine the columns as a whole are sorted left-right

• We don’t actually sort anything!

• MoM is the element closest to center of grid

5 × n/5

Visualizing MoM
• Red cells (at least) are smaller than 3n/10 M

How Good is the MoM?
Claim. Median of medians is a good pivot, that is, at least th of
the elements are and at least th of the elements are .

Proof.

• Let be the size of each group.

• is the median of medians

• So of the group medians

• Each median is greater than 2 elements in its group

• Thus elements

• Symmetrically, elements.

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 ≥ 3n/10
M ≤ 3n/10 ∎

How to Use the MoM?

• There are elements smaller than the MoM

• By the same argument: elements larger than
the MoM

• So we can throw out elements, adjust the
value of we are looking for, and recurse!

• Don’t forget: we also recursed to find the MoM!

3n/10

3n/10

3n/10
k

Recall: Selection
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Linear time Selection
Select :

If : return ; else:

• Group elements into subarrays of size 5; find median in each

• Choose a pivot as the median of these medians

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem
has size ≤ 7n /10

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence
• Okay, so we have a good pivot

• We are still doing two recursive calls

•

• Key: total work at each level still goes down!

• Decaying series gives us :

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

Why the Magic Number 5?
• What was so special about 5 in our algorithm?

• It is the smallest odd number that works!

• (Even numbers are problematic for medians)

• Let us analyze the recurrence with groups of size 3

•

• Work is equal at each level of the tree!

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)

Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]

• Does compares

• Upper bound:

• [Dor–Zwick 1995] compares

• Lower bound:

• [Dor–Zwick 1999] compares.

• Constants are still too large for practice

• Random pivot works well in most cases!

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n

• Recall the challenge recurrence

• How much work at each level?

• Analyzing how quickly the problem size goes down

•

• What is for this to be a small constant?

• (number of levels)

• ,

T(n) = nT(n) + O(n)

O(n)

n → n1/2 → n1/4 → … → n1/2L

L
L = log log n
T(n) = Θ(n log log n)

Recall Challenge Recurrence

Floors and Ceilings
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2

Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

• Setting works

• Finally, we know

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)

Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter?

• Running time is monotonically increasing

• Suppose is not a power of 2, let be such that
; then

• We can upper bound our asymptotic using and lower bound
using

• In particular, let

• And

• That is,

T(n)

n n′ = 2ℓ

n ≤ n′ ≤ 2n

n′

n′ /2

T(n) ≤ T(n′)

T(n) ≥ T(n′ /2)

T(n) = Θ(T(n′))

Dynamic Programming

“Those who cannot remember the past are
condemned to repeat it.”

— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

Slow Recursion: Fibonnacci
• So far we have seen recursion examples that are smart and

lead to efficient solutions
• This is not always the case
• For example,

• Recursive Fibonacci

Definition. Recall Fibonacci numbers are defined by the
following recurrence

• This naive recurrence is horribly slow

• Let denote the # of recursive calls

•

• Can we lower bound this?

T(n)

T(n) = T(n − 1) + T(n − 2) + 1

Slow Recursion: Fibonnacci

• Correct answer:

• for all

•
 where (exponential!)

T(n) ≥ Fn n ≥ 1

Fn ≥ ϕn−2 ϕ = (1 + 5
2) ≈ 1.6n−2

Slow Recursion: Fibonnacci

• Let’s prove it’s exponential; can we lower bound the running time
using techniques we already have?

•

•

• Level has cost .

• There are levels

•

T(n) = T(n − 1) + T(n − 2) + Θ(1)

T(n) ≥ 2T(n − 2) + Ω(1)

i 2i

n/2

T(n) = Ω(2n/2)

Slow Recursion: Fibonnacci

Memo(r)ization
• Recursive Fibonacci algorithm is slow because it computes the

same functions over and over

• Can speed it up considerably by writing down the results of our
recursive calls, and looking them up when we need them later

Dynamic Programming: Smart Recursion
• Dynamic programming is all about smart recursion by using

memoization

• Here it cuts down on all useless recursive calls

T[n] = T[n − 1] + T[n − 2] + 1

Memoization

• Memoization: technique to store expensive function
calls so that they can be looked up later

• (Avoids calling the expensive function multiple
times)

• A core concept of dynamic programming, but also
used elsewhere

Memoizing Fibonacci
• Write each entry down in an array when you compute it

• How do we compute the th Fibonacci number?

• Fill in the first two Fibonacci numbers.

• Use those to fill in the third, then fourth, etc.

• Takes to fill in a table entry

• overall

n

O(1)

O(n)

A = 1 |1 |2 |3 |5 |8 |13 |21

Dynamic Programming
• Formalized by Richard Bellman in the 1950s

• Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Recipe for a Dynamic Program
• Formulate the right subproblem. The subproblem must have an

optimal substructure

• Formulate the recurrence. Identify how the result of the smaller
subproblems can lead to that of a larger subproblem

• State the base case(s). The subproblem thats so small we know
the answer to it!

• State the final answer. (In terms of the subproblem)

• Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

• Identify evaluation order. Identify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identify an evaluation order

• Analyze space and running time. As always!

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

