
Union-Find, MST, and
Shortest Path

Admin
• Assignment 3 out right after class

• Assignment 1 extra credit not included in current
grades (will update later today)

• Schedule updated later today assuming Mountain
Day is next week

• Previous assignment solutions/questions?

• Come to me or a TA during office hours!

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Union? Point lower-height tree to higher

What do we get?

• “Up tree” method:

• Union, Find

• “Point to head” method:

• amortized Union, Find

O(1) O(log n)

O(log n) O(1)

Class poll!
Do you think we can do better?
Which of the following do you
think is the case?

• Either Union or Find take

• If you multiply Union and Find,
the product of their times must
be

• Both can be

• Something in the middle

Ω(log n)

Ω(log n)

O(1)

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to
make future finds faster?

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to
make future finds faster?

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to
make future finds faster?

• We really want all of these
to point right to the head

• So…let’s do that!

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

• Wait, I’ve broken the data
structure!

• I can’t maintain “height”

Maintaining “Height”
• We can’t maintain the exact height. What if we

pretend we can? Just do the same bookkeeping:

• Keep a “rank” (starting at 0)

• Always point the head of smaller rank to the head
of larger rank; keep rank the same

• If both ranks are the same, point one to the other,
and increment the rank

What do we get?
• Every time I have an expensive Find, I get a lot of great work

done for the future by shrinking the tree

• Called “path compression” [Galler, Fischer ’64]

• Now I have an inaccurate “rank” instead of an actual “height”

• First: did this make things worse? Union is still , is Find
 ?

• We did not make things worse, Find is

• Can we show that we made things better?

O(1)
O(log n)

O(log n)

Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves

significantly!
• Time complexity for union and find operations on elements is

• is the number of times you need to apply the log function
before you get to a number <= 1

• Very small! Less than 5 for all reasonable values

n n
O(n log* n)
log* n

Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path

compression

• Time complexity for union and find operations on elements is
, where

• is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than

• for all values in practice

• Result. Union and Find become (essentially) amortized constant
time in practice (just short of in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)

Inverse Ackermann
• Inverse Ackerman: The function grows much more slowly

than for any fixed c  

• With , you count how many times does applying over and
over gets the result to become small

• With the inverse Ackermann, essentially you count how many times
you iterate (not log!) over and over to get the result to become
small 

•

• for

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216

Can we do better?

• OK, so that’s “basically constant”. Can we get
constant?

• No. Any data structure for union find requires
 amortized time (Fredman, Saks ’89)

• So up trees with path compression are optimal(!)

Ω(α(n))

Many Applications of Union-Find
• Good for applications in need of clustering

• cities connected by roads
• cities belonging to the same country
• connected components of a graph

• Maintaining equivalence classes
• Maze creation!

Back to MST

• Prim’s algorithm is if using a
Fibonnacci tree

• Kruskal’s algorithm is

• Which is better in practice?

• Is sorting time required?

O(m + n log n)

O(m log m)

MST Algorithms History
• Borůvka’s Algorithm (1926)

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm

• Oldest, most-ignored MST algorithm, but actually very good

• Jarník’s Algorithm (“Prims Algorithm”, 1929)

• Published by Jarník, independently discovered by Kruskal in
1956, by Prims in 1957

• Kruskal’s Algorithm (1956)

• Kruskal designed this because he found Borůvka’s algorithm
“unnecessarily complicated”

Can we do better?
Best known algorithm by Chazelle (1999)

Can we do better?
Using randomness, can get time!O(n + m)

Optimal MST Algorithm?
Has been discovered but don’t know its running time!

Story So Far
• Graph Traversal algorithms

• BFS, DFS

• Properties and applications of traversals

• Bipartite matching, topological ordering

• Approximating diameter or graphs

• Finding bridges, articulation points

• Greedy algorithms

• Greedy stays ahead and exchange argument proofs

• Minimum spanning trees

• Last lecture on Greedy:

• Shortest paths in weighted directed graphs

Shortest Paths in Weighted Graph

7

1 3

source s

6

8

5

7

5 4

15

312

20

13

9

destination t

length of path = 9 + 4 + 1 + 11 = 25

0

4

5

2

6

9

4

1 11

Shortest Paths in Weighted Graph
Problem. Given a directed graph with positive edge
weights: that is, each edge has a positive weight and
vertices and , find the shortest path from to .

The shortest path from to in a weighted graph is a path from
to (or a - path) with minimum weight .

G = (V, E)
e ∈ E w(e)

s t s t

s t P s
t s t w(P) = ∑

e∈P

w(e)

Single-Source Shortest Path

7

1 3

source s

6

8

5

7

5 4

15

312

20

13

9

shortest-paths tree

4

5

2

6

4

1 11
9

0

Assumption. There exists a path from to every node in the graph.s

Single-Source Shortest Path
Problem. Given a directed graph with positive edge
weights for each and a source , find a shortest
directed path from to every other vertex in .

Quick quiz. Which of these changes to edge weights on a graph
does not affect the shortest paths?

A. Adding 17

B. Multiplying 17

C. None of the above

G = (V, E)
we e ∈ E s ∈ V

s V

Shortest Paths Applications
• Map routing

• Robot navigation

• Texture mapping

• Typesetting in LaTeX.

• Urban traffic planning.

• Scheduling, routing of operators

• Network routing protocols (OSPF, BGP, RIP)

• It is so important that we will revisit shortest paths when we study
dynamic programming!

Dijkstra’s Algorithm
Computes the shortest path from to all vertices

Dijkstra’s algorithm has the following key components

• It evolves a tree, rooted at , of shortest paths to the vertices
closest to

• It keeps a conservative estimate (that is, over-estimate) of
the shortest path length to vertices not yet in the tree

• It selects the next vertex to add to the tree based on lowest
estimate (Greedy: choose locally best next move)

s

s
s

d(u)
u

Dijkstra’s Algorithm
Greedy approach. Maintain a set of explored nodes for which
algorithm has determined = length of a shortest path.

・Initialize , .

・Repeatedly add unexplored node which minimizes

S
d[u] s ↝ u

S ← {s} d[s] ← 0
v ∉ S

min
e=(u,v):u∈S

d[u] + ℓe

s

v

u
S

d[u]
ℓe

the length of a shortest path from s
to some node u in explored part S,
followed by a single edge e = (u, v)

Dijkstra’s Algorithm

Estimate at vertex is the weight of
shortest path in followed by a
single edge from to

v
T

T G − T

Dijkstra’s Demo

Pseudocode in Textbook

• Use it to test your understanding

• But, high-level idea is most important

Dijkstra’s Algorithm: Correctness
Invariant. For each , is length of a shortest path
Proof. [By induction on]. Base case: ,
and . Assume holds for some . Let be
next node added to
• Suppose some other path in is shorter
• Let be the first edge along that leaves
• Let be the subpath from to
• Claim: as soon as it reaches

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
e = (x, y) P S
P′ s x

w(P) ≥ d[v] y

S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
Non-negative weights S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Inductive Hypothesis
w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]s

S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

When was added to , was updatedx S d[y]

w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
S

s

v

u

y

P

x
P ʹ e

Invariant. For each , is length of a shortest path

Proof. [By induction on]. Base case: , and
. Assume holds for some . Let be next node

added to

• Consider some other path in

• Our goal is to show

• Let be the first edge along that leaves

• Let be the subpath from to

• (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Dijkstra chose to add instead of v y
w(P) ≥ w(P′) + we ≥ d[x] + we ≥ d[y] ≥ d[v]

S

s

v

u

y

P

x
P ʹ e

Implementation & Running Time
How can we efficiently implement Dijkstra’s algorithm? We need to
be able to

• Visit every neighbor of a vertex

• Maintain set of visited and unvisited vertices

• Maintain a tree of edges

• (Delete-min) Select & delete unvisited vertex v with min d[v]

• (Decrease-key) Update for unvisited vertices

S V − S
(v, (pred[v])

d[v]

Priority Queue: Delete-
Min & Decrease-Key

Updating the Priority Queue
How to to update priorities (perform decrease-key) in the priority
queue efficiently?

• Recall vertices are represented by

• Maintain an array PQIndex[1..n] that holds the index of each
vertex in the priority queue

• (Decrease-min) If we update for some , we then heapify-
up from ’s location in the PQ to restore heap property

• Every time we swap two heap elements, we update PQIndex
for the two vertices

1,…, n

v
d[u] u

u

Time and Space Analysis
Space: ; Running Time:

• Traversal of (each edge visited at most once)

•

• Why the

• deleteMin operations from PQ to select next vertex

• Construction of : time proportional to its size:

• Creation of priority queue:

• At most one decrease-key for each edge:

Total time: . This is if G is connected
(Why?)

O(n + m)
S

O(n log n + m)
O(log n)?

n
O(n log n)

T O(n)
O(n)

O(m log n)
O((n + m)log n) O(m log n)

What About Undirected Graphs
How to solve the single-source shortest paths problem in
undirected graphs with positive edge lengths?

(a) Replace each undirected edge with two antiparallel edges
of same length and run Dijkstra’s algorithm on the resulting
digraph

(b) Modify Dijkstra’s algorithms so that when it processes
node u, it consider all edges incident to u (instead of
edges leaving u)

(c) Either A or B

(d) Neither A nor B

Shortest Path in Linear Time
[Thorup 1999] Can solve single-source shortest paths problem in
undirected graphs with positive integer edge lengths in time.

Remark. Does not explore vertices in increasing distance from

O(m)
s

Edsger Dijkstra (1930-2002)

• Shortest-path algorithm was actually discovered
independently (around 1956) by a bunch of different people
(read Jeff Erickson’s description and Strigler’s law in CS).
“Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-
SeitzDantzig-Dijkstra-Minty-Whiting-Hillier algorithm”

Recap: Greedy Algorithms
• Scheduling non-conflicting jobs (intervals)

• Earliest finish-times first

• Greedy stays ahead to prove correctness

• Scheduling with deadlines to maximize lateness of jobs

• Earliest-deadline first

• Exchange argument to prove correctness

• Minimum spanning trees: greedily pick edges

• Cut property: essentially a non-local exchange argument

• Boruvka’s, Prims, Kruskals: correctness from cut property

• Union find data structure

• Djisktra’s shortest path: greedily find paths

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

