
Kruskal’s Algorithm and
Union Find

Questions or Comments?

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

•

•

• Implementation crux. Find and add min-cost edge for the cut
 and add it to the tree in each iteration, update cut edges

• How can we prove that this finds the MST?

• Cut property! (On board.)

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

•

•

• Implementation crux. Find and add min-cost edge for the cut
and add it to the tree in each iteration, update cut edges

• Running time?

• Naive implementation may take

• Need to maintain set of edges adjacent to nodes in and extract
min-cost cut edge from it each time

• Which data structure from CS 136 can we use?

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

O(nm)
T

CS136 Review: Priority Queue
Managing such a set typically involves the following operations on

• Insert. Insert a new element into

• Delete. Delete an element from

• ExtractMin. Retrieve highest priority element in

Priorities are encoded as a ‘key’ value

Typically: higher priority <—> lower key value

Heap as Priority Queue. Combines tree structure with array access

• Insert and delete: time (‘tree’ traversal & moves)

• Extract min. Delete item with minimum key value:

S
S

S
S

O(log n)
O(log n)

Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X 3 7 5 11 17 14 30 21 35 24 19 22 - - -H

• Use Binary heaps

• Create a priority queue initially holding all edges incident to .

• At each step, dequeue edges from the priority queue until we
find an edge where and .

• Add to .

• Add to the queue all edges incident to whose endpoints aren't
in .

• Each edge is enqueued and dequeued at most once

• Total runtime:

• In any graph,

• So

u

(x, y) x ∈ S y ∉ S
(x, y) T

y
S

O(m log m)

m = O(n2)
O(m log m) = O(m log n)

“Prims” Implementation

• Implementation using Binary heaps

• Total runtime:

• Can we do better?

• If a Fibonacci heap is used instead of binary heap:

• Supports amortized -time inserts, time extract min

• Runs in total time

O(m log n)

O(1) O(log n)
O(m + n log n)

“Prims” Implementation

Definition. If operations take total time , then
the amortized time per operation is .

k O(t ⋅ k)
O(t)

Kruskal’s Algorithm

• Another MST algorithm

• Why do you think we’re looking at a second one?

Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a cycle

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}

Kruskal’s Algorithm

• Does it give us the correct MST?

• Proof?

• How quickly can we find the minimum remaining
edge?

• How quickly can we determine if an edge creates a
cycle?

Kruskal’s Implementation
• Sort edges by weight:

• Turns out this is the dominant cost

• Determine whether contains a cycle

• Maintain a partition of : components of

• Let denote component of

• Adding edge creates a cycle if and only if

• Add an edge to : update components

O(m log m)

T ∪ {e}

V T

[u] u

e = (v, w)
[v] = [w]

T

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

• How can we update when
adding an edge?

Does this edge create a
cycle?

• An edge creates a cycle if it
connects a subtree to another
vertex in the same subtree

• What if we could label the
trees? Then we could
determine if an edge creates a
cycle by comparing labels

• How can we update when
adding an edge?

What do we want to be able
to do?

• Start with each node as its own set

• Given a node, determine which set it’s in (find the
label)

• Take two sets and combine them into a single set

Union-Find Data Structure
Manages a dynamic partition of a set

• Provides the following methods:
• MakeUnionFind(): Initialize

• Find(x): Return name of set containing

• Union(X, Y): Replace sets X, Y with

Kruskal’s Algorithm can then use
• Find for cycle checking

• Union to update after adding an edge to

S

x

X ∪ Y

T

Union-Find: Any Ideas?

How can we get:

• Find

• Union

(Hint: we’ll be maintaining labels)

O(1)

O(n)

Union-Find: Improving Union

• Let’s perturb that idea just a little bit and analyze it
more tightly

• Each vertex points to a “head” node instead of a
label; head points to itself

Union-Find: Improving Union

• Let’s perturb that idea just a little bit and analyze it
more tightly (keep colors just to help)

• Each vertex points to a “head” node instead of a
label; head points to itself (keep back pointers too)

Union-Find: Improving Union
• Let’s perturb that idea just a little bit and analyze it more

tightly

• Each vertex points to a “head” node instead of a label; head
points to itself

• Also store size of each set in the head

• How can we maintain that efficiently?

• Now, to do a union, make every element in the smaller set
point at the head of the larger set

• Update the size

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union-Find: Improving Union
• Let’s say we have an edge between the blue tree

and the green tree

• Update the green tree!

• Follow back pointers from the head of the tree so
we get every node

Union Find: Improving Union
Analysis

• Find (how?)

• Union?

• Worst case is but that’s not the whole story

• Every time we change the label (“head” pointer)
of a node, the size of its set at least doubles

• Each node’s head pointer only changes
times

O(1)

O(n)

O(log n)

Union Find: Improving Union
Analysis

• Starting with sets of size 1, any Union operations
will take time

• amortized time for a Union operation

k
O(k log n)

O(log n)

Definition. If operations take total time , then
the amortized time per operation is .

k O(t ⋅ k)
O(t)

Can we make Union faster?

• What if, instead of Find and Union,
we want Find and Union?

• Any ideas?

O(1) O(log n)
O(log n) O(1)

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but
pointing up (“up tree”)

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Find?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing
up

• How can we Union?

Fast Union with “Trees”
• Let’s keep a head node as before

• Now, let’s have our pointers act like a tree, but pointing up

• How can we Union?

• Keep height of each up tree

• Up tree with smaller height points to up tree of bigger
height

• At home: show that a set of size is represented by an
up tree of height at most

k
O(log k)

What do we get?

• “Up tree” method:

• Union, Find

• “Point to head” method:

• amortized Union, Find

O(1) O(log n)

O(log n) O(1)

Class poll!
Do you think we can do better?
Which of the following do you
think is the case?

• Either Union or Find take

• If you multiply Union and Find,
the product of their times must
be

• Both can be

• Something in the middle

Ω(log n)

Ω(log n)

O(1)

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to
make future finds faster?

Let’s make things work a
little faster in practice

• Think about the “up trees”

• When we’re doing a Find, is
there work we can do to
make future finds faster?

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to
make future finds faster?

• We really want all of these
to point right to the head

• So…let’s do that!

Let’s make things work a
little faster in practice

• When we’re doing a Find, is
there work we can do to make
future finds faster?

• We really want all of these to
point right to the head

• So…let’s do that!

• Wait, I’ve broken the data
structure!

• I can’t maintain “height”

Maintaining “Height”
• We can’t maintain the exact height. What if we

pretend we can? Just do the same bookkeeping:

• Keep a “rank”

• Always point the head of smaller rank to the head
of larger rank; keep rank the same

• If both ranks are the same, point one to the other,
and increment the rank

What do we get?
• Every time I have an expensive Find, I get a lot of great work

done for the future by shrinking the tree

• Called “path compression”

• Now I have an inaccurate “rank” instead of an actual “height”

• First: did this make things worse? Union is still , is Find
 ?

• We did not make things worse, Find is

• Can we show that we made things better?

O(1)
O(log n)

O(log n)

Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves

significantly!
• Time complexity for union and find operations on elements is

• is the number of times you need to apply the log function
before you get to a number <= 1

• Very small! Less than 5 for all reasonable values

n n
O(n log* n)
log* n

Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path

compression

• Time complexity for union and find operations on elements is
, where

• is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than

• for all values in practice

• Result. Union and Find become (essentially) amortized constant
time in practice (just short of in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)

Inverse Ackermann
• Inverse Ackerman: The function grows much more slowly

than for any fixed c  

• With , you count how many times does applying over and
over gets the result to become small

• With the inverse Ackermann, essentially you count how many times
does applying (not log!) over and over gets the result to
become small 

•

• for

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216

Can we do better?

• OK, so that’s “basically constant”. Can we get
constant?

• No. Any data structure for union find requires
 amortized time (Fredman, Saks ’89)

• So up trees with path compression are optimal(!)

Ω(α(n))

Many Applications of Union-Find
• Good for applications in need of clustering

• cities connected by roads
• cities belonging to the same country
• connected components of a graph

• Maintaining equivalence classes
• Maze creation!

Back to MST

• Prim’s algorithm is if using a
Fibonnacci tree

• Kruskal’s algorithm is

• Which is better in practice?

• Is sorting time required?

O(m + n log n)

O(m log m)

MST Algorithms History
• Borůvka’s Algorithm (1926)

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm

• Oldest, most-ignored MST algorithm, but actually very good

• Jarník’s Algorithm (“Prims Algorithm”, 1929)

• Published by Jarník, independently discovered by Kruskal in
1956, by Prims in 1957

• Kruskal’s Algorithm (1956)

• Kruskal designed this because he found Borůvka’s algorithm
“unnecessarily complicated”

Can we do better?
Best known algorithm by Chazelle (1999)

Can we do better?
Using randomness, can get time!O(n + m)

Optimal MST Algorithm?
Has been discovered but don’t know its running time!

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

