
Selection and Intro to 
Dynamic Programming



Admin
• Assignment 4 due tomorrow (Saturday), Oct 17 

• Assignment 5 due next Saturday, Oct 24 

• Shorter problem set, 3 problems 

• I’ll get Assignment 5 and graded Assignment 3 
back as soon as possible 

• Midterm prep resources announced soon
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Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose pivot  

• What is its rank? 

• Rank  

• So let’s find all of the smaller elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose as pivot  

• What is its rank? 

• Rank  

• So let’s find all of the larger elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |10 |7 |9 |8
4 − 3 = 1



When is this method good?
• If we guess the pivot right!  (but we can’t always do that) 

• If we partition the array pretty evenly (the pivot is close to 
the middle) 

• Let’s say our pivot is not in the first or last ths of the 
array 

• What is our recurrence? 

•  

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)



Our high-level goal

• Find a pivot that’s close to the median—-has a rank 
between  and , in time  

• But the array is unsorted?  How do we do that? 

• Want to always be successful

3n/10 7n/10 O(n)



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians —- how???

n ⌈n/5⌉ 5

M ← ⌈n/5⌉

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



What did we gain?
• How can I show that the median of medians is “close to 

the center” of the array? 

• What elements can I say, for sure, are  the median of 
medians? 

• The smaller half of the medians 

•  elements 

• Any other elements? 

• Another  elements in each median’s list

≤

n/10

2



Visualizing MoM
• In the  grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually sort anything! 

• MoM is the element closest to center of grid

5 × n/5



Visualizing MoM
• Red cells (at least ) are smaller than 3n/10 M



How Good is the MoM?
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 ≥ 3n/10
M ≤ 3n/10 ∎



How to Use the MoM?

• There are  elements smaller than the MoM 

• By the same argument:  elements larger than 
the MoM 

• So we can throw out  elements, adjust the 
value of  we are looking for, and recurse! 

• Don’t forget: we also recursed to find the MoM!

3n/10

3n/10

3n/10
k



Recall: Selection
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Linear time Selection
Select : 

If : return ; else:  

• Group elements into subarrays of size 5; find median in each 

• Choose a pivot  as the median of these medians 

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
• Okay, so we have a good pivot 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



• Recall the challenge recurrence 
 

 

• How much work at each level?  

• Analyzing how quickly the problem size goes down 

•  

• What is  for this to be a small constant? 

•   (number of levels) 

• ,

T(n) = nT( n) + O(n)

O(n)

n → n1/2 → n1/4 → … → n1/2L

L
L = log log n
T(n) = Θ(n log log n)

Recall Challenge Recurrence



Floors and Ceilings
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

 
          
          
         

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2



Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

• Setting  works 

• Finally, we know  

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)



Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter? 

• Running time  is monotonically increasing 

• Suppose  is not a power of 2, let  be such that 
; then 

• We can upper bound our asymptotic using  and lower bound 
using  

• In particular, let  

• And  

• That is, 

T(n)

n n′ = 2ℓ

n ≤ n′ ≤ 2n

n′ 

n′ /2

T(n) ≤ T(n′ )

T(n) ≥ T(n′ /2)

T(n) = Θ(T(n′ ))



Dynamic Programming

“Those who cannot remember the past are 
condemned to repeat it.”  
 
— Jorge Agustín Nicolás Ruiz de Santayana y Borrás,



Slow Recursion: Fibonnacci
• So far we have seen recursion examples that are smart and 

lead to efficient solutions 
• This is not always the case 
• For example, 

• Recursive Fibonacci  

Definition. Recall Fibonacci numbers are defined by the 
following recurrence 



• This naive recurrence is horribly slow 

• Let  denote the # of recursive calls 

•  

• Can we lower bound this?

T(n)

T(n) = T(n − 1) + T(n − 2) + 1

Slow Recursion: Fibonnacci



• Correct answer: 

•  for all  

•
 where  (exponential!)

T(n) ≥ Fn n ≥ 1

Fn ≥ ϕn−2 ϕ = ( 1 + 5
2 ) ≈ 1.6n−2

Slow Recursion: Fibonnacci



• Let’s prove it’s exponential; can we lower bound the running time 
using techniques we already have? 

•  

•  

• Level  has cost .   

• There are  levels 

•

T(n) = T(n − 1) + T(n − 2) + Θ(1)

T(n) ≥ 2T(n − 2) + Ω(1)

i 2i

n/2

T(n) = Ω(2n/2)

Slow Recursion: Fibonnacci



Memo(r)ization
• Recursive Fibonacci algorithm is slow because it computes the 

same functions over and over 

• Can speed it up considerably by writing down the results of our 
recursive calls, and looking them up when we need them later



Dynamic Programming: Smart Recursion
• Dynamic programming is all about smart recursion by using 

memoization  

• Here it cuts down on all useless recursive calls

T[n] = T[n − 1] + T[n − 2] + 1



Memoization

• Memoization: technique to store expensive function 
calls so that they can be looked up later 

• (Avoids calling the expensive function multiple 
times) 

• A core concept of dynamic programming, but also 
used elsewhere



Memoizing Fibonacci
• Write each entry down in an array when you compute it 

• How do we compute the th Fibonacci number? 

• Fill in the first two Fibonacci numbers. 

• Use those to fill in the third, then fourth, etc. 

• Takes  to fill in a table entry 

•  overall

n

O(1)

O(n)

A = 1 |1 |2 |3 |5 |8 |13 |21



Dynamic Programming
• Formalized by Richard Bellman in the 1950s 

 
 
 
 
 
 
 
 
 

• Chose the name “dynamic programming” to hide the 
mathematical nature of the work from military bosses



Recipe for a Dynamic Program
• Formulate the right subproblem.  The subproblem must have an 

optimal substructure 

• Formulate the recurrence.  Identify how the result of the smaller 
subproblems can lead to that of a larger subproblem  

• State the base case(s).  The subproblem thats so small we know 
the answer to it! 

• State the final answer. (In terms of the subproblem) 

• Choose a memoization data structure.   Where are you going to 
store already computed results? (Usually a table) 

• Identify evaluation order. Identify the dependencies: which 
subproblems depend on which ones? Using these dependencies, 
identify an evaluation order 

• Analyze space and running time.  As always!
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