
Finishing up Dijkstra’s



Admin
• Assignment 3 is due Oct 8 (it says Oct 7th on the 

handout; that’s a typo) 

• Get started early! 

• Reminder: if you’re at home, switch to camera 
using the button on the top-right 

• Keep up the Covid caution! 

• Any other questions/comments?



Dijkstra’s Algorithm
Greedy approach. Maintain a set of explored nodes  for which 
algorithm has determined  = length of a shortest  path. 

・Initialize , . 

・Repeatedly add unexplored node  which minimizes 

 
                                

S
d[u] s ↝ u

S ← {s} d[s] ← 0
v ∉ S

min
e=(u,v):u∈S

d[u] + ℓe

s

v

u
S

d[u]
ℓe

the length of a shortest path from s 
to some node u in explored part S,
followed by a single edge e = (u, v)



Dijkstra’s Demo



Pseudocode in Textbook

• Use it to test your understanding 

• But, high-level idea is most important



Dijkstra’s Algorithm: Correctness
Invariant. For each ,  is length of a shortest  path 
Proof. [By induction on ]. Base case: , 
and . Assume holds for some . Let  be 
next node added to  
• Suppose some other  path  in  is shorter 
• Let  be the first edge along  that leaves  
• Let  be the subpath from  to  
• Claim:  as soon as it reaches  

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
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s-v P G
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w(P) ≥ d[v] y

S

s

v

u

y

P

x
P ʹ e



Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
Non-negative weights S
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Inductive Hypothesis
w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]s
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

When  was added to ,  was updatedx S d[y]

w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Dijkstra chose to add  instead of v y
w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]

S

s

v

u

y

P

x
P ʹ e



Implementation & Running Time
How can we efficiently implement Dijkstra’s algorithm? We need to 
be able to 

• Visit every neighbor of a vertex 

• Maintain set of visited  and unvisited vertices  

• Maintain a tree of edges  

• (Delete-min) Select & delete unvisited vertex v with min d[v]

• (Decrease-key) Update  for unvisited vertices

S V − S
(v, (pred[v])

d[v]

Priority Queue: Delete-
Min & Decrease-Key



Updating the Priority Queue
How to to update priorities (perform decrease-key) in the priority 
queue efficiently? 

• Recall vertices are represented by  

• Maintain an array PQIndex[1..n] that holds the index of each 
vertex  in the priority queue 

• (Decrease-min) If we update  for some , we then heapify-
up from ’s location in the PQ to restore heap property 

• Every time we swap two heap elements, we update PQIndex 
for the two vertices

1,…, n

v
d[u] u

u



Time and Space Analysis
Space: ; Running Time: 

• Traversal of  (each edge visited at most once) 

•  

• Why the  

•  deleteMin operations from PQ to select next vertex 
 

• Construction of : time proportional to its size:  

• Creation of priority queue:  

• At most one decrease-key for each edge:  

Total time: .  This is  if G is connected 
(Why?)

O(n + m)
S

O(n log n + m)
O(log n)?

n
O(n log n)

T O(n)
O(n)

O(m log n)
O((n + m)log n) O(m log n)



What About Undirected Graphs
How to solve the single-source shortest paths problem in 
undirected graphs with positive edge lengths?

(a) Replace each undirected edge with two antiparallel edges 
of same length and run Dijkstra’s algorithm on the resulting 
digraph 

(b) Modify Dijkstra’s algorithms so that when it processes 
node u, it consider all edges incident to u (instead of 
edges leaving u) 

(c) Either A or B 

(d) Neither A nor B



Shortest Path in Linear Time
[Thorup 1999] Can solve single-source shortest paths problem in 
undirected graphs with positive integer edge lengths in  time.  

Remark. Does not explore vertices in increasing distance from 

O(m)
s



Edsger Dijkstra (1930-2002)

• Shortest-path algorithm was actually discovered 
independently (around 1956) by a bunch of different people 
(read Jeff Erickson’s description and Strigler’s law in CS). 
“Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-
SeitzDantzig-Dijkstra-Minty-Whiting-Hillier algorithm”



Recap:  Greedy Algorithms
• Scheduling non-conflicting jobs (intervals) 

• Earliest finish-times first 

• Greedy stays ahead to prove correctness 

• Scheduling with deadlines to maximize lateness of jobs 

• Earliest-deadline first 

• Exchange argument to prove correctness 

• Minimum spanning trees: greedily pick edges 

• Cut property:  essentially a non-local exchange argument 

• Prims, Kruskals:  correctness from cut property 

• Union find data structure 

• Djisktra’s shortest path:  greedily find paths 



Divide and Conquer: 
Sorting and Recurrences



Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances 

of exactly the same problem 

• Delegate each smaller instance to the Recursion Fairy 
(technically known as induction hypothesis) 

• Combine the solutions for the smaller instances  

• Assume the recursion fairy correctly solves the smaller 
instances, how can you combine them?



Recap: Merge Sort
• Divide input array into 2 subarrays of roughly equal size 

• Recursively mergesort each of the subarrays 

• Merge the sorted subarrays into a single sorted array

A G H I L M O R S T

merge results

A L G O R I T H M S

input

I T H M SA G L O R

sort left half

H I M S T

sort right half

A G L O R



Recap: Merge Sort



• Scan subarrays from left to right 

• Compare element by element; create new merged array

Merge Step: Θ(n)

sorted list A

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18

sorted list B



Correctness of D&C Algorithms
• Correctness proof pattern:  

• Natural proof by induction pattern 
• Show base case holds, rely on the recursion fairy (I mean 

induction hypothesis) to prove the inductive step 
• Often the crux on the proof is showing that the solutions returned 

by the recursive calls are “combined” correctly  

• Claim.  (Combine step.) Merge subroutine correctly merges two 
sorted subarrays  and  where . 
• Prove that for the first  iterations of the loop correctly merge  

and  for  to . 
• Invariant.  Merged array is sorted after every iteration and 

contains the  smallest elements in  or  
• Base case: , 

A[1,…i] B[1,…, j] i + j = n
k A

B k = 1 n

k A B
k = 1



Correctness of D&C Algorithms
Claim.  (Combine step.) Merge subroutine correctly merges two 
sorted subarrays  and  where . 
• Prove that for the first  iterations of the loop correctly merge  

and  for  to . 
• Invariant.  Merged array is sorted after every iteration and 

contains the  smallest elements in  or  
• Base case:  
• Inductive step: 

• The st smallest element must be the “next” element of  
or  since they are sorted 

• In fact it is the smallest of them 
• Therefore, the merge correctly places the st smallest 

element.  With the inductive hypothesis, the st iteration 
gives the correct output

A[1,…i] B[1,…, j] i + j = n
k A

B k = 1 n

k A B
k = 1

k + 1 A
B

k + 1
k + 1



Merge-Sort Running Time Recurrence
• Let  represent how long Merge Sort takes on an input of size  

•  

• Base case: ; often ignored  

• We will ignore the floors and ceilings  

• Our methods will tolerate such sloppiness 

• For asymptotic bounds, turns out it doesn't matter 

• So the recurrence simplifies to: 

•   

• The answer to this ends up being  

• Today we will learn different ways to derive it

T(n) n
T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)



Recurrences: Unfolding
Method 1. Unfolding the recurrence  

• Assume  (that is, )   

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 greater than 
that is,  

   

         =  

         =  =  

         =  

         = 

n = 2ℓ ℓ = log n

n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn

2T(2ℓ−1) + c2ℓ

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ 2ℓ

… = 2ℓT(20) + cℓ2ℓ = O(n log n)



Recurrences: Recursion Tree
Method 2.  Recursion Trees 

• Work done at each level  

• Total  levels

2i ⋅ (n/2i) = n
log2 n Recommended  

Method!



Recurrences: Guess & Verify
Method 3.  Guess and Verify 

• Eyeball recurrence and make a guess 

• Verify guess using induction 

• More on this tomorrow… 



Divide & Conquer: Quicksort
• Choose a pivot element from the array 
• Partition the array into two parts: left less than the pivot, right greater 

than the pivot 
• Recursively quicksort the first and last subarrays



Divide & Conquer: Quicksort
• Choose a pivot element from the array 
• Partition the array into two parts: left less than the pivot, right greater 

than the pivot 
• Recursively quicksort the first and last subarrays 
• Description.  (Divide and conquer):  often the cleanest way to 

present is short and clean pseudocode with high level explanation
• Correctness proof.  Induction and showing that partition step 

correctly partitions the array.



Quick Sort Analysis
• Partition takes  time 

• Size of the subproblems depends pivot; let  be the rank of the 
pivot, then: 

• ,   

• Let us analyze some cases for  

• Best case: r is the median:  (how fast can we 
compute the median?) 

• Worst case:  or  

• In between: say  

• Note in the worst-case analysis, we only consider the worst case for 
.  We are looking at the difference cases, just to get a sense for it.

O(n)
r

T(n) = T(r − 1) + T(n − r) + O(n) T(1) = 1
r

r = ⌊n/2⌋

r = 1 r = n
n/10 ≤ r ≤ 9n/10

r



Quick Sort: Cases
• Suppose  (pivot is the median element), then 

• ,  

• We have already solved this recurrence 

•  

• Suppose  or , then 

•  

• What running time would this recurrence lead to? 

•  (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + 1

T(n) = Θ(n2)



Quick Sort: Cases
• Suppose  (that is, you get a one-tenth, nine-tenths split  

•  

• Let’s look at the recursion tree for this recurrence 

• We get , in fact, we get  

• In general, the following holds (we’ll show it later):  

•  

• If  

• If 

r = n/10
T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1,T(n) = O(n log n)



Quick Sort: Theory and Practice
• We can find the median element in  time  

• Using divide and conquer! we’ll learn how in next lecture 

• In practice, the constants hidden in the Oh notation for median 
finding are too large to use for sorting 

• Common heuristic 

• Median of three (pick elements from the start, middle and 
end and take their median) 

• If the pivot is chosen uniformly at random 

• quick sort runs in time  in expectation and with 
high probability 

• We will prove this in the second half of the class

Θ(n)

O(n log n)
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