Selection and Intro to Dynamic Programming

Admin

- Assignment 4 due tomorrow (Saturday), Oct 17
- Assignment 5 due next Saturday, Oct 24
- Shorter problem set, 3 problems
- I'll get Assignment 5 and graded Assignment 3 back as soon as possible
- Midterm prep resources announced soon

October

Selection Algorithm: Idea

Select (A, k) :
If $|A|=1$: return $A[1]$
Else:

- Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p
- Else:
- If $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

Selection: Problem Statement

Example. Take this array of size 10:
$A=12|2| 4|5| 3|1| 10|7| 9 \mid 8$
Suppose we want to find 4th smallest element

- Choose pivot 8
- What is its rank?
- Rank 7
- So let's find all of the smaller elements of A :
- $A^{\prime}=2|4| 5|3| 1 \mid 7$
- Want to find the element of rank 4 in this new array

Selection: Problem Statement

Example. Take this array of size 10:
$A=12|2| 4|5| 3|1| 10|7| 9 \mid 8$
Suppose we want to find 4th smallest element

- Choose as pivot 3
- What is its rank?
- Rank 3
- So let's find all of the larger elements of A :
- $A^{\prime}=12|4| 5|10| 7|9| 8$
- Want to find the element of rank $4-3=1$ in this new array

When is this method good?

- If we guess the pivot right! (but we can't always do that)
- If we partition the array pretty evenly (the pivot is close to the middle)
- Let's say our pivot is not in the first or last $3 / 10$ ths of the array
- What is our recurrence?
- $T(n) \leq T(7 n / 10)+O(n)$
- $T(n)=O(n)$

Our high-level goal

- Find a pivot that's close to the median--has a rank between $3 n / 10$ and $7 n / 10$, in time $O(n)$
- But the array is unsorted? How do we do that?
- Want to always be successful

Finding an Approximate Median

- Divide the array of size n into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array of size n into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group

Finding an Approximate Median

- Divide the array of size n into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n / 5\rceil$ medians -- how???

Finding an Approximate Median

- Divide the array of size n into $\lceil n / 5\rceil$ groups of 5 elements (ignore leftovers)
- Find median of each group
- Find $M \leftarrow$ median of $\lceil n / 5\rceil$ medians recursively
- Use median of medians M as pivot

What did we gain?

- How can I show that the median of medians is "close to the center" of the array?
- What elements can I say, for sure, are \leq the median of medians?
- The smaller half of the medians
- $n / 10$ elements
- Any other elements?
- Another 2 elements in each median's list

Visualizing MoM

- In the $5 \times n / 5$ grid, each column represents five consecutive elements
- Imagine each column is sorted top down
- Imagine the columns as a whole are sorted left-right
- We don't actually sort anything!
- MoM is the element closest to center of grid

Visualizing MoM

- Red cells (at least $3 n / 10$) are smaller than M

How Good is the MoM?

Claim. Median of medians M is a good pivot, that is, at least $3 / 10$ th of the elements are $\geq M$ and at least $3 / 10$ th of the elements are $\leq M$.

Proof.

- Let $g=\lceil n / 5\rceil$ be the size of each group.
- M is the median of g medians
- So $M \geq g / 2$ of the group medians
- Each median is greater than 2 elements in its group
- Thus $M \geq 3 g / 2 \geq 3 n / 10$ elements
- Symmetrically, $M \leq 3 n / 10$ elements. \square

How to Use the MoM?

- There are $3 n / 10$ elements smaller than the MoM
- By the same argument: $3 n / 10$ elements larger than the MoM
- So we can throw out $3 n / 10$ elements, adjust the value of k we are looking for, and recurse!
- Don't forget: we also recursed to find the MoM!

Recall: Selection

Select (A, k) :
If $|A|=1$: return $A[1]$
Else:

- Choose a pivot $p \leftarrow A[1, \ldots, n]$; let r be the rank of p
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p
- Else:
- If $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

Linear time Selection

Select (A, k) :

$$
T(n / 5)+O(n)
$$

If $|A|=1$: return $A[1]$; else:

- Group elements into subarrays of size 5; find median in each
- Choose a pivot p as the median of these medians
- $r, A_{<p}, A_{>p} \leftarrow \operatorname{Partition}((A, p)$
- If $k==r$, return p

Larger subproblem has size $\leq 7 n / 10$

- Else:
- If $k<r$: Select $\left(A_{<p}, k\right)$
- Else: Select $\left(A_{>p}, k-r\right)$

$$
\text { Overall: } T(n)=T(n / 5)+T(7 n / 10)+O(n)
$$

Selection Recurrence

- Okay, so we have a good pivot
- We are still doing two recursive calls
- $T(n) \leq T(n / 5)+T(7 n / 10)+O(n)$
- Key: total work at each level still goes down!
- Decaying series gives us : $T(n)=O(n)$

Why the Magic Number 5?

- What was so special about 5 in our algorithm?
- It is the smallest odd number that works!
- (Even numbers are problematic for medians)
- Let us analyze the recurrence with groups of size 3
- $T(n) \leq T(n / 3)+T(2 n / 3)+O(n)$
- Work is equal at each level of the tree!
- $T(n)=\Theta(n \log n)$

Theory vs Practice

- $O(n)$-time selection by [Blum-Floyd-Pratt-Rivest-Tarjan 1973]
- Does $\leq 5.4305 n$ compares
- Upper bound:
- [Dor-Zwick 1995] $\leq 2.95 n$ compares
- Lower bound:
- [Dor-Zwick 1999] $\geq\left(2+2^{-80}\right) n$ compares.
- Constants are still too large for practice
- Random pivot works well in most cases!
- We will analyze this when we do randomized algorithms

Recall Challenge Recurrence

- Recall the challenge recurrence

$$
T(n)=\sqrt{n} T(\sqrt{n})+O(n)
$$

- How much work at each level? $O(n)$
- Analyzing how quickly the problem size goes down
- $n \rightarrow n^{1 / 2} \rightarrow n^{1 / 4} \rightarrow \ldots \rightarrow n^{1 / 2^{L}}$
- What is L for this to be a small constant?
- $L=\log \log n$ (number of levels)
- $T(n)=\Theta(n \log \log n)$,

Floors and Ceilings

- Why doesn't floors and ceilings matter?
- Suppose $T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n)$
- First, for upper bound, we can safely overestimate

$$
\text { - } T(n) \leq 2 T(\lceil n / 2\rceil)+n \leq 2 T(n / 2+1)+n
$$

- Second, we can define a function $S(n)=T(n+\alpha)$, so that $S(n)$ satisfies $S(n) \leq S(n / 2)+O(n)$

$$
\begin{aligned}
S(n) & =T(n+\alpha) \leq 2 T(n / 2+\alpha / 2+1)+n+\alpha \\
& =2 T(n / 2+\alpha-\alpha / 2+1)+n+\alpha \\
& =2 S(n / 2-\alpha / 2+1)+n+\alpha \\
& \leq 2 S(n / 2)+n+2, \text { for } \alpha=2
\end{aligned}
$$

Floors \& Ceilings Don't Matter

- Why doesn't floors and ceilings matter?
- Suppose $T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n)$
- First, for upper bound, we can safely overestimate
- $T(n) \leq 2 T(\lceil n / 2\rceil)+n \leq 2 T(n / 2+1)+n$
- Second, we can define a function $S(n)=T(n+\alpha)$, so that $S(n)$ satisfies $S(n) \leq S(n / 2)+O(n)$
- Setting $\alpha=2$ works
- Finally, we know $S(n)=O(n \log n)=T(n+2)$
- $T(n)=O((n-2) \log (n-2))=O(n \log n)$

Can Assume Powers of 2

- Why doesn't taking powers of 2 matter?
- Running time $T(n)$ is monotonically increasing
- Suppose n is not a power of 2 , let $n^{\prime}=2^{\ell}$ be such that $n \leq n^{\prime} \leq 2 n$; then
- We can upper bound our asymptotic using n^{\prime} and lower bound using $n^{\prime} / 2$
- In particular, let $T(n) \leq T\left(n^{\prime}\right)$
- And $T(n) \geq T\left(n^{\prime} / 2\right)$
- That is, $T(n)=\Theta\left(T\left(n^{\prime}\right)\right)$

Dynamic Programming

"Those who cannot remember the past are condemned to repeat it."

- Jorge Agustín Nicolás Ruiz de Santayana y Borrás,

Slow Recursion: Fibonnacci

- So far we have seen recursion examples that are smart and lead to efficient solutions
- This is not always the case
- For example,
- Recursive Fibonacci

Definition. Recall Fibonacci numbers are defined by the following recurrence

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

Slow Recursion: Fibonnacci

- This naive recurrence is horribly slow
- Let $T(n)$ denote the \# of recursive calls
- $T(n)=T(n-1)+T(n-2)+1$
- Can we lower bound this?

$$
\begin{aligned}
& \frac{\operatorname{RecFibo}(n):}{\text { if } n=0} \\
& \quad \text { return } 0 \\
& \text { else if } n=1 \\
& \quad \text { return } 1 \\
& \text { else } \quad \text { return } \operatorname{RECFibo}(n-1)+\operatorname{RecFibo}(n-2) \\
& \quad
\end{aligned}
$$

Slow Recursion: Fibonnacci

- Correct answer:
- $T(n) \geq F_{n}$ for all $n \geq 1$
- $F_{n} \geq \phi^{n-2}$ where $\phi=\left(\frac{1+\sqrt{5}}{2}\right) \approx 1.6^{n-2}$ (exponential!)

$$
\begin{aligned}
& \frac{\operatorname{ReCFibo}(n):}{\text { if } n=0} \\
& \quad \text { return } 0 \\
& \text { else if } n=1 \\
& \quad \text { return } 1 \\
& \text { else } \quad \text { return } \operatorname{RECFibo}(n-1)+\operatorname{RecFibo}(n-2) \\
& \quad
\end{aligned}
$$

Slow Recursion: Fibonnacci

- Let's prove it's exponential; can we lower bound the running time using techniques we already have?
- $T(n)=T(n-1)+T(n-2)+\Theta(1)$
- $T(n) \geq 2 T(n-2)+\Omega(1)$
- Level i has cost 2^{i}.
- There are $n / 2$ levels
- $T(n)=\Omega\left(2^{n / 2}\right)$

Memo(r)ization

- Recursive Fibonacci algorithm is slow because it computes the same functions over and over
- Can speed it up considerably by writing down the results of our recursive calls, and looking them up when we need them later

Dynamic Programming: Smart Recursion

- Dynamic programming is all about smart recursion by using memoization
- Here it cuts down on all useless recursive calls

$$
T[n]=T[n-1]+T[n-2]+1
$$

Memoization

- Memoization: technique to store expensive function calls so that they can be looked up later
- (Avoids calling the expensive function multiple times)
- A core concept of dynamic programming, but also used elsewhere

Memoizing Fibonacci

- Write each entry down in an array when you compute it
- How do we compute the nth Fibonacci number?
- Fill in the first two Fibonacci numbers.
- Use those to fill in the third, then fourth, etc.
- Takes $O(1)$ to fill in a table entry
- $O(n)$ overall

$$
A=1|1| 2|3| 5|8| 13 \mid 21
$$

Dynamic Programming

- Formalized by Richard Bellman in the 1950s

We had a very interesting gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a pathological fear and hatred of the word "research". I'm not using the term lightly; l'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term "research" in his presence. You can imagine how he felt, then, about the term "mathematical". .. I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose?

- Chose the name "dynamic programming" to hide the mathematical nature of the work from military bosses

Recipe for a Dynamic Program

- Formulate the right subproblem. The subproblem must have an optimal substructure
- Formulate the recurrence. Identify how the result of the smaller subproblems can lead to that of a larger subproblem
- State the base case(s). The subproblem thats so small we know the answer to it!
- State the final answer. (In terms of the subproblem)
- Choose a memoization data structure. Where are you going to store already computed results? (Usually a table)
- Identify evaluation order. Identify the dependencies: which subproblems depend on which ones? Using these dependencies, identify an evaluation order
- Analyze space and running time. As always!

Acknowledgments

- Some of the material in these slides are taken from
- Kleinberg Tardos Slides by Kevin Wayne (https:/l www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ 04GreedyAlgorithmsl.pdf)
- Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)

