
Divide and Conquer:
Sorting and Recurrences

Admin
• Midterm Oct 28th 10:40am

• No class Oct 28th

• Midterm is 24 hours, take home

• Current plan is that midterm will be everything through
dynamic programming (not sure about network flows)

• Slides, books from course are OK; collaboration (of
course) and web searches are not

Recap: Merge Sort

Merge-Sort Running Time Recurrence
• Let represent how long Merge Sort takes on an input of size

•

• Base case: ; often ignored

• We will ignore the floors and ceilings (we’ll discuss later)

• So the recurrence simplifies to:

•

• The answer to this ends up being

• Today we will learn different ways to derive it

T(n) n
T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Recurrences: Unfolding
Method 1. Unfolding the recurrence

• Assume (that is,)

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 greater than
that is,

 =

 = =

 =

 =

n = 2ℓ ℓ = log n

n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn

2T(2ℓ−1) + c2ℓ

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ 2ℓ

… = 2ℓT(20) + cℓ2ℓ = O(n log n)

Recurrences: Recursion Tree
Method 2. Recursion Trees

• Work done at each level

• Total levels

2i ⋅ (n/2i) = n
log2 n Recommended

Method!

Recursion Tree
• This is really a method of visualization

• Very similar to unrolling, but much easier to keep
track of what’s going on

• It’s not (quite) a proof, but generally it is sufficient
for running times in this class

• “Solve the recurrence” can be done by drawing
the recursion tree and explaining the solution

Recurrences: Guess & Verify
Method 3. Guess and Verify

• Eyeball recurrence and make a guess

• Verify guess using induction

Guess & Verify Recurrences
• Method 3. Requires some practice and creativity

• Verification by induction may run into issues

• Example,

• Guess?

•

• Check

• Is the guess wrong? Not asymptotically, can fix it up by adding
lower-order terms

• New guess (why minus?)

•

• must be chosen large enough to satisfy boundary conditions

T(n) = 2T(n/2) + 1

T(n) ≤ cn
T(n) ≤ cn + 1 ≰ cn for any c > 0

T(n) ≤ cn − d
T(n) ≤ cn − 2d + 1 ≤ cn − d for any d ≥ 1

c

Divide & Conquer: Quicksort
• Choose a pivot element from the array
• Partition the array into two parts: left less than the pivot, right greater

than the pivot
• Recursively quicksort the first and last subarrays

Divide & Conquer: Quicksort
• Choose a pivot element from the array
• Partition the array into two parts: left less than the pivot, right greater

than the pivot
• Recursively quicksort the first and last subarrays

Divide & Conquer: Quicksort
• Choose a pivot element from the array
• Partition the array into two parts: left less than the pivot, right greater

than the pivot
• Recursively quicksort the first and last subarrays
• Description. (Divide and conquer): often the cleanest way to

present is short and clean pseudocode with high level explanation
• Correctness proof. Induction and showing that partition step

correctly partitions the array.

Quick Sort Analysis
• Partition takes time

• Size of the subproblems depends pivot; let be the rank of the
pivot, then:

• ,

• Let us analyze some cases for

• Best case: r is the median: (we will learn how to
compute the median in time)

• Worst case: or

• In between: say

• Note in the worst-case analysis, we only consider the worst case for
. We are looking at the difference cases, just to get a sense for it.

O(n)
r

T(n) = T(r − 1) + T(n − r) + O(n) T(1) = 1
r

r = ⌊n/2⌋
O(n)

r = 1 r = n
n/10 ≤ r ≤ 9n/10

r

Quick Sort: Cases
• Suppose (pivot is the median element), then

• ,

• We have already solved this recurrence

•

• Suppose or , then

•

• What running time would this recurrence lead to?

• (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + 1

T(n) = Θ(n2)

Quick Sort: Cases
• Suppose (that is, you get a one-tenth, nine-tenths split

•

• Let’s look at the recursion tree for this recurrence

• We get , in fact, we get

• In general, the following holds (we’ll show it later):

•

• If

• If

r = n/10
T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1,T(n) = O(n log n)

Quick Sort: Theory and Practice
• We can find the median element in time

• Using divide and conquer! we’ll learn how in next lecture

• In practice, the constants hidden in the Oh notation for median
finding are too large to use for sorting

• Common heuristic

• Median of three (pick elements from the start, middle and
end and take their median)

• If the pivot is chosen uniformly at random

• quick sort runs in time in expectation and with
high probability

• We will prove this in the second half of the class

Θ(n)

O(n log n)

Challenge Recurrence
• Solve the following recurrence:

• Hint. Try some change of variables

T(n) = nT(n) + n

Counting Inversions
• Way to compare two different rankings

• Or a way to measure how far an array is from sorted

• Let be an ordering of numbers

• We say two indices form an inversion if

• Example: How many inversions in ?

• is an inversion

• and is an inversion

• 3 inversions total

a1, a2, …, an n

i < j ai > aj

2,4,1,3,5
2,1
4,1 4,3

Counting Inversions
• Way to compare two different rankings

• Or a way to measure how far an array is from sorted

• Let be an ordering of numbers

• We say two indices form an inversion if

• Counting all inversions in a naive way:

• Comparing every pair is

• Can we do better by divide and conquer?

a1, a2, …, an n

i < j ai > aj

Θ(n2)

Counting Inversions: Divide & Conquer
• Divide: break array into two halves and

• Conquer: recursively count number of inversions in both

• Combine: count number of inversions of the type where
 and return total

• How do combine in time?

• Idea: easy if and are sorted!

A B

(a, b)
a ∈ A, b ∈ B

O(n)

A B

Counting Inversions: Divide & Conquer
• Counting inversions: where when are

sorted

• Scan both from left to right

• Compare and

(a, b) a ∈ A, b ∈ B A, B

ai bj

count inversions (a, b) with a ∈ A and b ∈ B

5 2

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18

Counting Inversions: Divide & Conquer
• Counting inversions: where when are

sorted

• Scan both from left to right

• Compare and

• If ,

• is not inverted wrt all remaining elements in

• If

• is inverted with respect to every element left in

• Append smaller element to sorted list

(a, b) a ∈ A, b ∈ B A, B

ai bj

ai < bj

ai B

ai > bj

bj A

C

Counting Inversions: Divide & Conquer

Combine Step

Counting Inversions: Analysis
• Same as merge sort

• time to merge and count (non-recursive)

• Two subproblems of half the size

•

•

O(n)

T(n) = 2T(n/2) + cn
T(n) = O(n log n)

Recurrences
So far we saw divide and conquer algorithms, where we split the
problem in more than one subproblem.

Question. Can you think of some examples (that you have likely
seen before) where we split the problem into one smaller
subproblem?

D&C: One Smaller Subproblem
• Binary search

•
• Binary search tree

•
• Fast exponentiation (you may not have seen this)

• Compute , how many multiplications?

• Naive way:

• Faster way: (suppose is even)

•
• What does this solve to?
• Think at home: What if is odd?

T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

an

a ⋅ a ⋅ … ⋅ a (n times)
an = (an/2)2 n

T(n) = T(n/2) + 1

n

General Recursion Trees
• Consider a divide and conquer algorithm that

• spends time on non-recursive work and makes
recursive calls, each on a problem of size

• Up to constant factors (which we hide in , the running time of
the algorithm is given by what recurrence?

•

• Because we care about asymptotic bounds, we can assume base
case is a small constant, say

O(f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1

General Recursion Trees

General Recursion Trees
• Running time of a recursive algorithm is the sum of all the

values (sum of work at all nodes at each level) in the recursion tree

• For each , the th level of tree has exactly nodes

• Each node at level has cost

•
Thus,

• Here is the depth of the tree

• The number of leaves in the tree is (why?)

• Cost at leaves:

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

Easy Cases to Evaluate

• Decreasing series. If the series decays exponentially (every term
is a constant factor smaller than previous), cost at root dominates:

• Equal. If all terms in the series are equal:

• Increasing series. If the series grows exponentially (every terms is
constant factor larger), then the cost at leaves dominates:

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O(f(n))

T(n) = O(f(n) ⋅ L) = O(f(n)log n)

T(n) = O(nlogc r)

[Akra–Bazzi ’98]: Master Theorem
(Master Theorem.) Let are constants and . Let

 be defined on the nonnegative integers by the recurrence
, where we interpret as .

Then can be bounded asymptotically as follows.

• If for some constant , then

• If , then

• If , for some constant , and if
 for some constant and all sufficiently large

, then

a ≥ 1, b > 1 f(n) ≥ 0
T(n)
T(n) = r (n/c) + f(n) n/c ⌊n/c⌋ or ⌈n/c⌉

T(n)

f(n) = nlogc r−ϵ ϵ > 0 T(n) = Θ(nlogc r)

f(n) = Θ(nlogc r) T(n) = Θ(nlogc r log n)

f(n) = Ω(nlogc r+ϵ) ϵ > 0
rf(n/b) ≤ c0 f(n) c0 < 1
n T(n) = Θ(f(n))

Selection: Problem Statement
Given an array of size , find the th smallest element for
any

• Special cases: min , max :

• Linear time,

• What about median ?

• Sorting: compares

• Binary heap: compares

Question. Can we do it in compares?

• Surprisingly yes.

• Selection is easier than sorting.

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)

Selection: Problem Statement
Example. Take this array of size 10:

Suppose we want to find 4th smallest element

• First, take any pivot from

• If is the 4th smallest element, return it

• Else, we partition around and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p

Selection Algorithm: Idea
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

Example on board

When is this method good?
• If we guess the pivot right! (but we can’t always do that)

• If we partition the array pretty evenly (the pivot is close to
the middle

• Let’s say our pivot is in the middle ths of the array

• What is our recurrence?

•

•

8/10

T(n) ≤ T(9n/10) + O(n)

T(n) = O(n)

Formalizing a Good Pivot
• Recurrence for pivot of rank

•

• We don’t know , so assuming the worst:

•

• Simplify: use = length of recursive subproblem

•

• For what do we get a linear solution?

r
T(n) = max{T(r), T(n − r)} + O(n)

r
T(n) = max

1≤r≤n
max{T(r), T(n − r)} + O(n)

ℓ
T(n) = max

1≤ℓ≤n−1
T(ℓ) + O(n)

ℓ

How to Choose a Good Pivot?

• If we reduce subproblem size by constant factor each time,
we get a linear solution

• That is, for some constant

• for some constant
• Expands to a decreasing geometric series
• Largest term at root dominates:

Take away.
• We want a pivot that partitions such that where larger subproblem

is constant factor smaller than
• If we can find an “approximate median” in linear time, we can

find the median in linear time as well!

T(n) = max
1≤n−1

T(ℓ) + O(n)

ℓ ≤ αn α < 1
T(n) ≤ T(αn) + O(n) α < 1

T(n) = O(n)

n

Our high-level goal

• Find a pivot that’s in the middle ths of the
array

• But the array is unsorted? How do we do that?

• Want to always be successful

8/10

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians —- how???

n ⌈n/5⌉ 5

M ← ⌈n/5⌉

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians recursively
• Use median of medians as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

Visualizing MoM
• In the grid, each column represents five consecutive

elements

• Imagine each column is sorted top down

• Imagine the columns as a whole are sorted left-right

• We don’t actually do this!

• MoM is the element closest to center of grid

5 × n/5

Visualizing MoM
• Red cells (at least) in size are smaller than

• If we are looking for an element larger than , we can throw these
out, before recursing

• Symmetrically, we can throw out elements larger than if
looking for a smaller element

• Thus, the recursive problem size is at most

3n/10 M
M

3n/10 M

7n/10

How Good is Median of Medians
Claim. Median of medians is a good pivot, that is, at least th of
the elements are and at least th of the elements are .

Proof.

• Let be the size of each group.

• is the median of medians

• So of the group medians

• Each median is greater than 2 elements in its group

• Thus elements

• Symmetrically, elements.

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎

Analysis: Running Time
• Question. How to compute median of median recursively?

• MoM():

• If : return

• Else:

• Divide into groups

• Compute median of each group

• group medians

• Mom()

A, n
n = = 1 A[1]

A ⌈n/5⌉

A′ ←
A′ , ⌈n/5⌉

Not recursive; O(n)

Not recursive; O(n)

• Recurrence just for MoM:

•

• MoM():

• If : return

• Else:

• Divide into groups

• Compute median of each group

• group medians

• Mom()

T(n) = T(n/5) + O(n)
A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←
A′ , ⌈n/5⌉

Analysis: Running Time

Analysis: Overall
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem
has size ≤ 7n /10

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence
• Okay, so we have a good pivot

• We are still doing two recursive calls

•

• Key: total work at each level still goes down!

• Decaying series gives us :

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

Why the Magic Number 5?
• What was so special about 5 in our algorithm?

• It is the smallest odd number that works!

• (Even numbers are problematic for medians)

• Let us analyze the recurrence with groups of size 3

•

• Work is equal at each level of the tree!

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)

Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]

• Does compares

• Upper bound:

• [Dor–Zwick 1995] compares

• Lower bound:

• [Dor–Zwick 1999] compares.

• Constants are still too large for practice

• Random pivot works well in most cases!

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n

Floors and Ceilings
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2

Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

• Setting works

• Finally, we know

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)

Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter?

• Running time is monotonically increasing

• Suppose is not a power of 2, let be such that
; then

• We can upper bound our asymptotic using and lower bound
using

• In particular, let

• And

• That is,

T(n)

n n′ = 2ℓ

n ≤ n′ ≤ 2n

n′

n′ /2

T(n) ≤ T(n′)

T(n) ≥ T(n′ /2)

T(n) = Θ(T(n′))

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

