
Finishing up Dijkstra’s

Admin
• Assignment 3 is due Oct 8 (it says Oct 7th on the

handout; that’s a typo)

• Get started early!

• Reminder: if you’re at home, switch to camera
using the button on the top-right

• Keep up the Covid caution!

• Any other questions/comments?

Dijkstra’s Algorithm
Greedy approach. Maintain a set of explored nodes for which
algorithm has determined = length of a shortest path.

・Initialize , .

・Repeatedly add unexplored node which minimizes

S
d[u] s ↝ u

S ← {s} d[s] ← 0
v ∉ S

min
e=(u,v):u∈S

d[u] + ℓe

s

v

u
S

d[u]
ℓe

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

Dijkstra’s Demo

Pseudocode in Textbook

• Use it to test your understanding

• But, high-level idea is most important

Dijkstra’s Algorithm: Correctness
Invariant. For each , is length of a shortest path
Proof. [By induction on]. Base case: ,
and . Assume holds for some . Let be
next node added to
• Suppose some other path in is shorter
• Let be the first edge along that leaves
• Let be the subpath from to
• Claim: as soon as it reaches

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
e = (x, y) P S
P′ s x

w(P) ≥ d[v] y

S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
Non-negative weights S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Inductive Hypothesis
w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]s

S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

When was added to , was updatedx S d[y]

w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Dijkstra chose to add instead of v y
w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]

S

s

v

u

y

P

x
P ʹ e

Implementation & Running Time
How can we efficiently implement Dijkstra’s algorithm? We need to
be able to

• Visit every neighbor of a vertex

• Maintain set of visited and unvisited vertices

• Maintain a tree of edges

• (Delete-min) Select & delete unvisited vertex v with min d[v]

• (Decrease-key) Update for unvisited vertices

S V − S
(v, (pred[v])

d[v]

Priority Queue: Delete-
Min & Decrease-Key

Updating the Priority Queue
How to to update priorities (perform decrease-key) in the priority
queue efficiently?

• Recall vertices are represented by

• Maintain an array PQIndex[1..n] that holds the index of each
vertex in the priority queue

• (Decrease-min) If we update for some , we then heapify-
up from ’s location in the PQ to restore heap property

• Every time we swap two heap elements, we update PQIndex
for the two vertices

1,…, n

v
d[u] u

u

Time and Space Analysis
Space: ; Running Time:

• Traversal of (each edge visited at most once)

•

• Why the

• deleteMin operations from PQ to select next vertex

• Construction of : time proportional to its size:

• Creation of priority queue:

• At most one decrease-key for each edge:

Total time: . This is if G is connected
(Why?)

O(n + m)
S

O(n log n + m)
O(log n)?

n
O(n log n)

T O(n)
O(n)

O(m log n)
O((n + m)log n) O(m log n)

What About Undirected Graphs
How to solve the single-source shortest paths problem in
undirected graphs with positive edge lengths?

(a) Replace each undirected edge with two antiparallel edges
of same length and run Dijkstra’s algorithm on the resulting
digraph

(b) Modify Dijkstra’s algorithms so that when it processes
node u, it consider all edges incident to u (instead of
edges leaving u)

(c) Either A or B

(d) Neither A nor B

Shortest Path in Linear Time
[Thorup 1999] Can solve single-source shortest paths problem in
undirected graphs with positive integer edge lengths in time.

Remark. Does not explore vertices in increasing distance from

O(m)
s

Edsger Dijkstra (1930-2002)

• Shortest-path algorithm was actually discovered
independently (around 1956) by a bunch of different people
(read Jeff Erickson’s description and Strigler’s law in CS).
“Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-
SeitzDantzig-Dijkstra-Minty-Whiting-Hillier algorithm”

Recap: Greedy Algorithms
• Scheduling non-conflicting jobs (intervals)

• Earliest finish-times first

• Greedy stays ahead to prove correctness

• Scheduling with deadlines to maximize lateness of jobs

• Earliest-deadline first

• Exchange argument to prove correctness

• Minimum spanning trees: greedily pick edges

• Cut property: essentially a non-local exchange argument

• Prims, Kruskals: correctness from cut property

• Union find data structure

• Djisktra’s shortest path: greedily find paths

Divide and Conquer:
Sorting and Recurrences

Divide & Conquer: The Pattern
• Divide the problem into several independent smaller instances

of exactly the same problem

• Delegate each smaller instance to the Recursion Fairy
(technically known as induction hypothesis)

• Combine the solutions for the smaller instances

• Assume the recursion fairy correctly solves the smaller
instances, how can you combine them?

Recap: Merge Sort
• Divide input array into 2 subarrays of roughly equal size

• Recursively mergesort each of the subarrays

• Merge the sorted subarrays into a single sorted array

A G H I L M O R S T

merge results

A L G O R I T H M S

input

I T H M SA G L O R

sort left half

H I M S T

sort right half

A G L O R

Recap: Merge Sort

• Scan subarrays from left to right

• Compare element by element; create new merged array

Merge Step: Θ(n)

sorted list A

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18

sorted list B

Correctness of D&C Algorithms
• Correctness proof pattern:

• Natural proof by induction pattern
• Show base case holds, rely on the recursion fairy (I mean

induction hypothesis) to prove the inductive step
• Often the crux on the proof is showing that the solutions returned

by the recursive calls are “combined” correctly

• Claim. (Combine step.) Merge subroutine correctly merges two
sorted subarrays and where .
• Prove that for the first iterations of the loop correctly merge

and for to .
• Invariant. Merged array is sorted after every iteration and

contains the smallest elements in or
• Base case: ,

A[1,…i] B[1,…, j] i + j = n
k A

B k = 1 n

k A B
k = 1

Correctness of D&C Algorithms
Claim. (Combine step.) Merge subroutine correctly merges two
sorted subarrays and where .
• Prove that for the first iterations of the loop correctly merge

and for to .
• Invariant. Merged array is sorted after every iteration and

contains the smallest elements in or
• Base case:
• Inductive step:

• The st smallest element must be the “next” element of
or since they are sorted

• In fact it is the smallest of them
• Therefore, the merge correctly places the st smallest

element. With the inductive hypothesis, the st iteration
gives the correct output

A[1,…i] B[1,…, j] i + j = n
k A

B k = 1 n

k A B
k = 1

k + 1 A
B

k + 1
k + 1

Merge-Sort Running Time Recurrence
• Let represent how long Merge Sort takes on an input of size

•

• Base case: ; often ignored

• We will ignore the floors and ceilings

• Our methods will tolerate such sloppiness

• For asymptotic bounds, turns out it doesn't matter

• So the recurrence simplifies to:

•

• The answer to this ends up being

• Today we will learn different ways to derive it

T(n) n
T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + O(n)

T(1) = 1

T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Recurrences: Unfolding
Method 1. Unfolding the recurrence

• Assume (that is,)

• Because we don’t care about constant factors and are only upper-
bounding, we can always choose smallest power of 2 greater than
that is,

 =

 = =

 =

 =

n = 2ℓ ℓ = log n

n < n′ = 2ℓ < 2n

T(n) = 2T(n/2) + cn

2T(2ℓ−1) + c2ℓ

2(2T(2ℓ−2) + c2ℓ−1) + c2ℓ 22T(2ℓ−2) + 2 ⋅ c2ℓ

23T(2ℓ−3) + 3 ⋅ 2ℓ

… = 2ℓT(20) + cℓ2ℓ = O(n log n)

Recurrences: Recursion Tree
Method 2. Recursion Trees

• Work done at each level

• Total levels

2i ⋅ (n/2i) = n
log2 n Recommended

Method!

Recurrences: Guess & Verify
Method 3. Guess and Verify

• Eyeball recurrence and make a guess

• Verify guess using induction

• More on this tomorrow…

Divide & Conquer: Quicksort
• Choose a pivot element from the array
• Partition the array into two parts: left less than the pivot, right greater

than the pivot
• Recursively quicksort the first and last subarrays

Divide & Conquer: Quicksort
• Choose a pivot element from the array
• Partition the array into two parts: left less than the pivot, right greater

than the pivot
• Recursively quicksort the first and last subarrays
• Description. (Divide and conquer): often the cleanest way to

present is short and clean pseudocode with high level explanation
• Correctness proof. Induction and showing that partition step

correctly partitions the array.

Quick Sort Analysis
• Partition takes time

• Size of the subproblems depends pivot; let be the rank of the
pivot, then:

• ,

• Let us analyze some cases for

• Best case: r is the median: (how fast can we
compute the median?)

• Worst case: or

• In between: say

• Note in the worst-case analysis, we only consider the worst case for
. We are looking at the difference cases, just to get a sense for it.

O(n)
r

T(n) = T(r − 1) + T(n − r) + O(n) T(1) = 1
r

r = ⌊n/2⌋

r = 1 r = n
n/10 ≤ r ≤ 9n/10

r

Quick Sort: Cases
• Suppose (pivot is the median element), then

• ,

• We have already solved this recurrence

•

• Suppose or , then

•

• What running time would this recurrence lead to?

• (notice: this is tight!)

r = n/2
T(n) = 2T(n/2) + O(n) T(1) = 1

T(n) = O(n log n)

r = 1 r = n − 1
T(n) = T(n − 1) + T(1) + 1

T(n) = Θ(n2)

Quick Sort: Cases
• Suppose (that is, you get a one-tenth, nine-tenths split

•

• Let’s look at the recursion tree for this recurrence

• We get , in fact, we get

• In general, the following holds (we’ll show it later):

•

• If

• If

r = n/10
T(n) = T(n/10) + T(9n/10) + O(n)

T(n) = O(n log n) Θ(n log n)

T(n) = T(αn) + T(βn) + O(n)
α + β < 1 : T(n) = O(n)
α + β = 1,T(n) = O(n log n)

Quick Sort: Theory and Practice
• We can find the median element in time

• Using divide and conquer! we’ll learn how in next lecture

• In practice, the constants hidden in the Oh notation for median
finding are too large to use for sorting

• Common heuristic

• Median of three (pick elements from the start, middle and
end and take their median)

• If the pivot is chosen uniformly at random

• quick sort runs in time in expectation and with
high probability

• We will prove this in the second half of the class

Θ(n)

O(n log n)

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

