Kruskal’s Algorithm and
Union Find

Questions or Comments?

Jarnik’s (“Prims Algorithm”)

e Initialize S = {u} forany vertexu € Vand T = &
. While|T| <n—1:

« Find the min-cost edge ¢ = (u, v) with one end u € § and
veV-3§

e T« Tu{e}
e S < Su{v}

* Implementation crux. Find and add min-cost edge for the cut
(S, V—3) and add it to the tree in each iteration, update cut edges

 How can we prove that this finds the MST?

e (Cut property! (On board.)

Jarnik’s (“Prims Algorithm”)

o Initialize S = {u} forany vertexu € Vand T = &
. Whie|T| <n-1:

« Find the min-cost edge e = (u, v) with one end u € § and
veV-3§

e T «TuU{e}
e S < Su{v}

« Implementation crux. Find and add min-cost edge for the cut (S, V — 5)
and add it to the tree in each iteration, update cut edges

 Running time?
« Naive implementation may take O(nm)

« Need to maintain set of edges adjacent to nodes in 1" and extract
min-cost cut edge from it each time

 Which data structure from CS 136 can we use?

CS136 Review: Priority Queue

Managing such a set typically involves the following operations on $
 Insert. Insert a new element into §
Delete. Delete an element from §
« ExtractMin. Retrieve highest priority element in $
Priorities are encoded as a ‘key’ value
Typically: higher priority <—> lower key value
Heap as Priority Queue. Combines tree structure with array access

« Insert and delete: O(log n) time (‘tree’ traversal & moves)

« Extract min. Delete item with minimum key value: O(log n)

Heap Example

0123 456 7 8 91011 12 131415

X 3 7 5 1117143021352419 22 - - -

‘Prims” Implementation

Use Binary heaps
« (Create a priority queue initially holding all edges incident to u.

* At each step, dequeue edges from the priority queue until we
find an edge (x,y) where x € S andy & §.

e« Add(x,y)toT.

« Add to the queue all edges incident to y whose endpoints aren't

ins.
* Each edge is enqueued and dequeued at most once
« Total runtime: O(m log m)
. Inany graph, m = O(n?)
« SoO(mlogm) = O(mlogn)

“‘Prims” Implementation

* |Implementation using Binary heaps
« Total runtime: O(mlog n)

e (Can we do better?

* |f a Fibonacci heap is used instead of binary heap:

« Supports amortized O(1)-time inserts, O(log n) time extract min

« Runsin O(m + nlog n) total time

Definition. If k operations take total time O(f - k), then
the amortized time per operation is O(%).

Kruskal’s Algorithm

* Another MST algorithm

 Why do you think we're looking at a second one?

Kruskal’'s Algorithm

Idea: Add the cheapest remaining edge that does not create a cycle.
e Initialize T =@, H <« E
e« While|T| <n—1

« Remove cheapest edge e from H

« If adding e to 1" does not create a cycle
e T« TuUl{e}

Kruskal’s Algorithm

* Does it give us the correct MST?
e Proof?

 How quickly can we find the minimum remaining
edge”

 How quickly can we determine it an edge creates a
cycle”

Kruskal’s Implementation

« Sort edges by weight: O(m log m)
* Turns out this is the dominant cost
« Determine whether T'U {e} contains a cycle
« Maintain a partition of V: components of T
« Let|u]| denote component of u

« Adding edge e = (v, w) creates a cycle if and only if

[lv] = [w]

« Add an edge to T update components

Does this edge create a

cycle?
\

* An edge creates acycle it it
connects a subtree to another
vertex In the same subtree

* What if we could label the ‘\‘

trees”? Then we could
determine if an edge creates a
cycle by comparing labels e

Does this edge create a

cycle?
\

* An edge creates acycle it it
connects a subtree to another
vertex In the same subtree

* What if we could label the ‘\.

trees”? Then we could
determine if an edge creates a
cycle by comparing labels @

Does this edge create a
cycle?

* An edge creates acycle it it °
connects a subtree to another .
vertex In the same subtree

* What if we could label the ‘\.

trees”? Then we could
determine if an edge creates a
cycle by comparing labels @

Does this edge create a
cycle?

* An edge creates acycle it it .
connects a subtree to another °
vertex In the same subtree o

* What if we could label the ‘\.

trees”? Then we could
determine if an edge creates a
cycle by comparing labels @

Does this edge create a
cycle?

* An edge creates a cycle if it \
connects a subtree to another

vertex in the same subtree

e What if we could label the °

trees”? Then we could 0\.
determine if an edge creates a

cycle by comparing labels

* How can we update when @ -
adding an edge?

Does this edge create a
cycle?

* An edge creates a cycle if it \
connects a subtree to another

vertex in the same subtree

 What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

* How can we update when @ -
adding an edge?

What do we want to be able
to do?

e Start with each node as its own set

* (Given a node, determine which set it's in (find the
label)

e Jake two sets and combine them into a single set

Union-Find Data Structure

Manages a dynamic partition of a set §

* Provides the following methods:

« MakeUnionFind(): Initialize
« F1ind(x): Return name of set containing x

 Union(X, Y):Replacesets X, YwithXUY

Kruskal's Algorithm can then use

* F1ind for cycle checking

« Un1ion to update after adding an edge to T°

Union-Find: Any Ideas?

How can we get:
. O(1) Find

« O(n) Union

(Hint: we'll be maintaining labels)

Union-Find: Improving Union

e |Let's perturb that idea just a little bit and analyze it
more tightly

 Each vertex points to a “head” node instead of a
label; head points to itself

. N\

Union-Find: Improving Union

e |Let's perturb that idea just a little bit and analyze it
more tightly (keep colors just to help)

 Each vertex points to a “head” node instead of a
label; head points to itself (keep back pointers too)

N

e

Union-Find: Improving Union
e |Let's perturb that idea just a little bit and analyze it more
tightly

e Each vertex points to a “head” node instead of a label; head
points to itself

 Also store size of each set in the head
 How can we maintain that efficiently?

 Now, to do a union, make every element in the smaller set
point at the head of the larger set

 Update the size

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so

we get every node

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so

we get every node

™\

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union

* |Let's say we have an edge between the blue tree
and the green tree

 Update the green tree!

* Follow back pointers from the head of the tree so
we get every node

Union Find: Improving Union

Analysis
 Find O(1) (how?)

e Union?
« Worst case is O(n) but that’s not the whole story

* Every time we change the label (*head” pointer)
of a node, the size of its set at least doubles

 Each node’s head pointer only changes O(log n)
times

Union Find: Improving Union
Analysis

. Starting with sets of size 1, any k Union operations
will take O(klog n) time

« O(logn) amortized time for a Union operation

Definition. If k operations take total time O(f - k), then
the amortized time per operation is O(t).

Can we make Union faster?

« What if, instead of O(1) Find and O(log n) Union,
we want O(log n) Find and O(1) Union?

 Any ideas”

Fast Union with “Trees”

e Let's keep a head node as betore

 Now, let's have our pointers act like a tree, but

pointing up (“up tree”)

'

N <

Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

e How can we Find?

Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

 How can we Union?

Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

 How can we Union?

Fast Union with “Trees”

* Let's keep a head node as before

 Now, let's have our pointers act like a tree, but pointing
up

 How can we Union?

Fast Union with “Trees”

o Let's keep a head node as before
 Now, let’s have our pointers act like a tree, but pointing up
 How can we Union?

« Keep height of each up tree

o Up tree with smaller height points to up tree of bigger
height

« At home: show that a set of size k is represented by an
up tree of height at most O(log k)

What do we get?

e “Up tree” method:
« O(1) Union, O(logn) Find
 "Point to head”™ method:

« O(logn) amortized Union, O(1) Find

Class poll!

Do you think we can do better?
Which of the following do you
think is the case”

 Either Union or Find take
Q(logn)

* |t you multiply Union and Find,
the product of their times must
be C2(log n)

« Both can be O(1)

e Something in the middle

Let’s make things work a
little faster in practice

* Think about the "up trees”
* When we're doing a Find, Is L
there work we can do to

make future finds faster? /I > ./'

Let’s make things work a
little faster in practice

* Think about the "up trees”

* When we're doing a Find, Is
there work we can do to
make future finds faster?

e So0...let’'s do that!

Let’s make things work a
little faster in practice

* When we're doing a Find, Is
there work we can do to
make future finds faster?

 We really want all of these
to point right to the head

Let’s make things work a
little faster in practice

When we're doing a Find, Is
there work we can do to make
future finds faster?

We really want all of these to
point right to the head

So...let’s do that!

Walt, I've broken the data
structure!

e | can't maintain “height”

. J. 1: . b
Maintaining "Height

We can’t maintain the exact height. What it we

pretend we can” Just do the same bookkeeping:

Keep a "rank”

Always point the head of smaller rank to the head
of larger rank; keep rank the same

It both ranks are the same, point one to the other,
and increment the rank

What do we get?

Every time | have an expensive Find, | get a lot of great work
done for the future by shrinking the tree

e Called “path compression”

Now | have an inaccurate “rank” instead of an actual “height

First: did this make things worse? Union is still O(1), is Find
O(logn) ?

« We did not make things worse, Find is O(log n)

Can we show that we made things better?

Surprising Result: Hopcroft Uiman’73

 Amortized complexity of union find with path compression improves
significantly!

e Time complexity for n union and find operations on n elements is

O(nlog* n)

« log™ n is the number of times you need to apply the log function
before you get to a number <= 1

Very small! Less than 5 for all reasonable values

(

0 if n<1
| 1+ log"(logn) if n>1

=22 | 16 = 2* | 65,536 = 216 | 205530
2 | 3 | 4 5

? Digging
e Deeper

Surprising Result: Tarjan ‘75

Improved bound on amortized complexity of union-find with path
compression

Time complexity for n union and find operations on n elements is
O(na(n)), where

« a(n) is extremely slow-growing, inverse-Ackermann function
 Essentially a constant

Grows much muuchch morrree slowly than log™

a(n) < 4 for all values in practice

Result. Union and Find become (essentially) amortized constant

time in practice (just short of O(1) in theory) !
? Digging
* Deeper

Inverse Ackermann

Inverse Ackerman: The function a(rn) grows much more slowly
than log™ 7 for any fixed ¢

With log™, you count how many times does applying log over and
over gets the result to become small

With the inverse Ackermann, essentially you count how many times
does applying log* (not log!) over and over gets the result to
become small

k
k %k ok ok

a(n) = min{k | log) < 2)

6

1
a(n) =4 forn = 2222 Digging
e

Deeper

Can we do better?

* OK, so that's “basically constant”. Can we get
constant”

» No. Any data structure tor union find requires
C(a(n)) amortized time (Fredman, Saks '89)

e SO Up trees with path compression are optimal(!)

Many Applications of Union-Find

* (Good for applications in need of clustering
e cities connected by roads
e cities belonging to the same country
e connected components of a graph
 Maintaining equivalence classes

e Maze creation!

? Digging
* Deeper

Back to MST

Prim’s algorithm is O(m + nlog n) if using a
Fibonnacci tree

Kruskal’s algorithm is O(m log m)
Which is better in practice?

|s sorting time required”

MST Algorithms History

* Boruvka’s Algorithm (1926)

 The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-

Zubrzycki / Prim / Sollin / Brosh a

e QOldest, most-ignored MST algorit

* Jarnik’s Algorithm (“Prims Algorithm”,

gorithm

nm, but actually very good

1929)

* Published by Jarnik, independently discovered by Kruskal in

1956, by Prims in 1957
* Kruskal’s Algorithm (1956)

» Kruskal designed this because he found Boruvka'’s algorithm

‘unnecessarily complicated”

Can we do better?

Best known algorithm by Chazelle (1999)

A Minimum Spanning Tree Algorithm with Inverse-Ackermann
Type Complexity*

BERNARD CHAZELLE'

NECI Research Tech Report 99-099 (July 1999)
Journal of the ACM, 47(6), 2000, pp. 1028-1047.

Abstract

panning tree of a connected

A deterministic algorithm for cqe
graph is presented. Its running timeli e« is the classical functional
inverse of Ackermann’s function and i ber of vertices (resp. edges).
The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric

assumptions on the edge costs.

1 Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going as far back
as Boruvka's work in 1926 [1, 9, 13]. In fact, MST is perhaps the oldest open problem in
computer science. According to Nesetfil [13], “this is a cornerstone problem of combinatorial

At i tratiar arnd 3 e canen 1te rradla ? Mavibhianl alanrifbh e 1110 991) 1aar o) $39vma sirhara o

Can we do better?

Using randomness, can get O(n + m) time!

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER

Stanford University, Stanford, California

PHILIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Princeton University and NEC Research Institute, Princeton, New Jersey

Abstract, We present ajrandomized linear-time algorithm fo find & minimum spanning tree in a

connected graph with edBeWeTg 180 f§estandom sampling in combination with a
recently discovered linear-time dlgorlthm for verifying a minimum spanning tree. Our computa-
tional model is a unit-cost random-access machine with the restriction that the only operations
allowed on edge weights are binary comparisons.

Categorics and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl:
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete

Optimal MST Algorithm?

Has been discovered but don't know its running time!

An Optimal Minimum Spanning Tree Algorithm

SETH PETTIE AND VIJAYA RAMACHANDRAN

The University of Texas at Austin, Austin, Texas

Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph with »n vertices and m edges that runs in time O(7 *(m, n)) where 7 * is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known for 7* are 7*(m, n) = Q(m)and 7*(m,n) = O(m - a(m, n)), where « is
a certain natural inverse of Ackermann’s function.

Even under the assumption that 7 * is superlinear, we show that if the input graph is selected from
G n,m, our algorithm runs in linear time with high probability, regardless of n, m, or the permutation of

edge weights. The analysis uses a new martingale for G, ,, similar to the edge-exposure martingale
PI\Q‘ f:'

Acknowledgments

* The pictures in these slides are taken from

» Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

04GreedyAlgorithmsl.pdf)

o Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

