
Divide and Conquer: 
More Examples



Admin
• Welcome back! 

• Assignment 4 extended to Saturday 

• Remember that if you’re watching at home you can 
switch between the board/me and the slides with a 
button in the top-right corner of the zoom



Quick Sort Analysis
• Partition takes  time 

• Size of the subproblems depends pivot; let  be the rank of the 
pivot, then: 

• ,   

• Let us analyze some cases for  

• Best case: r is the median:  (we will learn how to 
compute the median in  time) 

• Worst case:  or  

• In between: say  

• Note in the worst-case analysis, we only consider the worst case for 
.  We are looking at the difference cases, just to get a sense for it.

O(n)
r

T(n) = T(r − 1) + T(n − r) + O(n) T(1) = 1
r

r = ⌊n/2⌋
O(n)

r = 1 r = n
n/10 ≤ r ≤ 9n/10

r



Quick Sort: Cases
• Suppose  (pivot is the median element), then 

• ,  

• We have already solved this recurrence 

•  

• Suppose  or , then 

•  

• What running time would this recurrence lead to? 

•  (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + 1

T(n) = Θ(n2)



Quick Sort: Cases
• Suppose  (that is, you get a one-tenth, nine-tenths split  

•  

• Let’s look at the recursion tree for this recurrence 

• We get , in fact, we get 

r = n/10
T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)



Challenge Recurrence
• Solve the following recurrence:  

 
 

• Hint.  Try some change of variables

T(n) = nT( n) + n



Counting Inversions
• Way to compare two different rankings 

• Or a way to measure how far an array is from sorted 

• Let  be an ordering of  numbers 

• We say two indices  form an inversion if  

• Example: How many inversions in ? 

•  is an inversion 

•  and  is an inversion 

• 3 inversions total

a1, a2, …, an n

i < j ai > aj

2,4,1,3,5
2,1
4,1 4,3



Counting Inversions
• Way to compare two different rankings 

• Or a way to measure how far an array is from sorted 

• Let  be an ordering of  numbers 

• We say two indices  form an inversion if  

• Counting all inversions in a naive way: 

• Comparing every pair is  

• Can we do better by divide and conquer?

a1, a2, …, an n

i < j ai > aj

Θ(n2)



Divide and Conquer

Tools we need: 

• Split the instance into multiple parts 

• Way to combine solution for each part into a 
solution for the entire instance



Counting Inversions: Divide & Conquer
• Divide: break array into two halves  and  

• Conquer: recursively count number of inversions in both 

• Combine: count number of inversions of the type  where 
 and return total 

 

• How do combine in  time? 

• Problem: there are  elements in  and  elements in , so 
there may be  inversions we didn’t count recursively 

• Idea: easy if  and  are sorted! 

A B

(a, b)
a ∈ A, b ∈ B

O(n)

n/2 A n/2 B
n2/4

A B



Sort and Recurse

• We will simultaneously sort the array while counting 
inversions 

• Key observation: sorting  and  does not change 
the number of inversions crossing the midpoint

A B



Counting Inversions: Divide & Conquer
• Counting inversions:  where  when  are 

sorted 

• Scan both from left to right 

• Compare  and 

(a, b) a ∈ A, b ∈ B A, B

ai bj

count inversions (a, b) with a ∈ A and b ∈ B

5 2

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18



Counting Inversions: Divide & Conquer
• Counting inversions:  where  when  are 

sorted 

• Scan both from left to right 

• Compare  and  

• If ,  

•  is not inverted wrt all remaining elements in  

• If  

•  is inverted with respect to every element left in  

• Append smaller element to sorted list 

(a, b) a ∈ A, b ∈ B A, B

ai bj

ai < bj

ai B

ai > bj

bj A

C



Counting Inversions: Divide & Conquer

Combine Step



Counting Inversions: Analysis
• Same as merge sort 

•  time to merge and count (non-recursive) 

• Two subproblems of half the size 

•  

•

O(n)

T(n) = 2T(n/2) + cn
T(n) = O(n log n)



Other Kinds of Recurrences
So far we saw divide and conquer algorithms, where we split the 
problem in more than one subproblem. 

 
Question. Can you think of some examples (that you have likely 
seen before) where we split the problem into one smaller 
subproblem?



D&C: One Smaller Subproblem
• Binary search 

•  
• Binary search tree 

•

T(n) = T(n/2) + 1

T(n) = T(n/2) + 1



D&C: One Smaller Subproblem
• Fast exponentiation (you may not have seen this) 

• Compute , how many multiplications? 

• Naive way:  

• Faster way:  (suppose  is even) 

•  

• What does this solve to? 

• Think at home: What if  is odd?

an

a ⋅ a ⋅ … ⋅ a (n times)

an = (an/2)2 n

T(n) = T(n/2) + 1

n



General Recursion Trees
• Consider a divide and conquer algorithm that  

• spends  time on non-recursive work and makes  
recursive calls, each on a problem of size  

• Up to constant factors (which we hide in , the running time of 
the algorithm is given by what recurrence? 

•  

• Because we care about asymptotic bounds, we can assume base 
case is a small constant, say  

O( f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1



General Recursion Trees



General Recursion Trees
• Running time  of a recursive algorithm is the sum of all the 

values (sum of work at all nodes at each level) in the recursion tree 

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost   

•
Thus,  

• Here  is the depth of the tree 

• The number of leaves in the tree is  (why?) 

• Cost at leaves: 

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))



Common Cases

• Decreasing series.  If the series decays exponentially (every term 
is a constant factor smaller than previous), cost at root dominates:  
                 

• Equal. If all terms in the series are equal: 
                

• Increasing series. If the series grows exponentially (every term is 
constant factor larger), then the cost at leaves dominates: 
               

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O( f(n))

T(n) = O( f(n) ⋅ L) = O( f(n)log n)

T(n) = O(nlogc r)

Don’t forget: 
L

∑
i=0

ai =
aL+1 − 1

a − 1



Master Theorem (optional)
Set of rules to solve some common recurrences automatically 

(Master Theorem)  Let  and . Let  be defined by 
the recurrence  and . 
Then  can be bounded asymptotically as follows. 

• If  for some constant , then  

• If , then  

• If , for some constant , and if  
for some constant  and all sufficiently large , then 

a ≥ 1, b > 1 f(n) ≥ 0 T(n)
T(n) = aT(n/b) + f(n) T(1) = O(1)

T(n)

f(n) = nlogb a−ϵ ϵ > 0 T(n) = Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) = Θ(nlogb a log n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 af(n/b) ≤ c0 f(n)
c0 < 1 n

T(n) = Θ( f(n))



Master Theorem
• It exists; it can make things easier.  You don’t need to 

know it 

• OK to use in this class, but I don’t encourage (nor 
discourage) it 

• Recursion trees promote a better understanding of 
the recurrence—and they can be simpler 

• Master Theorem only applies to some recurrences 
(generalizations do exist)



Selection: Problem Statement
Given an array  of size , find the th smallest element for 
any    (a.k.a. the element of rank ) 

• Special cases: min , max :  

• Linear time,    

• What about median ? 

• Sorting:  compares 

Question.  Can we do it in  compares? 

• Surprisingly yes.  

• We’ll find the element of rank  in  time for any  

• Selection is easier than sorting. 

A[1,…, n] n k
1 ≤ k ≤ n k

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n)

k O(n) k



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• First, take any pivot  from  

• If  is the 4th smallest element, return it 

• Else, we partition  around  and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p



Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose pivot  

• What is its rank? 

• Rank  

• So let’s find all of the smaller elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

8

7
A

A′ = 2 |4 |5 |3 |1 |7
4



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• Choose as pivot  

• What is its rank? 

• Rank  

• So let’s find all of the larger elements of : 

•  

• Want to find the element of rank  in this new array

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

3

3
A

A′ = 12 |4 |5 |3 |10 |7 |9 |8
4 − 3 = 1



When is this method good?
• If we guess the pivot right!  (but we can’t always do that) 

• If we partition the array pretty evenly (the pivot is close to 
the middle) 

• Let’s say our pivot is not in the first or last ths of the 
array 

• What is our recurrence? 

•  

•

3/10

T(n) ≤ T(7n/10) + O(n)

T(n) = O(n)



Our high-level goal

• Find a pivot that’s in the “middle” of the array 

• But the array is unsorted?  How do we do that? 

• Want to always be successful



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians —- how???

n ⌈n/5⌉ 5

M ← ⌈n/5⌉

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



What did we gain?
• How can I show that the median of medians is “close to 

the center” of the array? 

• What elements can I say, for sure, are  the median of 
medians? 

• The smaller half of the medians 

•  elements 

• Any other elements? 

• Another  elements in each median’s list

≤

n/10

2



Visualizing MoM
• In the  grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually do this! 

• MoM is the element closest to center of grid

5 × n/5



Visualizing MoM
• Red cells (at least ) in size are smaller than 3n/10 M



How Good is the MoM?
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎



How to Use the MoM?

• There are  elements smaller than the MoM 

• By the same argument:  elements larger than 
the MoM 

• So we can throw out  elements, adjust the 
value of  we are looking for, and recurse! 

• Don’t forget: we also recursed to find the MoM!

3n/10

3n/10

3n/10
k



Recall: Selection
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Linear time Selection
Select : 

If : return ; else:  

• Group elements into subarrays of size 5; find median in each 

• Choose a pivot  as the median of these medians 

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
• Okay, so we have a good pivot 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



• Recall the challenge recurrence 
 

 

• Analyzing how quickly the problem size goes down 

•  

• What is  for this to be a small constant? 

•   (number of levels) 

• How much work at each level?  

• ,

T(n) = nT( n) + O(n)

n → n1/2 → n1/4 → … → n1/2L

L
L = log log n

O(n)
T(n) = Θ(n log log n)

Recall Challenge Recurrence



Floors and Ceilings
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

 
          
          
         

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2



Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

• Setting  works 

• Finally, we know  

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)



Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter? 

• Running time  is monotonically increasing 

• Suppose  is not a power of 2, let  be such that 
; then 

• We can upper bound our asymptotic using  and lower bound 
using  

• In particular, let  

• And  

• That is, 

T(n)

n n′ = 2ℓ

n ≤ n′ ≤ 2n

n′ 

n′ /2

T(n) ≤ T(n′ )

T(n) ≥ T(n′ /2)

T(n) = Θ(T(n′ ))
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