Selection and Intro to
Dynamic Programming

Algonthm
Direction

|

Admin

* Assignment 4 due tomorrow (Saturday), Oct 17
e Assignment 5 due next Saturday, Oct 24
* Shorter problem set, 3 problems

* |'ll get Assignment 5 and graded Assignment 3
back as soon as possible

 Midterm prep resources announced soon

October

November 2015

T W T FE S
3 4 B 6 7
10 11 12 13 14
17 18 19 20 21
22 23 24 25 26 27 28
29 30

0 - W
&> e nNZ

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
28 29 30 1 2 3
4 5 6 7 8 9 10
11 i ¥ e 13 14 15 16 17
@ /4
18 19 20 21 22 23 24
A5
25 20 27 28 29 30 3] Hallewetn

Selection Algorithm: Idea

Select (A, k):

f |[A| = 1:return A[1]

Else:
« Choose apivotp < All,...,n]; let r be the rank of p
. 7, A<p, A>p « Partition((A, p)

e fk==rretunp

* Else:
. Ifk <r: Select(A_,, k)
. Else: Select(A.,,k—r)

>p?

Selection: Problem Statement

Example. Take this array of size 10:

A=12]214]5|3|1]10]7]9]8

Suppose we want to find 4th smallest element

« Choose pivot 8

 What is its rank?
« Rank 7/

« So let’s find all of the smaller elements of A:
« A'=214|5|3|1]|7

« Want to find the element of rank 4 in this new array

Selection: Problem Statement

Example. Take this array of size 10:

A=12]214]5|3|1]10]7]9]8

Suppose we want to find 4th smallest element

« Choose as pivot 3

* What is its rank?
« Rank3

« So let's find all of the larger elements of A:
« A'=121415|10|7]9]8

« Want to find the element of rank 4 — 3 = 1 in this new array

When is this method good?

* |f we guess the pivot right! (but we can’t always do that)

* |f we partition the array pretty evenly (the pivot is close to
the middle)

« Let's say our pivot is not in the first or last 3/10ths of the
array

e \What is our recurrence?
e T(n) < T(7n/10) 4+ O(n)
e T(n) = O(n)

Our high-level goal

 Find a pivot that's close to the median—-has a rank
between 3n/10 and 7n/10, in time O(n)

 But the array is unsorted”? How do we do that?

 Want to always be successtul

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

ORORCONCONONORORORORONC)
CONORCONONCRORORORORONCS
ONCORONCNCONORORORORORO
ORORONORORORORORORONC)
ORORONONCOROROROROND

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

n =54

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group
o Find M < median of [n/5] medians — how???

median of
medians

\

n =54

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

« Find M < median of [n/5] medians recursively .

« Use median of medians M as pivot 7
median of

\ o

What did we gain?

e How can | show that the median of medians is “close to
the center” of the array?

« What elements can | say, for sure, are < the median of
medians?

e The smaller half of the medians
o n/10 elements

* Any other elements?

« Another 2 elements in each median’s list

Visualizing MoM

Inthe 5 X n/5 grid, each column represents five consecutive
elements

Imagine each column is sorted top down
Imagine the columns as a whole are sorted left-right
* We don't actually sort anything!

MoM is the element closest to center of grid

r

.

C oY 0 X X X XN YN NN OO OO XYY Y o
\ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ Yy
(" AYd \(\(AY4 X \(\(\(AY4 AYd \(\(AY4 AY4 \()
_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J_ J J ,
8 K X
L J
(\(\(\(\(X \(\(\(\(\())
\ J\\ J\\ J\\ 7\ J\\ J\\ J\\ J\\ 7\ J\\ VA AN J\\ J\. J\\ J
CI N LN NN NN NN\

Visualizing MoM

« Red cells (at least 3n/10) are smaller than M

'
Yo Yo Yo Yo Yo Yo Yo Y Y
:f NXNC X X XN\ N\)
[
\ VAW VAW J o VAW VAW J\C J J o J JU L JL L L L)
o Yo Yo Yo Yo Yaum Y Yo Yo B <
:f AY4 \(\(\(AYd \()
'
\ J\\ J\\ J\\ J\\ J\\ J\\ J\\ J\\ J N N N L) L
e Yo Yo Yo Yo Yo Yo Yo - < ———g <
T \(AYd \(\(\(\(\()
'
\. VAN VAN VAN VAN VAN VAN VAN J,'
gy iy iy gy Py g ¢ VAN J\. J\ J\ J\ J\. J\. y,
NC N\ N\) NC XC XC N XN NN N N N Y
J\ J\ . J\ J J\\ J\ J\ J\\ J\ J\ J\\ J\ J\ J\ J
X N\) NC XC X XX NN\ N\
VAN J\. \ J\L J J\\ J\ J\ J\ J\ J\ J\ J\. J\ J\. J

How Good is the MoM?

Claim. Median of medians M is a good pivot, that is, at least 3/10th of
the elements are > M and at least 3/10th of the elements are < M.

Proof.
« Let g = [n/5] be the size of each group.
« M is the median of g medians
« SoM > g/2 of the group medians
 Each median is greater than 2 elements in its group

e Thus M > 3g/2 > 3n/10 elements

o Symmetrically, M < 3n/10 elements. B

How to Use the MoM?

There are 3n/10 elements smaller than the MoM

By the same argument: 3n/10 elements larger than
the MoM

So we can throw out 3n/10 elements, adjust the
value of k we are looking for, and recurse!

Don't forget: we also recursed to find the MoM!

Recall: Selection

Select (A, k):
f |[A| = 1:return A[1]
Else:
« Choose apivotp < All,...,n]; let r be the rank of p

. 1,A_), Ay, < Partition((4, p)

<p’
fk==rreturnp
* Else:
. Ifk <r: Select(A_,, k)
. Else: Select(A.,,k—r)

>p?

Linear time Selection

Select (A, k): T(n/5) + O(n)
f |[A] = 1:return A[1]; else:

* Group elements into subarrays of size 5; find median in each
« Choose a pivot p as the median of these medians

. 1,A_), Ay, < Partition((4, p)

<p?

- — Larger subproblem
» lfk==r retunp has size < 7n/10
 Else:

. Ifk <r: Select(A_,, k)

. Else: Select(A.,,k—r)

>p?

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence

* Okay, so we have a good pivot

* We are still doing two recursive calls

e« T(n) <Tn/5)+ T(7n/10) 4+ O(n)

* Key: total work at each level still goes down!

« Decaying series gives us : T(n) = O(n)

n/5 (\7n/10

/ N\ / N\

n/25 7n/50 7/n/50 49n/100

Why the Magic Number 57

 What was so special about 5 in our algorithm?
* [tisthe smallest odd number that works!
 (Even numbers are problematic for medians)
 |et us analyze the recurrence with groups of size 3
e« T(n) <T/3)+T(2n/3)+ O(n)
 Work is equal at each level of the tree!

e T(n) =0O(nlogn)

Theory vs Practice

O(n)-time selection by [Blum-Floyd-Pratt-Rivest-Tarjan 1973]
e Does < 5.4305n compares

Upper bound:
o [Dor—Zwick 1995] < 2.95n compares

Lower bound:
. [Dor-Zwick 1999] > (2 + 27%%n compares.

Constants are still too large for practice

Random pivot works well in most cases!

 We will analyze this when we do randomized algorithms

Recall Challenge Recurrence

* Recall the challenge recurrence
T(n) = \/nT(/n) + O(n)

« How much work at each level? O(n)

* Analyzing how quickly the problem size goes down

L
. n_)n1/2_)n1/4_).“_>n1/2

« What is L for this to be a small constant?

« L =loglogn (number of levels)

« T(n) =0OMmloglogn),

Floors and Cellings

 Why doesn'’t floors and ceilings matter?
« Suppose T(n) =T(|n/2])+ T(|n/2]) + O(n)
e First, for upper bound, we can safely overestimate

e T(n) <2T([n/2])+n<2T(n/12+1)+n

« Second, we can define a function S(n) = T(n + «), so that S(n)
satisfies S(n) < S(n/2) + O(n)

Sm)y=Th+a) <2Tn/2+al2+1)+n+a
=2Tn2+a—-al2+1)+n+a
=252 —al/l2+1)+n+a
<285(n/2)+n+2, fora=72

Floors & Ceilings Don’t Matter

 Why doesn'’t floors and ceilings matter?
« Suppose T(n) =T(|n/2])+ T(|n/2]) + O(n)
e First, for upper bound, we can safely overestimate

e T(n) <2T([n/2])+n<2T(n/12+1)+n

« Second, we can define a function S(n) = T(n + «), so that S(n)
satisfies S(n) < S(n/2) + O(n)

« Setting a = 2 works
« Finally, we know S(n) = O(nlogn) = T(n + 2)

e« T(n) = 0O((n—2log(n—2)) =Omlogn)

Can Assume Powers of 2

Why doesn’t taking powers of 2 matter?

Running time T(n) is monotonically increasing

Suppose 1 is not a power of 2, let n’ = 2¢ be such that
n <n'<2n; then

We can upper bound our asymptotic using n’ and lower bound
using n’/2

In particular, let T(n) < T(n’)
And T(n) > T(n'/2)
Thatis, T(n) = O(T(n'))

Dynamic Programming

“Those who cannot remember the past are
condemned to repeat it.”

— Jorge Agustin Nicolas Ruiz de Santayana y Borras,

Slow Recursion: Fibonnacci

e SO far we have seen recursion examples that are smart and
lead to efficient solutions

 This is not always the case
e For example,

e Recursive Fibonacci

Definition. Recall Fibonacci numbers are defined by the
following recurrence

0 ifn=0
F, = { 1 ifn=1
Fn-1+Fpo otherwise

Slow Recursion: Fibonnacci

* This naive recurrence is horribly slow
« Let 7T(n) denote the # of recursive calls
e TM)=Th—-1)+Tn-2)+1

e Can we lower bound this?

RecF1Bo(n):
ifn=0
return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + ReEcFiBo(n — 2)

Slow Recursion: Fibonnacci

e (Correct answer:

e« T(n) > F foralln >1

1 +4/5
B2 "% where ¢p = (2\/_) ~ 1.6"% (exponential!)

RecF1Bo(n):
ifn=0
return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + ReEcFiBo(n — 2)

Slow Recursion: Fibonnacci

* Let's prove it's exponential; can we lower bound the running time
using techniques we already have?

e TM)=Tn-1)+Tn-2)+ 6(1)
e T(n)>2T(n—2)+ Q(1)
. Level i has cost 2%,

e There are n/?2 levels

. T(n) = Q"%

Memo(r)ization

* Recursive Fibonacci algorithm is slow because it computes the
same functions over and over

 Can speed it up considerably by writing down the results of our
recursive calls, and looking them up when we need them later

912% (£ (B (&) EF_z% F) E) (R (F) (R
EF_z% F) (7 (R (7 (R

Dynamic Programming: Smart Recursion

* Dynamic programming is all about smart recursion by using
memoization

e Here it cuts down on all useless recursive calls

T[n]=T[n—1]+T[n—2]+1

T
=
i

Memoization

 Memoization: technigue to store expensive function
calls so that they can be looked up later

* (Avoids calling the expensive function multiple
times)

* A core concept of dynamic programming, but also
used elsewhere

Memoizing Fibonacci

* Write each entry down in an array when you compute it
« How do we compute the nth Fibonacci number?

* Fill in the first two Fibonacci numbers.

* Use those to fill in the third, then fourth, etc.

« Takes O(1) to fill in a table entry

e O(n) overall

A=1]1]2|3]5/8|13|21

Dynamic Programming

 Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense,
and he actually had a pathological fear and hatred of the word “research”. I'm not using the term
lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term “research” in his presence. You can imagine how he felt, then, about the
term “mathematical’. .. .1 felt | had to do something to shield Wilson and the Air Force from the fact

that | was really doing mathematics inside the RAND Corporation. What title, what name, could |
choose?

 Chose the name “dynamic programming” to hide the
mathematical nature of the work from military bosses

Recipe for a Dynamic Program

* Formulate the right subproblem. The subproblem must have an
optimal substructure

 Formulate the recurrence. |dentify how the result of the smaller
subproblems can lead to that of a larger subproblem

e State the base case(s). The subproblem thats so small we know
the answer to it!

e State the final answer. (In terms of the subproblem)

« Choose a memoization data structure. Where are you going to
store already computed results? (Usually a table)

* ldentify evaluation order. |[dentify the dependencies: which
subproblems depend on which ones? Using these dependencies,
identity an evaluation order

Analyze space and running time. As always!

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

