
Union-Find, MST, and
Shortest Path



Admin
• Assignment 3 out right after class 

• Assignment 1 extra credit not included in current 
grades (will update later today) 

• Schedule updated later today assuming Mountain 
Day is next week 

• Previous assignment solutions/questions? 

• Come to me or a TA during office hours!



Fast Union with “Trees”
• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but pointing 
up 

• How can we Union?



Fast Union with “Trees”
• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but pointing 
up 

• How can we Union?  Point lower-height tree to higher



What do we get?

• “Up tree” method: 

•  Union,  Find 

• “Point to head” method: 

•  amortized Union,  Find

O(1) O(log n)

O(log n) O(1)



Class poll!
Do you think we can do better?  
Which of the following do you 
think is the case? 

• Either Union or Find take 
 

• If you multiply Union and Find, 
the product of their times must 
be  

• Both can be  

• Something in the middle

Ω(log n)

Ω(log n)

O(1)



Let’s make things work a 
little faster in practice

• Think about the “up trees” 

• When we’re doing a Find, is 
there work we can do to 
make future finds faster?
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Let’s make things work a 
little faster in practice

• When we’re doing a Find, is 
there work we can do to make 
future finds faster? 

• We really want all of these to 
point right to the head 

• So…let’s do that! 

• Wait, I’ve broken the data 
structure! 

• I can’t maintain “height”



Maintaining “Height”
• We can’t maintain the exact height.  What if we 

pretend we can?  Just do the same bookkeeping: 

• Keep a “rank” (starting at 0) 

• Always point the head of smaller rank to the head 
of larger rank; keep rank the same 

• If both ranks are the same, point one to the other, 
and increment the rank



What do we get?
• Every time I have an expensive Find, I get a lot of great work 

done for the future by shrinking the tree 

• Called “path compression” [Galler, Fischer ’64] 

• Now I have an inaccurate “rank” instead of an actual “height” 

• First: did this make things worse?  Union is still , is Find 
 ? 

• We did not make things worse, Find is  

• Can we show that we made things better?

O(1)
O(log n)

O(log n)



Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves 

significantly! 
• Time complexity for  union and find operations on  elements is 

 

•  is the number of times you need to apply the log function 
before you get to a number <= 1 

• Very small! Less than 5 for all reasonable values 

n n
O(n log* n)
log* n



Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path 

compression  

• Time complexity for  union and find operations on  elements is 
,  where  

•  is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than 

•  for all values in practice 

• Result. Union and Find become (essentially) amortized constant 
time in practice (just short of  in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)



Inverse Ackermann 
• Inverse Ackerman: The function  grows much more slowly 

than  for any fixed c  

• With , you count how many times does applying  over and 
over gets the result to become small 

• With the inverse Ackermann, essentially you count how many times 
you iterate  (not log!) over and over to get the result to become 
small 

•

•  for 

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216



Can we do better?

• OK, so that’s “basically constant”.  Can we get 
constant? 

• No.  Any data structure for union find requires 
 amortized time (Fredman, Saks ’89) 

• So up trees with path compression are optimal(!)

Ω(α(n))



Many Applications of Union-Find
• Good for applications in need of clustering 

• cities connected by roads 
• cities belonging to the same country 
• connected components of a graph 

• Maintaining equivalence classes 
• Maze creation!



Back to MST

• Prim’s algorithm is  if using a 
Fibonnacci tree 

• Kruskal’s algorithm is  

• Which is better in practice? 

• Is sorting time required?

O(m + n log n)

O(m log m)



MST Algorithms History
• Borůvka’s Algorithm (1926) 

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm  

• Oldest, most-ignored MST algorithm, but actually very good 

• Jarník’s Algorithm (“Prims Algorithm”, 1929) 

• Published by Jarník, independently discovered by Kruskal in 
1956, by Prims in 1957 

• Kruskal’s Algorithm (1956) 

• Kruskal designed this because he found Borůvka’s algorithm 
“unnecessarily complicated”



Can we do better?
Best known algorithm by Chazelle (1999)



Can we do better?
Using randomness, can get  time!O(n + m)



Optimal MST Algorithm?
Has been discovered but don’t know its running time!



Story So Far
• Graph Traversal algorithms 

• BFS, DFS 

• Properties and applications of traversals 

• Bipartite matching, topological ordering 

• Approximating diameter or graphs 

• Finding bridges, articulation points 

• Greedy algorithms 

• Greedy stays ahead and exchange argument proofs 

• Minimum spanning trees 

• Last lecture on Greedy: 

• Shortest paths in weighted directed graphs



Shortest Paths in Weighted Graph
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Shortest Paths in Weighted Graph
Problem. Given a directed graph  with positive edge 
weights: that is, each edge  has a positive weight  and 
vertices  and , find the shortest path from  to . 

The shortest path from  to  in a weighted graph is a path  from  
to  (or a -  path) with minimum weight .

G = (V, E)
e ∈ E w(e)

s t s t

s t P s
t s t w(P) = ∑

e∈P

w(e)



Single-Source Shortest Path
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Single-Source Shortest Path
Problem. Given a directed graph  with positive edge 
weights  for each  and a source , find a shortest 
directed path from  to every other vertex in .  

Quick quiz. Which of these changes to edge weights on a graph 
does not affect the shortest paths? 

A. Adding 17 

B. Multiplying 17  

C. None of the above

G = (V, E)
we e ∈ E s ∈ V

s V



Shortest Paths Applications
• Map routing 

• Robot navigation 

• Texture mapping 

• Typesetting in LaTeX. 

• Urban traffic planning. 

• Scheduling, routing of operators 

• Network routing protocols (OSPF, BGP, RIP) 

• It is so important that we will revisit shortest paths when we study 
dynamic programming!



Dijkstra’s Algorithm
Computes the shortest path from  to all vertices 

Dijkstra’s algorithm has the following key components 

• It evolves a tree, rooted at , of shortest paths to the vertices 
closest to  

• It keeps a conservative estimate (that is, over-estimate)  of 
the shortest path length to vertices  not yet in the tree 

• It selects the next vertex to add to the tree based on lowest 
estimate (Greedy: choose locally best next move)

s

s
s

d(u)
u



Dijkstra’s Algorithm
Greedy approach. Maintain a set of explored nodes  for which 
algorithm has determined  = length of a shortest  path. 

・Initialize , . 

・Repeatedly add unexplored node  which minimizes 

 
                                

S
d[u] s ↝ u

S ← {s} d[s] ← 0
v ∉ S

min
e=(u,v):u∈S

d[u] + ℓe

s

v

u
S

d[u]
ℓe

the length of a shortest path from s 
to some node u in explored part S,
followed by a single edge e = (u, v)



Dijkstra’s Algorithm

Estimate at vertex  is the weight of 
shortest path in  followed by a 
single edge from  to 

v
T

T G − T



Dijkstra’s Demo



Pseudocode in Textbook

• Use it to test your understanding 

• But, high-level idea is most important



Dijkstra’s Algorithm: Correctness
Invariant. For each ,  is length of a shortest  path 
Proof. [By induction on ]. Base case: , 
and . Assume holds for some . Let  be 
next node added to  
• Suppose some other  path  in  is shorter 
• Let  be the first edge along  that leaves  
• Let  be the subpath from  to  
• Claim:  as soon as it reaches  

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
e = (x, y) P S
P′ s x

w(P) ≥ d[v] y

S

s

v

u

y

P

x
P ʹ e



Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis)

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
Non-negative weights S
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Inductive Hypothesis
w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]s

S
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

When  was added to ,  was updatedx S d[y]

w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]
S
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Invariant. For each ,  is length of a shortest  path 

Proof. [By induction on ]. Base case: , and 
. Assume holds for some . Let  be next node 

added to  

• Consider some other  path  in  

• Our goal is to show  

• Let  be the first edge along  that leaves  

• Let  be the subpath from  to  

•  (by inductive hypothesis) 

u ∈ S d[u] s-u
|S | |S | = 1 S = {s}

d[s] = 0 k = |S | ≥ 1 v
S

s-v P G
w(P) ≥ d[v]

e = (x, y) P S
P′ s x

w(P′ ) ≥ d[x]

Dijkstra’s Algorithm: Correctness

Dijkstra chose to add  instead of v y
w(P) ≥ w(P′ ) + we ≥ d[x] + we ≥ d[y] ≥ d[v]

S
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Implementation & Running Time
How can we efficiently implement Dijkstra’s algorithm? We need to 
be able to 

• Visit every neighbor of a vertex 

• Maintain set of visited  and unvisited vertices  

• Maintain a tree of edges  

• (Delete-min) Select & delete unvisited vertex v with min d[v]

• (Decrease-key) Update  for unvisited vertices

S V − S
(v, (pred[v])

d[v]

Priority Queue: Delete-
Min & Decrease-Key



Updating the Priority Queue
How to to update priorities (perform decrease-key) in the priority 
queue efficiently? 

• Recall vertices are represented by  

• Maintain an array PQIndex[1..n] that holds the index of each 
vertex  in the priority queue 

• (Decrease-min) If we update  for some , we then heapify-
up from ’s location in the PQ to restore heap property 

• Every time we swap two heap elements, we update PQIndex 
for the two vertices

1,…, n

v
d[u] u

u



Time and Space Analysis
Space: ; Running Time: 

• Traversal of  (each edge visited at most once) 

•  

• Why the  

•  deleteMin operations from PQ to select next vertex 
 

• Construction of : time proportional to its size:  

• Creation of priority queue:  

• At most one decrease-key for each edge:  

Total time: .  This is  if G is connected 
(Why?)

O(n + m)
S

O(n log n + m)
O(log n)?

n
O(n log n)

T O(n)
O(n)

O(m log n)
O((n + m)log n) O(m log n)



What About Undirected Graphs
How to solve the single-source shortest paths problem in 
undirected graphs with positive edge lengths?

(a) Replace each undirected edge with two antiparallel edges 
of same length and run Dijkstra’s algorithm on the resulting 
digraph 

(b) Modify Dijkstra’s algorithms so that when it processes 
node u, it consider all edges incident to u (instead of 
edges leaving u) 

(c) Either A or B 

(d) Neither A nor B



Shortest Path in Linear Time
[Thorup 1999] Can solve single-source shortest paths problem in 
undirected graphs with positive integer edge lengths in  time.  

Remark. Does not explore vertices in increasing distance from 

O(m)
s



Edsger Dijkstra (1930-2002)

• Shortest-path algorithm was actually discovered 
independently (around 1956) by a bunch of different people 
(read Jeff Erickson’s description and Strigler’s law in CS). 
“Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-
SeitzDantzig-Dijkstra-Minty-Whiting-Hillier algorithm”



Recap:  Greedy Algorithms
• Scheduling non-conflicting jobs (intervals) 

• Earliest finish-times first 

• Greedy stays ahead to prove correctness 

• Scheduling with deadlines to maximize lateness of jobs 

• Earliest-deadline first 

• Exchange argument to prove correctness 

• Minimum spanning trees: greedily pick edges 

• Cut property:  essentially a non-local exchange argument 

• Boruvka’s, Prims, Kruskals:  correctness from cut property 

• Union find data structure 

• Djisktra’s shortest path:  greedily find paths 
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