
Divide and Conquer: 
Sorting and Recurrences



Admin
• Midterm Oct 28th 10:40am 

• No class Oct 28th 

• Midterm is 24 hours, take home 

• Current plan is that midterm will be everything through 
dynamic programming (not sure about network flows) 

• Slides, books from course are OK; collaboration (of 
course) and web searches are not



Recap: Merge Sort



Merge-Sort Running Time Recurrence
• Let  represent how long Merge Sort takes on an input of size  

•  

• Base case: ; often ignored  

• We will ignore the floors and ceilings (we’ll discuss later) 

• So the recurrence simplifies to: 

•   

• The answer to this ends up being  

• Today we will learn different ways to derive it

T(n) n
T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)



Recurrences: Unfolding
Method 1. Unfolding the recurrence  

• Assume  (that is, )   

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 greater than 
that is,  

   

         =  

         =  =  

         =  

         = 

n = 2ℓ ℓ = log n

n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn

2T(2ℓ−1) + c2ℓ

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ 2ℓ

… = 2ℓT(20) + cℓ2ℓ = O(n log n)



Recurrences: Recursion Tree
Method 2.  Recursion Trees 

• Work done at each level  

• Total  levels

2i ⋅ (n/2i) = n
log2 n Recommended  

Method!



Recursion Tree
• This is really a method of visualization 

• Very similar to unrolling, but much easier to keep 
track of what’s going on 

• It’s not (quite) a proof, but generally it is sufficient 
for running times in this class 

• “Solve the recurrence” can be done by drawing 
the recursion tree and explaining the solution



Recurrences: Guess & Verify
Method 3.  Guess and Verify 

• Eyeball recurrence and make a guess 

• Verify guess using induction



Guess & Verify Recurrences
• Method 3.  Requires some practice and creativity 

• Verification by induction may run into issues 

• Example,  

• Guess? 

•   

• Check  

• Is the guess wrong?  Not asymptotically, can fix it up by adding 
lower-order terms 

• New guess  (why minus?) 

•    

•  must be chosen large enough to satisfy boundary conditions

T(n) = 2T(n/2) + 1

T(n) ≤ cn
T(n) ≤ cn + 1 ≰ cn for any c > 0

T(n) ≤ cn − d
T(n) ≤ cn − 2d + 1 ≤ cn − d for any d ≥ 1

c



Divide & Conquer: Quicksort
• Choose a pivot element from the array 
• Partition the array into two parts: left less than the pivot, right greater 

than the pivot 
• Recursively quicksort the first and last subarrays



Divide & Conquer: Quicksort
• Choose a pivot element from the array 
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Divide & Conquer: Quicksort
• Choose a pivot element from the array 
• Partition the array into two parts: left less than the pivot, right greater 

than the pivot 
• Recursively quicksort the first and last subarrays 
• Description.  (Divide and conquer):  often the cleanest way to 

present is short and clean pseudocode with high level explanation
• Correctness proof.  Induction and showing that partition step 

correctly partitions the array.



Quick Sort Analysis
• Partition takes  time 

• Size of the subproblems depends pivot; let  be the rank of the 
pivot, then: 

• ,   

• Let us analyze some cases for  

• Best case: r is the median:  (we will learn how to 
compute the median in  time) 

• Worst case:  or  

• In between: say  

• Note in the worst-case analysis, we only consider the worst case for 
.  We are looking at the difference cases, just to get a sense for it.

O(n)
r

T(n) = T(r − 1) + T(n − r) + O(n) T(1) = 1
r

r = ⌊n/2⌋
O(n)

r = 1 r = n
n/10 ≤ r ≤ 9n/10

r



Quick Sort: Cases
• Suppose  (pivot is the median element), then 

• ,  

• We have already solved this recurrence 

•  

• Suppose  or , then 

•  

• What running time would this recurrence lead to? 

•  (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + 1

T(n) = Θ(n2)



Quick Sort: Cases
• Suppose  (that is, you get a one-tenth, nine-tenths split  

•  

• Let’s look at the recursion tree for this recurrence 

• We get , in fact, we get  

• In general, the following holds (we’ll show it later):  

•  

• If  

• If 

r = n/10
T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1,T(n) = O(n log n)



Quick Sort: Theory and Practice
• We can find the median element in  time  

• Using divide and conquer! we’ll learn how in next lecture 

• In practice, the constants hidden in the Oh notation for median 
finding are too large to use for sorting 

• Common heuristic 

• Median of three (pick elements from the start, middle and 
end and take their median) 

• If the pivot is chosen uniformly at random 

• quick sort runs in time  in expectation and with 
high probability 

• We will prove this in the second half of the class

Θ(n)

O(n log n)



Challenge Recurrence
• Solve the following recurrence:  

 
 

• Hint.  Try some change of variables

T(n) = nT( n) + n



Counting Inversions
• Way to compare two different rankings 

• Or a way to measure how far an array is from sorted 

• Let  be an ordering of  numbers 

• We say two indices  form an inversion if  

• Example: How many inversions in ? 

•  is an inversion 

•  and  is an inversion 

• 3 inversions total

a1, a2, …, an n

i < j ai > aj

2,4,1,3,5
2,1
4,1 4,3



Counting Inversions
• Way to compare two different rankings 

• Or a way to measure how far an array is from sorted 

• Let  be an ordering of  numbers 

• We say two indices  form an inversion if  

• Counting all inversions in a naive way: 

• Comparing every pair is  

• Can we do better by divide and conquer?

a1, a2, …, an n

i < j ai > aj

Θ(n2)



Counting Inversions: Divide & Conquer
• Divide: break array into two halves  and  

• Conquer: recursively count number of inversions in both 

• Combine: count number of inversions of the type  where 
 and return total 

 

• How do combine in  time? 

• Idea: easy if  and  are sorted! 

A B

(a, b)
a ∈ A, b ∈ B

O(n)

A B



Counting Inversions: Divide & Conquer
• Counting inversions:  where  when  are 

sorted 

• Scan both from left to right 

• Compare  and 

(a, b) a ∈ A, b ∈ B A, B

ai bj

count inversions (a, b) with a ∈ A and b ∈ B

5 2

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18



Counting Inversions: Divide & Conquer
• Counting inversions:  where  when  are 

sorted 

• Scan both from left to right 

• Compare  and  

• If ,  

•  is not inverted wrt all remaining elements in  

• If  

•  is inverted with respect to every element left in  

• Append smaller element to sorted list 

(a, b) a ∈ A, b ∈ B A, B

ai bj

ai < bj

ai B

ai > bj

bj A

C



Counting Inversions: Divide & Conquer

Combine Step



Counting Inversions: Analysis
• Same as merge sort 

•  time to merge and count (non-recursive) 

• Two subproblems of half the size 

•  

•

O(n)

T(n) = 2T(n/2) + cn
T(n) = O(n log n)



Recurrences
So far we saw divide and conquer algorithms, where we split the 
problem in more than one subproblem. 

 
Question. Can you think of some examples (that you have likely 
seen before) where we split the problem into one smaller 
subproblem?



D&C: One Smaller Subproblem
• Binary search 

•  
• Binary search tree 

•  
• Fast exponentiation (you may not have seen this) 

• Compute , how many multiplications? 

• Naive way:  

• Faster way:  (suppose  is even) 

•  
• What does this solve to? 
• Think at home: What if  is odd?

T(n) = T(n/2) + 1

T(n) = T(n/2) + 1

an

a ⋅ a ⋅ … ⋅ a (n times)
an = (an/2)2 n

T(n) = T(n/2) + 1

n



General Recursion Trees
• Consider a divide and conquer algorithm that  

• spends  time on non-recursive work and makes  
recursive calls, each on a problem of size  

• Up to constant factors (which we hide in , the running time of 
the algorithm is given by what recurrence? 

•  

• Because we care about asymptotic bounds, we can assume base 
case is a small constant, say  

O( f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1



General Recursion Trees



General Recursion Trees
• Running time  of a recursive algorithm is the sum of all the 

values (sum of work at all nodes at each level) in the recursion tree 

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost   

•
Thus,  

• Here  is the depth of the tree 

• The number of leaves in the tree is  (why?) 

• Cost at leaves: 

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))



Easy Cases to Evaluate

• Decreasing series.  If the series decays exponentially (every term 
is a constant factor smaller than previous), cost at root dominates:  
                 

• Equal. If all terms in the series are equal: 
                

• Increasing series. If the series grows exponentially (every terms is 
constant factor larger), then the cost at leaves dominates: 
               

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O( f(n))

T(n) = O( f(n) ⋅ L) = O( f(n)log n)

T(n) = O(nlogc r)



[Akra–Bazzi ’98]: Master Theorem
(Master Theorem.)  Let  are constants and . Let 

 be defined on the nonnegative integers by the recurrence 
, where we interpret  as .  

 
Then  can be bounded asymptotically as follows. 

• If  for some constant , then  

• If , then  

• If , for some constant , and if 
 for some constant  and all sufficiently large 

, then 

a ≥ 1, b > 1 f(n) ≥ 0
T(n)
T(n) = r (n/c) + f(n) n/c ⌊n/c⌋ or ⌈n/c⌉

T(n)

f(n) = nlogc r−ϵ ϵ > 0 T(n) = Θ(nlogc r)

f(n) = Θ(nlogc r) T(n) = Θ(nlogc r log n)

f(n) = Ω(nlogc r+ϵ) ϵ > 0
rf(n/b) ≤ c0 f(n) c0 < 1
n T(n) = Θ( f(n))



Selection: Problem Statement
Given an array  of size , find the th smallest element for 
any  

• Special cases: min , max :  

• Linear time,    

• What about median ? 

• Sorting:  compares 

• Binary heap:  compares 

Question.  Can we do it in  compares? 

• Surprisingly yes.  

• Selection is easier than sorting. 

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)



Selection: Problem Statement
Example. Take this array of size 10: 
 

 

Suppose we want to find 4th smallest element 

• First, take any pivot  from  

• If  is the 4th smallest element, return it 

• Else, we partition  around  and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

A p



Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



Example on board



When is this method good?
• If we guess the pivot right!  (but we can’t always do that) 

• If we partition the array pretty evenly (the pivot is close to 
the middle 

• Let’s say our pivot is in the middle ths of the array 

• What is our recurrence? 

•  

•

8/10

T(n) ≤ T(9n/10) + O(n)

T(n) = O(n)



Formalizing a Good Pivot
• Recurrence for pivot of rank  

•  

• We don’t know , so assuming the worst: 

•  

• Simplify: use  = length of recursive subproblem 

•  

• For what  do we get a linear solution?

r
T(n) = max{T(r), T(n − r)} + O(n)

r
T(n) = max

1≤r≤n
max{T(r), T(n − r)} + O(n)

ℓ
T(n) = max

1≤ℓ≤n−1
T(ℓ) + O(n)

ℓ



How to Choose a Good Pivot?
 

• If we reduce subproblem size by constant factor each time, 
we get a linear solution 

• That is,  for some constant  

•  for some constant  
• Expands to a decreasing geometric series 
• Largest term at root dominates:  

Take away. 
• We want a pivot that partitions such that where larger subproblem 

is constant factor smaller than   
• If we can find an “approximate median” in linear time, we can 

find the median in linear time as well!

T(n) = max
1≤n−1

T(ℓ) + O(n)

ℓ ≤ αn α < 1
T(n) ≤ T(αn) + O(n) α < 1

T(n) = O(n)

n



Our high-level goal

• Find a pivot that’s in the middle ths of the 
array 

• But the array is unsorted?  How do we do that? 

• Want to always be successful

8/10



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians —- how???

n ⌈n/5⌉ 5

M ← ⌈n/5⌉

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Visualizing MoM
• In the  grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually do this! 

• MoM is the element closest to center of grid

5 × n/5



Visualizing MoM
• Red cells (at least ) in size are smaller than  

• If we are looking for an element larger than , we can throw these 
out, before recursing  

• Symmetrically, we can throw out  elements larger than  if 
looking for a smaller element 

• Thus, the recursive problem size is at most 

3n/10 M
M

3n/10 M

7n/10



How Good is Median of Medians
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎



Analysis:  Running Time
• Question.  How to compute median of median recursively?  

• MoM( ): 

• If : return  

• Else: 

• Divide  into  groups 

• Compute median of each group 

• group medians 

• Mom( )

A, n
n = = 1 A[1]

A ⌈n/5⌉

A′ ←
A′ , ⌈n/5⌉

Not recursive; O(n)

Not recursive; O(n)



• Recurrence just for MoM:

•  

• MoM( ): 

• If : return  

• Else: 

• Divide  into  groups 

• Compute median of each group 

• group medians 

• Mom( )

T(n) = T(n/5) + O(n)
A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ ←
A′ , ⌈n/5⌉

Analysis:  Running Time



Analysis:  Overall
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
• Okay, so we have a good pivot 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



Floors and Ceilings
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

 
          
          
         

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2



Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

• Setting  works 

• Finally, we know  

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)



Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter? 

• Running time  is monotonically increasing 

• Suppose  is not a power of 2, let  be such that 
; then 

• We can upper bound our asymptotic using  and lower bound 
using  

• In particular, let  

• And  

• That is, 

T(n)

n n′ = 2ℓ

n ≤ n′ ≤ 2n

n′ 

n′ /2

T(n) ≤ T(n′ )

T(n) ≥ T(n′ /2)

T(n) = Θ(T(n′ ))
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