Union-Find, MST, and
Shortest Path



Admin

Assignment 3 out right after class

Assignment 1 extra credit not included In current
grades (will update later today)

Schedule updated later today assuming Mountain
Day Is next week

Previous assignment solutions/questions?

« Come to me or a TA during office hours!



Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

 How can we Union?




Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

 How can we Union”? Point lower-height tree to higher




What do we get?

e “Up tree” method:
« O(1) Union, O(logn) Find
 "Point to head”™ method:

« O(logn) amortized Union, O(1) Find



Class poll!

Do you think we can do better?
Which of the following do you
think is the case”

 Either Union or Find take
Q(logn)

* |t you multiply Union and Find,
the product of their times must
be C2(log n)

« Both can be O(1)

e Something in the middle



Let’s make things work a
little faster in practice

* Think about the "up trees”
* When we're doing a Find, Is L
there work we can do to

make future finds faster? /I > ./'




Let’s make things work a
little faster in practice

* Think about the "up trees”

* When we're doing a Find, Is
there work we can do to
make future finds faster?




e So0...let’'s do that!

Let’s make things work a
little faster in practice

* When we're doing a Find, Is
there work we can do to
make future finds faster?

 We really want all of these
to point right to the head




Let’s make things work a
little faster in practice

When we're doing a Find, Is
there work we can do to make
future finds faster?

We really want all of these to
point right to the head

So...let’s do that!

Walt, I've broken the data
structure!

e | can't maintain “height”



. S 1: . 9
Maintaining "Height

We can’t maintain the exact height. What it we

pretend we can” Just do the same bookkeeping:

Keep a “rank” (starting at O)

Always point the head of smaller rank to the head
of larger rank; keep rank the same

It both ranks are the same, point one to the other,
and increment the rank



What do we get?

Every time | have an expensive Find, | get a lot of great work
done for the future by shrinking the tree

» Called “path compression” [Galler, Fischer '64]

Now | have an inaccurate “rank” instead of an actual “height

First: did this make things worse? Union is still O(1), is Find
O(logn) ?

« We did not make things worse, Find is O(log n)

Can we show that we made things better?



Surprising Result: Hopcroft Uiman’73

 Amortized complexity of union find with path compression improves
significantly!

e Time complexity for n union and find operations on n elements is

O(nlog* n)

« log™ n is the number of times you need to apply the log function
before you get to a number <= 1

Very small! Less than 5 for all reasonable values

(

0 if n<1
| 1+ log"(logn) if n>1

=22 | 16 = 2* | 65,536 = 216 | 205530
2 | 3 | 4 5

? Digging
e Deeper




Surprising Result: Tarjan ‘75

Improved bound on amortized complexity of union-find with path
compression

Time complexity for n union and find operations on n elements is
O(na(n)), where

« a(n) is extremely slow-growing, inverse-Ackermann function
 Essentially a constant

Grows much muuchch morrree slowly than log™

a(n) < 4 for all values in practice

Result. Union and Find become (essentially) amortized constant

time in practice (just short of O(1) in theory) !
? Digging
* Deeper




Inverse Ackermann

Inverse Ackerman: The function a(rn) grows much more slowly
than log™ 7 for any fixed ¢

With log™, you count how many times does applying log over and
over gets the result to become small

With the inverse Ackermann, essentially you count how many times
you iterate log™ (not log!) over and over to get the result to become

small

k
k %k ok ok

a(n) = min{k | log ) < 2)

6

1
a(n) =4 forn = 2222 Digging
e

Deeper




Can we do better?

* OK, so that's “basically constant”. Can we get
constant”

» No. Any data structure tor union find requires
C(a(n)) amortized time (Fredman, Saks '89)

e SO Up trees with path compression are optimal(!)



Many Applications of Union-Find

* (Good for applications in need of clustering
e cities connected by roads
e cities belonging to the same country
e connected components of a graph
 Maintaining equivalence classes

e Maze creation!

? Digging
* Deeper




Back to MST

Prim’s algorithm is O(m + nlog n) if using a
Fibonnacci tree

Kruskal’s algorithm is O(m log m)
Which is better in practice?

|s sorting time required”



MST Algorithms History

* Boruvka’s Algorithm (1926)

 The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-

Zubrzycki / Prim / Sollin / Brosh a

e QOldest, most-ignored MST algorit

* Jarnik’s Algorithm (“Prims Algorithm”,

gorithm

nm, but actually very good

1929)

* Published by Jarnik, independently discovered by Kruskal in

1956, by Prims in 1957
* Kruskal’s Algorithm (1956)

» Kruskal designed this because he found Boruvka'’s algorithm

‘unnecessarily complicated”



Can we do better?

Best known algorithm by Chazelle (1999)

A Minimum Spanning Tree Algorithm with Inverse-Ackermann
Type Complexity*

BERNARD CHAZELLE'

NECI Research Tech Report 99-099 (July 1999)
Journal of the ACM, 47(6), 2000, pp. 1028-1047.

Abstract

panning tree of a connected

A deterministic algorithm for cqe
graph is presented. Its running timeli e« is the classical functional
inverse of Ackermann’s function and i ber of vertices (resp. edges).
The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric

assumptions on the edge costs.

1 Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going as far back
as Boruvka's work in 1926 [1, 9, 13]. In fact, MST is perhaps the oldest open problem in
computer science. According to Nesetfil [13], “this is a cornerstone problem of combinatorial

At i tratiar arnd 3 e canen 1te rradla ? Mavibhianl alanrifbh e 1110 991 ) 1aar o) $39vma sirhara o



Can we do better?

Using randomness, can get O(n + m) time!

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER

Stanford University, Stanford, California

PHILIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Princeton University and NEC Research Institute, Princeton, New Jersey

Abstract, We present ajrandomized linear-time algorithm fo find & minimum spanning tree in a

connected graph with edBeWeTg 180 f§estandom sampling in combination with a
recently discovered linear-time dlgorlthm for verifying a minimum spanning tree. Our computa-
tional model is a unit-cost random-access machine with the restriction that the only operations
allowed on edge weights are binary comparisons.

Categorics and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl:
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete



Optimal MST Algorithm?

Has been discovered but don't know its running time!

An Optimal Minimum Spanning Tree Algorithm

SETH PETTIE AND VIJAYA RAMACHANDRAN

The University of Texas at Austin, Austin, Texas

Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph with »n vertices and m edges that runs in time O(7 *(m, n)) where 7 * is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known for 7* are 7*(m, n) = Q(m)and 7*(m,n) = O(m - a(m, n)), where « is
a certain natural inverse of Ackermann’s function.

Even under the assumption that 7 * is superlinear, we show that if the input graph is selected from
G n,m, our algorithm runs in linear time with high probability, regardless of n, m, or the permutation of

edge weights. The analysis uses a new martingale for G, ,, similar to the edge-exposure martingale
PI\Q‘ f:'



Story So Far

 Graph Traversal algorithms
* BFS, DFS
* Properties and applications of traversals
* Bipartite matching, topological ordering
* Approximating diameter or graphs
* Finding bridges, articulation points
* (Greedy algorithms
* (Greedy stays ahead and exchange argument proofs
* Minimum spanning trees
e Last lecture on Greedy:

e Shortest paths in weighted directed graphs



Shortest Paths in Weighted Graph

@ s @)

/

lengthof path=9+4 + 1+ 11 = 25



Shortest Paths in Weighted Graph

Problem. Given a directed graph G = (V, E) with positive edge
weights: that is, each edge e € E has a positive weight w(e) and
vertices s and 7, find the shortest path from s to t.

The shortest path from s to f in a weighted graph is a path P from s
to ¢ (or a s-f path) with minimum weight w(P) = Z w(e).
ecP



Single-Source Shortest Path

Assumption. There exists a path from § to every node in the graph.
15
A0 2
12
source s 3
8
I ' ‘@ . ’é 9
. ° 1 11
4
4 i 13 \
. -

shortest-paths tree



Single-Source Shortest Path

Problem. Given a directed graph G = (V, E) with positive edge
weights w, for each e € E and a source s € V, find a shortest
directed path from s to every other vertex in V.

Quick quiz. Which of these changes to edge weights on a graph
does not affect the shortest paths?

A. Adding 17
B. Multiplying 17

C. None of the above



Shortest Paths Applications

* Map routing

* Robot navigation

* Texture mapping

* Typesetting In LaTeX.

e Urban traffic planning.

* Scheduling, routing of operators

* Network routing protocols (OSPF, BGP, RIP)

* [tis so important that we will revisit shortest paths when we study
dynamic programming!



Dijkstra’s Algorithm

Computes the shortest path from s to all vertices
Dijkstra’s algorithm has the following key components

« |t evolves a tree, rooted at s, of shortest paths to the vertices
closestto s

|t keeps a conservative estimate (that is, over-estimate) d(u) of
the shortest path length to vertices u not yet in the tree

e |t selects the next vertex to add to the tree based on lowest
estimate (Greedy: choose locally best next move)



Dijkstra’s Algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined d[u] = length of a shortest s ~ u path.

- Initialize § « {s}, d[s] « O.

- Repeatedly add unexplored node v & S which minimizes

min @[u] + fe)\ the length of a shortest path from s
e:(u,v):ueS to some node u in explored part S,
followed by a single edge e = (u, v)

L,
du]
s O— K@




o ——————— ——————————————————————— ——————————— — —— — —

Dijkstra’s Algorithm

T so far

Estimate at vertex v is the weight of
shortest path in 1 followed by a

single edge fromTto G — T

——— — — ——— —— —— —— —— — — — — — — —
— — — —————— ————— — — — — — — — — —"




Dijkstra's Demo



Pseudocode In Textbook

* Use It to test your understanding

* But, high-level idea is most important



Dijkstra’s Algorithm: Correctness

Invariant. For each u € S, d[u] is length of a shortest s-u path



Dijkstra’s Algorithm: Correctness

Invariant. For each u € §, d[u] is length of a shortest s-u path

Proof. [By induction on |S|]. Base case: |S| =1, 5 = {s}and
d[s] = 0. Assume holds for some k = | S| > 1. Let v be next node
added to

« Consider some other s-v path Pin G

« Our goal is to show w(P) > d[V]

« Lete = (x,y) be the first edge along P that leaves §
« Let P'be the subpath from s to x

« w(P') > d|x] (by inductive hypothesis) it @) ---->Q)

Non-negative weights Q’\S/a@\

w(P) > w(P) +w, > d[x] +w, > d|y] > d|Vv]



Dijkstra’s Algorithm: Correctness

Invariant. For each u € §, d[u] is length of a shortest s-u path

Proof. [By induction on |S|]. Base case: |S| =1, 5 = {s}and
d[s] = 0. Assume holds for some k = | S| > 1. Let v be next node
added to

« Consider some other s-v path Pin G

« Our goal is to show w(P) > d[V]

« Lete = (x,y) be the first edge along P that leaves §
« Let P'be the subpath from s to x

« w(P') > d|x] (by inductive hypothesis) it @) ---->Q)

Inductive Hypothesis Q’\S/a@\

w(P) > w(P)+w, > d[x] +w, > d|y] > d|V]



Dijkstra’s Algorithm: Correctness

Invariant. For each u € §, d[u] is length of a shortest s-u path

Proof. [By induction on |S|]. Base case: |S| =1, 5 = {s}and
d[s] = 0. Assume holds for some k = | S| > 1. Let v be next node
added to

« Consider some other s-v path Pin G

« Our goal is to show w(P) > d[V]

« Lete = (x,y) be the first edge along P that leaves §
« Let P'be the subpath from s to x

« w(P') > d|x] (by inductive hypothesis) it @) ---->Q)

When x was added to S, d[y] was updated M@\

w(P) > w(P)+w, > d[x] +w, > d|y] > d|Vv]



Dijkstra’s Algorithm: Correctness

Invariant. For each u € §, d[u] is length of a shortest s-u path

Proof. [By induction on |S|]. Base case: |S| =1, 5 = {s}and
d[s] = 0. Assume holds for some k = | S| > 1. Let v be next node
added to

« Consider some other s-v path Pin G

« Our goal is to show w(P) > d[V]

« Lete = (x,y) be the first edge along P that leaves §
« Let P'be the subpath from s to x

« w(P') > d|x] (by inductive hypothesis) it @) ---->Q)

Dijkstra chose to add v instead of y @’\S/a@\

w(P) > w(P)+w, > d[x] +w, > d]y] = d[v]



Implementation & Running Time

How can we eftticiently implement Dijkstra’s algorithm? We need to
be able to

Visit every neighbor of a vertex

Maintain set of visited § and unvisited vertices V — §
Maintain a tree of edges (v, (pred[v])

(Delete-min) Select & delete unvisited vertex v with min d[v]

(Decrease-key) Update d[v] for unvisited vertices

Priority Queue: Delete-
Min & Decrease-Key



Updating the Priority Queue

How to to update priorities (perform decrease-key) in the priority
queue efficiently?

« Recall vertices are represented by 1,...,n

 Maintain an array PQIndex[1..n] that holds the index of each
vertex v in the priority queue

« (Decrease-min) If we update d[u] for some u, we then heapify-
up from u’s location in the PQ to restore heap property

 Every time we swap two heap elements, we update PQIndex
for the two vertices



Time and Space Analysis

Space: O(n + m); Running Time:
« Traversal of § (each edge visited at most once)
« Onlogn+ m)
« Why the O(logn)?

« n deleteMin operations from PQ to select next vertex
O(nlogn)

« Construction of T: time proportional to its size:O(n)
« Creation of priority queue: O(n)

« At most one decrease-key for each edge: O(mlog n)

Total time: O((n + m)logn). This is O(mlogn) if G is connected
(Why)



What About Undirected Graphs

How to solve the single-source shortest paths problem in
undirected graphs with positive edge lengths?

(a) Replace each undirected edge with two antiparallel edges
of same length and run Dijkstra’s algorithm on the resulting
digraph

(b) Modity Dijkstra’s algorithms so that when it processes
node u, it consider all edges incident to u (instead of
edges leaving u)

(c) Either A or B
(d) Neither A nor B



Shortest Path in Linear Time

[Thorup 1999] Can solve single-source shortest paths problem in
undirected graphs with positive integer edge lengths in O(m) time.

Remark. Does not explore vertices in increasing distance from §

Undirected Single Source Shortest Paths with
Positive Integer Weights in Linear Time

Mikkel Thorup
AT& T Labs—Research

The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic
graph theory: given a positively weighted graph G with a source vertex s, find the shortest path
from s to all other vertices in the graph.

Since 1959 all theoretical developments in SSSP for general directed and undirected graphs
have been based on Dijkstra’s algorithm, visiting the vertices in order of increasing distance from
s. Thus, any implementation of Dijkstra’s algorithm sorts the vertices according to their distances
from s. However, we do not know how to sort in linear time.

Here, a deterministic linear time and linear space algorithm is presented for the undirected
single source shortest paths problem with positive integer weights. The algorithm avoids the
sorting bottle-neck by building a hierarchical bucketing structure, identifying vertex pairs that

may be visited in any order.



Edsger Dijkstra (1930-2002)

“ What’s the shortest way to travel from Rotterdam to Groningen?
It is the algorithm for the shortest path, which I designed in
about 20 minutes. One morning I was shopping in Amsterdam
with my young fiancée, and tired, we sat down on the café
terrace to drink a cup of coffee and I was just thinking about

whether I could do this, and I then designed the algorithm for

the shortest path.” — Edsger Dijsktra

-+ Shortest-path algorithm was actually discovered
independently (around 1956) by a bunch of different people
(read Jeff Erickson’s description and Strigler’s law in CS).
“Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-
SeitzDantzig-Dijkstra-Minty-Whiting-Hillier algorithm”




Recap: Greedy Algorithms

Scheduling non-conflicting jobs (intervals)
» Earliest finish-times first
« (Greedy stays ahead to prove correctness
Scheduling with deadlines to maximize lateness of jobs
o Earliest-deadline first
 Exchange argument to prove correctness
Minimum spanning trees: greedily pick edges
e Cut property: essentially a non-local exchange argument
e Boruvka’s, Prims, Kruskals: correctness from cut property
« Union find data structure

Djisktra’s shortest path: greedily find paths



Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)



https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

