
Kruskal’s Algorithm and
Union Find



Questions or Comments?



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

•  

•  

• Implementation crux. Find and add min-cost edge for the cut 
 and add it to the tree in each iteration, update cut edges  

• How can we prove that this finds the MST? 

• Cut property!  (On board.)

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

•  

•  

• Implementation crux. Find and add min-cost edge for the cut  
and add it to the tree in each iteration, update cut edges  

• Running time? 

• Naive implementation may take  

• Need to maintain set of edges adjacent to nodes in  and extract 
min-cost cut edge from it each time 

• Which data structure from CS 136 can we use?

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

O(nm)
T



CS136 Review: Priority Queue
Managing such a set typically involves the following operations on  

• Insert. Insert a new element into  

• Delete. Delete an element from 

• ExtractMin. Retrieve highest priority element in 

Priorities are encoded as a ‘key’ value 

Typically: higher priority <—> lower key value

Heap as Priority Queue. Combines tree structure with array access 

• Insert and delete:  time (‘tree’ traversal & moves) 

• Extract min. Delete item with minimum key value: 

S
S

S
S

O(log n)
O(log n)



Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X 3 7 5 11 17 14 30 21 35 24 19 22 - - -H



• Use Binary heaps

• Create a priority queue initially holding all edges incident to . 

• At each step, dequeue edges from the priority queue until we 
find an edge  where  and .   

• Add  to .  

• Add to the queue all edges incident to  whose endpoints aren't 
in .  

• Each edge is enqueued and dequeued at most once 

• Total runtime:  

• In any graph,  

• So 

u

(x, y) x ∈ S y ∉ S
(x, y) T

y
S

O(m log m)

m = O(n2)
O(m log m) = O(m log n)

“Prims” Implementation



• Implementation using Binary heaps 

• Total runtime:  

• Can we do better? 

• If a Fibonacci heap is used instead of binary heap: 

• Supports amortized -time inserts,  time extract min 

• Runs in  total time

O(m log n)

O(1) O(log n)
O(m + n log n)

“Prims” Implementation

Definition.  If  operations take total time , then 
the amortized time per operation is .

k O(t ⋅ k)
O(t)



Kruskal’s Algorithm

• Another MST algorithm 

• Why do you think we’re looking at a second one?



Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a cycle  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}



Kruskal’s Algorithm

• Does it give us the correct MST?   

• Proof? 

• How quickly can we find the minimum remaining 
edge? 

• How quickly can we determine if an edge creates a 
cycle?



Kruskal’s Implementation
• Sort edges by weight:  

• Turns out this is the dominant cost 

• Determine whether  contains a cycle 

• Maintain a partition of :  components of  

• Let  denote component of  

• Adding edge  creates a cycle if and only if 
 

• Add an edge to : update components

O(m log m)

T ∪ {e}

V T

[u] u

e = (v, w)
[v] = [w]

T



Does this edge create a 
cycle?

• An edge creates a cycle if it 
connects a subtree to another 
vertex in the same subtree 

• What if we could label the 
trees?  Then we could 
determine if an edge creates a 
cycle by comparing labels
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Does this edge create a 
cycle?

• An edge creates a cycle if it 
connects a subtree to another 
vertex in the same subtree 

• What if we could label the 
trees?  Then we could 
determine if an edge creates a 
cycle by comparing labels 

• How can we update when 
adding an edge?



What do we want to be able 
to do?

• Start with each node as its own set 

• Given a node, determine which set it’s in (find the 
label) 

• Take two sets and combine them into a single set



Union-Find Data Structure
Manages a dynamic partition of a set  

• Provides the following methods: 
• MakeUnionFind(): Initialize 

• Find(x): Return name of set containing  

• Union(X, Y): Replace sets X, Y with  

Kruskal’s Algorithm can then use 
• Find for cycle checking  

• Union to update after adding an edge to 

S

x

X ∪ Y

T



Union-Find: Any Ideas?

How can we get: 

•  Find 

•  Union 

(Hint: we’ll be maintaining labels)

O(1)

O(n)



Union-Find: Improving Union

• Let’s perturb that idea just a little bit and analyze it 
more tightly 

• Each vertex points to a “head” node instead of a 
label; head points to itself



Union-Find: Improving Union

• Let’s perturb that idea just a little bit and analyze it 
more tightly (keep colors just to help) 

• Each vertex points to a “head” node instead of a 
label; head points to itself (keep back pointers too)



Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it more 

tightly 

• Each vertex points to a “head” node instead of a label; head 
points to itself 

• Also store size of each set in the head 

• How can we maintain that efficiently? 

• Now, to do a union, make every element in the smaller set 
point at the head of the larger set 

• Update the size



Union-Find: Improving Union
• Let’s say we have an edge between the blue tree 

and the green tree 

• Update the green tree! 

• Follow back pointers from the head of the tree so 
we get every node
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Union-Find: Improving Union
• Let’s say we have an edge between the blue tree 

and the green tree 

• Update the green tree! 

• Follow back pointers from the head of the tree so 
we get every node



Union Find: Improving Union 
Analysis

• Find  (how?) 

• Union? 

• Worst case is  but that’s not the whole story 

• Every time we change the label (“head” pointer) 
of a node, the size of its set at least doubles 

• Each node’s head pointer only changes  
times

O(1)

O(n)

O(log n)



Union Find: Improving Union 
Analysis

• Starting with sets of size 1, any  Union operations 
will take  time  

•  amortized time for a Union operation

k
O(k log n)

O(log n)

Definition.  If  operations take total time , then 
the amortized time per operation is .

k O(t ⋅ k)
O(t)



Can we make Union faster?

• What if, instead of  Find and  Union, 
we want  Find and  Union? 

• Any ideas? 

O(1) O(log n)
O(log n) O(1)



Fast Union with “Trees”
• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but 
pointing up (“up tree”)
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Fast Union with “Trees”
• Let’s keep a head node as before 

• Now, let’s have our pointers act like a tree, but pointing up 

• How can we Union? 

• Keep height of each up tree 

• Up tree with smaller height points to up tree of bigger 
height 

• At home: show that a set of size  is represented by an 
up tree of height at most 

k
O(log k)



What do we get?

• “Up tree” method: 

•  Union,  Find 

• “Point to head” method: 

•  amortized Union,  Find

O(1) O(log n)

O(log n) O(1)



Class poll!
Do you think we can do better?  
Which of the following do you 
think is the case? 

• Either Union or Find take 
 

• If you multiply Union and Find, 
the product of their times must 
be  

• Both can be  

• Something in the middle

Ω(log n)

Ω(log n)

O(1)



Let’s make things work a 
little faster in practice

• Think about the “up trees” 

• When we’re doing a Find, is 
there work we can do to 
make future finds faster?
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Let’s make things work a 
little faster in practice

• When we’re doing a Find, is 
there work we can do to make 
future finds faster? 

• We really want all of these to 
point right to the head 

• So…let’s do that! 

• Wait, I’ve broken the data 
structure! 

• I can’t maintain “height”



Maintaining “Height”
• We can’t maintain the exact height.  What if we 

pretend we can?  Just do the same bookkeeping: 

• Keep a “rank” 

• Always point the head of smaller rank to the head 
of larger rank; keep rank the same 

• If both ranks are the same, point one to the other, 
and increment the rank



What do we get?
• Every time I have an expensive Find, I get a lot of great work 

done for the future by shrinking the tree 

• Called “path compression” 

• Now I have an inaccurate “rank” instead of an actual “height” 

• First: did this make things worse?  Union is still , is Find 
 ? 

• We did not make things worse, Find is  

• Can we show that we made things better?

O(1)
O(log n)

O(log n)



Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves 

significantly! 
• Time complexity for  union and find operations on  elements is 

 

•  is the number of times you need to apply the log function 
before you get to a number <= 1 

• Very small! Less than 5 for all reasonable values 

n n
O(n log* n)
log* n



Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path 

compression  

• Time complexity for  union and find operations on  elements is 
,  where  

•  is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than 

•  for all values in practice 

• Result. Union and Find become (essentially) amortized constant 
time in practice (just short of  in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)



Inverse Ackermann 
• Inverse Ackerman: The function  grows much more slowly 

than  for any fixed c  

• With , you count how many times does applying  over and 
over gets the result to become small 

• With the inverse Ackermann, essentially you count how many times 
does applying  (not log!) over and over gets the result to 
become small 

•

•  for 

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216



Can we do better?

• OK, so that’s “basically constant”.  Can we get 
constant? 

• No.  Any data structure for union find requires 
 amortized time (Fredman, Saks ’89) 

• So up trees with path compression are optimal(!)

Ω(α(n))



Many Applications of Union-Find
• Good for applications in need of clustering 

• cities connected by roads 
• cities belonging to the same country 
• connected components of a graph 

• Maintaining equivalence classes 
• Maze creation!



Back to MST

• Prim’s algorithm is  if using a 
Fibonnacci tree 

• Kruskal’s algorithm is  

• Which is better in practice? 

• Is sorting time required?

O(m + n log n)

O(m log m)



MST Algorithms History
• Borůvka’s Algorithm (1926) 

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm  

• Oldest, most-ignored MST algorithm, but actually very good 

• Jarník’s Algorithm (“Prims Algorithm”, 1929) 

• Published by Jarník, independently discovered by Kruskal in 
1956, by Prims in 1957 

• Kruskal’s Algorithm (1956) 

• Kruskal designed this because he found Borůvka’s algorithm 
“unnecessarily complicated”



Can we do better?
Best known algorithm by Chazelle (1999)



Can we do better?
Using randomness, can get  time!O(n + m)



Optimal MST Algorithm?
Has been discovered but don’t know its running time!
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