Greedy: Scheduling
and Minimum

Spanning Trees

Admin

 Readings: we're a tad behind the schedule on the
website—I'll revisit the schedule after mountain day

e Questions or comments?

Recall: Scheduling with Deadlines

Given interval length ¢, and deadline d; fori € {1,...,n} jobs,
schedule all tasks, that is, assign start and finish times

(t,d) — (s, [;), where f; = s; + t,, so as to minimize the
maximum lateness.

. Lateness of process i : L = max{0, f. —d.}

max lateness L. = 1

|

d1=6 d2=8 d3=9 d4=9 d5=14 d6=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: Earliest-Deadline First

EARLIEST-DEADLINE-FIRST (n, t1,t2, ..., tn ,d1,d2, ..., dn)

SORT jobs by due times and renumber so thatd; < d> < ... < d,.
t < 0.
FOR j=1TOn

Assign job j to interval [z, ¢ + ¢].

Sj<—t; fi<—t+t.

t —t+1.

RETURN intervals [s1, fil, [s2, /2], ..., [Sn, fn].

Minimizing Lateness: Greedy

Observations about our greedy algorithm
It produces a schedule with no idle time
It produces a schedule with no inversions

1,] is an inversion if job J is scheduled before 1 but 1’s
deadline is earlier (d; < d]-)

inversion if i <j

e i
an inversion

recall: we assume the jobs are numbered sothatdi <d> < ... <d,

Structure of the Solution

Notice: All schedules with no inversions and no idle time have
the same maximum lateness

* Distinct deadlines, unique schedule

« Non-distinct deadlines: Consider two jobs with deadline d;
the maximum lateness does not depend on the order In
which they are scheduled

. Say the two jobs have duration #, #; and same deadline d

e If1is scheduled first at time s, the max lateness is:
max{0,(s +7,+ 1) — d}

 |fJis scheduled first at time s, the max lateness is the same:
max{0,(s +7,+) — d}

Where We Are Going

Notice: All schedules with no inversions and no idle time
have the same maximum lateness

Distinct deadlines, unigue schedule

Non-distinct deadlines: Consider two jobs with deadline d;

the maximum lateness does not depend on the order In
which they are scheduled

Goal. show there exists an optimal schedule with no
iInversions and no idle time

Then, we have shown that the optimal schedule has the
same maximum lateness as greedy!

We will show this via an exchange argument

Second proof technique to prove greedy is optimal

Minimizing Lateness: Greedy

Observations about our greedy algorithm
It produces a schedule with no idle time
It produces a schedule with no inversions

1,] is an inversion if job J is scheduled before 1 but 1’s
deadline is earlier (d; < d]-)

inversion if i <j

e i
an inversion

recall: we assume the jobs are numbered sothatdi <d> < ... <d,

Structure of Optimal

Observation about optimal.
* There exists an optimal schedule with no idle time.
e (Can always schedule jobs earlier to prevent idleness!)

an optimal schedule d

Y

an optimal schedule d

11

with no idle time 0] 5 3 4

11

Structure of Optimal: Inversions

Observation. If an idle-free schedule has an inversion, then it
has an adjacent inversion.

Recall. 1, is an inversion if job j is scheduled
before i but i's deadline is earlier (d; < d)

Proof. [Contradiction]

« Leti,Jbe anytwo non-adjacent inversions without another
inversion between them

« Let k be element immediately to the right of j.

Case 1. [d; > d}] Then J, k is an adjacent and closer inversion
(=<=)

Case 2. [a} < d,] Since d; < d] this means that i, k is a closer
inversion (=<) i

J k I

Structure of Optimal: Inversions

Claim. Given a schedule with k inversions, we can modify it to
schedule with kK — 1 inversions (without increasing the maximum
lateness).

Proof. (Key Idea) Exchanging two adjacent, inverted jobs 7 and J

reduces the number of inversions by 1 and does not increase the
maximum lateness.

inversion if 1 <j

before
exchange

after
exchange

Structure of Optimal: Inversions

Claim. Given a schedule with k inversions, we can modify it to

schedule with kK — 1 inversions (without increasing the maximum
lateness).

Proof. Let i, j be inverted jobs with i < j. Let £ be the lateness
before swapping them and £ after the swap.

£ =10, Vk # 1, j (swap doesn't affect other jobs)
LY, (lateness of i improves after swap)

Gi= fimd fimd <fi-d <0

inversion if 1 <j

l Ji

i
Chan I
exchange J

fi

before
exchange

Optimality of Greedy

Summarizing the proof.

All schedules with no inversions and no idle time have the
same maximum lateness

Greedy schedule has no inversions and no idle time

Consider an optimal schedule @, without loss of generality, we
can assume that

O
O

nas no idle time

nas no inversions, why?

[Iterate and exchange]. If there is an inversion, must be
adjacent, exchanging them decreases # of inversions by 1
without increasing max lateness (repeat until no inversions)

Greedy and O have same max lateness. |

Exchange Argument

General Pattern.

You start with an arbitrary optimal solution

Prove that WLOG it must have certain nice properties

Assume there is an optimal solution that is different from the
greedy solution

Find the “first” difference between the two solutions

Argue that we can exchange the optimal choice for the greedy
choice without making the solution worse (although the
exchange may make it better)

Show that you can iteratively perform the exchange step until
you get the greedy solution

Greedy Graph Algorithms:
Minimum Spanning Trees

Minimum Cost Spanning Trees

Minimum Spanning Trees

Problem. Given a connected, undirected graph G = (V, E) with
edge costs w,, output a minimum spanning tree, i.e., set of
edges 1 C E such that

(a spanning tree of G): T connects all vertices

(has minimum weight): for any other spanning tree 1" of G,

we have Zw < Zw

ecT ecT’

Minimum Spanning Trees

* Many applications!
* (Classic application:
* Underground cable (Power, Telecom, etc)

* Efficient broadcasting on a computer network (Note:
different from shortest paths)

* Approximate solutions to harder problems, such at TSP

e Real-time face verification

Spanning Trees and Cuts

A cut is a partition of the vertices into two nonempty subsets
and V — §. A cut edge of a cut S is an edge with one end point
in S and anotherin V — §.

cutS= {4,5,8}
Cut edges = { (3, 4), (3, 5), (5,6), (5, 7), (8, 7) }

Spanning Trees and Cuts

Question. Consider the cut S = {1,4,6,7}. Which of the
following edges are cut edges with respect to this cut?

A.(1,7)
B. (5, 7)
C. (2, 3)
&)
&)
()

Fundamental Cycle

Let T be a spanning tree of G.
e« Foranyedgee & T, T U {e} creates a unique cycle C
« Foranyedgefe C:TU{e} — {f} isaspanning tree

Fundamental Cut

Let T be a spanning tree of G.

« Foranyedgefe T, T — {f} breaks the graph into two
connected components, let D be the set of cut edges with end
points in each component

« Foranyedgee € D : T — {f} U {e} is a spanning tree

Spanning Trees and Cuts

Lemma (Cut Property). ForanycutS C V,ife = (u,v) is the
strictly smallest edge connecting any vertex in § to a vertex in
V — 8§, then every minimum spanning tree must include e.

Proof. (By contradiction via an exchange argument)
Suppose T is a spanning tree that does not contain e = (u, v).

Main Idea: We will construct another spanning tree
T =T U e — e’ with weight less than T (=<)

How to find such an edge e’?

Exchange argument

Spanning Trees and Cuts

Proof (Cut Property).
Suppose T'is a spanning tree that does not contain ¢ = (u, v).
Adding e to T results in a unique cycle C (why?)

C must “enter” and “leave” cut §, that is, de’ = (u',v’) € C s.t.
uesSyvev-=_§

w(e') > w(e) (why?)

T'=TuUue—¢'is
a spanning tree (why?)

w(T") < w(T)

(=<=)H

Spanning Trees and Cuts

* What if there’s no unigue minimum®?

Lemma (Cut Property). Forany cutS C V,ife,e,,..., e, are
the smallest edges connecting any vertex in S to a vertex in
V — 8§, then every minimum spanning tree must include some e;.

Jarnik’s (“Prims Algorithm”)

e Initialize S = {u} forany vertexu € Vand T = &
. While|T| <n-—1:

« Find the min-cost edge ¢ = (u, v) with one end u € § and
veV-3§

e T« TUle}
e S« Su{v}

Jarnik’s (“Prims Algorithm”)

e Initialize S = {u} forany vertexu € Vand T = &
. While|T| <n—1:

« Find the min-cost edge ¢ = (u, v) with one end u € § and
veV-3§

e T« Tu{e}
e S < Su{v}

* Implementation crux. Find and add min-cost edge for the cut
(S, V—3) and add it to the tree in each iteration, update cut edges

 How can we prove that this finds the MST?

e (Cut property! (On board.)

Jarnik’s (“Prims Algorithm”)

o Initialize S = {u} forany vertexu € Vand T = &
. Whie|T| <n-1:

« Find the min-cost edge e = (u, v) with one end u € § and
veV-3§

e T «TuU{e}
e S < Su{v}

« Implementation crux. Find and add min-cost edge for the cut (S, V — 5)
and add it to the tree in each iteration, update cut edges

 Running time?
« Naive implementation may take O(nm)

« Need to maintain set of edges adjacent to nodes in 1" and extract
min-cost cut edge from it each time

 Which data structure from CS 136 can we use?

CS136 Review: Priority Queue

Managing such a set typically involves the following operations on $
 Insert. Insert a new element into §
Delete. Delete an element from §
« ExtractMin. Retrieve highest priority element in $
Priorities are encoded as a ‘key’ value
Typically: higher priority <—> lower key value
Heap as Priority Queue. Combines tree structure with array access

« Insert and delete: O(log n) time (‘tree’ traversal & moves)

« Extract min. Delete item with minimum key value: O(log n)

Heap Example

0123 456 7 8 91011 12 131415

X 3 7 5 1117143021352419 22 - - -

‘Prims” Implementation

Use Binary heaps
« (Create a priority queue initially holding all edges incident to u.

* At each step, dequeue edges from the priority queue until we
find an edge (x,y) where x € S andy & §.

e« Add(x,y)toT.

« Add to the queue all edges incident to y whose endpoints aren't

ins.
* Each edge is enqueued and dequeued at most once
« Total runtime: O(m log m)
. Inany graph, m = O(n?)
« SoO(mlogm) = O(mlogn)

‘Prims” Implementation

* |Implementation using Binary heaps

« Total runtime: O(mlog n)

* |f a Fibonacci heap is used instead of binary heap:
« Runsin O(m + nlogn) “amortized time”

« Support amortized O(1)-time inserts, O(log n) time extract min

Definition. If k operations take total time O(f - k), then
the amortized time per operation is O(?).

Kruskal’s Algorithm

* Another MST algorithm

 Why do you think we're looking at a second one?

Kruskal’'s Algorithm

Idea: Add the cheapest remaining edge that does not create a cycle.
e Initialize T =@, H <« E
e« While|T| <n—1

« Remove cheapest edge e from H

« If adding e to 1" does not create a cycle
e T« TuUl{e}

Kruskal’s Algorithm

* Does it give us the correct MST?
e Proof?

 How quickly can we find the minimum remaining
edge”

 How quickly can we determine it an edge creates a
cycle”

Kruskal’s Implementation

e Sort edges by weight or extra edges stored in a min-heap (weight
as priorities): O(mlog m)

* Jurns out this is the dominant cost

« Determine whether T'U {e} contains a cycle
« Maintain a partition of V: components of T
« Let|u]| denote component of u

« Adding edge e = (v, w) creates a cycle if and only if

[lv] = [w]

« Add an edge to 1T update components

Union-Find Data Structure

Manages a dynamic partition of a set §

* Provides the following methods:

« MakeUnionFind(): Initialize
« F1ind(x): Return name of set containing x
 Union(X, Y):Replacesets X, YwithXUY
Kruskal's Algorithm can then use
* F1ind for cycle checking
« Un1ion to update after adding an edge to T°

e Sorting is still dominant step but imagine it edges were presented in

sorted order!
? Digging
* Deeper

Union-Find: First Attempt

LetS = {1, 2, ..., n} be the set.

|dea: Each element stores the label of its partition
 MakeUnionFind(): SetL[x] =xforeachx € S : O(n)

e« Find(x): ReturnL[x] : O(1)
 Union(X,Y):
« Foreachz € XUY, setL|z] to the label of the larger set
» O(n)

* Doing this changes fewer names; how many times can an
element change labels?

 Each time an element changes labels, size of its set
increases by at least 2: O(log n) times
? Digging
* Deeper

Aside: Amortized Complexity

 Way to account for the average cost of a sequence of operations,
where some operations may be expensive but happen infrequently

« Here we do at most n unions and total time spent on unions is

O(nlogn)

 What is the amortized complexity of a union operation?

« O(logn)

Definition. If k operations take total time O(f - k), then
the amortized time per operation is O(t).

? Digging
* Deeper

Union-Find: First Attempt

LetS = {1, 2, ..., n} be the set.

ldea: Each element stores the label of its set
 MakeUnionFind(): SetL[x] =xforeachx € S : O(n)

e« Find(x): ReturnL[x] : O(1)
 Union(X,Y):
« Foreachz € XUY, setL|z] to the label of the larger set
» O(n)

« Can happen at most O(log n) times

« A sequence of n union operations take O(n log n) time

« Amortized cost of union O(log n)

? Digging
* Deeper

Kruskal’s with Union-Find

Note: If sorting is the bottleneck, the first attempt at union-find is good
enough for Kruskals:

 Each time label of a vertex changes, its component size grows by at
least 2: happens O(log, n) times

. Total time spent updating vertex labels: O(nlog n)

« Running time: O(mlogm + nlogn) = O(mlogn), space
O+ m)

Not done with union-find. But as for union-find itself, we can still do a
ot better...

? Digging
* Deeper

Union-Find with Trees

* Trees let us find many elements given one root (i.e. representative);
use one tree for each subset

* Up tree. If we reverse the pointers (child to parent), we can find a
single root from many elements

* Union now will just require pointing one root to another

Initial state: © @6 60 6 & O

Intermediate state:) (3)
\ 2
o ® 5 ®
l Digging /
Deeper @

Union-Find with Trees

Intermediate state:
) € (7
o g
&

Union(1, 7) (@
\ /
@

® @
[

? Digging @
* Deeper

Union-Find with Trees

Intermediate state:

Find(06)

Digging O,
.y

Deeper

Union-Find with Trees

e Bad case!
« Find(1) takes O(n) time

®@ @ ® - @ unon12)
@ @ @ Union(2,3)

S

@)
G>/' Union(n-1, n)
6’f/@ Find(1) n steps!!

? Digging
e Deeper

Union-Find with Trees

* |Improvement (Union): point smaller to bigger tree

OROROREIEEN0

®/ Union(2,3)
pé) . @ :

@

6‘% Union(n-1,n)

Union(1,2)

« Overall: Find O(log n) time (why?)
« Union: O(1)

? Digging
* Deeper

Union-Find with Trees

First attempt (arrays)
« Union: amortized O(log n), worst-case O(n)
« Find: O(1)
Second attempt (up trees)
« Union: O(1)
« Find: O(logn)

Question. Do we always have to pay €2(log n) cost for one of union
or find”

e Surprisingly no, we can do better!

* Possible to get cost of both essentially constant!

? Digging
* Deeper

Union-Find: Path Compression

 Heuristic. On a Find operation point all the nodes on the search
path directly to the root

égzﬁ\@%

* This does not change the worst case time complexity, which is still

O(log n) and O(1) for Union
Digging
* Deeper

Union-Find: Path Compression

e Self adjustment improves amortized complexity!

)

PC-Find(x)

EANAAMAAY
14444444

 Amortized complexity of find becomes very close to constant!

? Digging
* Deeper

Surprising Result: Hopcroft Uiman’73

 Amortized complexity of union find with path compression improves
significantly!

e Time complexity for n union and find operations on n elements is

O(nlog* n)

« log™ n is the number of times you need to apply the log function
before you get to a number <= 1

Very small! Less than 5 for all reasonable values

(

0 if n<1
| 1+ log"(logn) if n>1

=22 | 16 = 2* | 65,536 = 216 | 205530
2 | 3 | 4 5

? Digging
e Deeper

Surprising Result: Tarjan ‘75

Improved bound on amortized complexity of union-find with path
compression

Time complexity for n union and find operations on n elements is
O(na(n)), where

« a(n) is extremely slow-growing, inverse-Ackermann function
 Essentially a constant

Grows much muuchch morrree slowly than log™

a(n) < 4 for all values in practice

Result. Union and Find become (essentially) amortized constant

time in practice (just short of O(1) in theory) !
? Digging
* Deeper

Ackermann & Inverse Ackermann

n+1 ifm=20
A(m,n) =< A(m —1,1) if m>0andn=20
Alm —1,A(m,n—1)) ifm>0andn >0

a(m,n) =min{i > 1: A(i, |m/n|) > log,n}

‘I am not smart enough to understand this” — Seidel

? Digging
* Deeper

Inverse Ackermann

Inverse Ackerman: The function a(rn) grows much more slowly
than log™ 7 for any fixed ¢

With log™, you count how many times does applying log over and
over gets the result to become small

With the inverse Ackermann, essentially you count how many times
does applying log* (not log!) over and over gets the result to
become small

k
k %k ok ok

a(n) = min{k | log) < 2)

6

1
a(n) =4 forn = 2222 Digging
e

Deeper

Many Applications of Union-Find

* (Good for applications in need of clustering
e cities connected by roads
e cities belonging to the same country
e connected components of a graph
 Maintaining equivalence classes

e Maze creation!

? Digging
* Deeper

MST Algorithms History

* Boruvka’s Algorithm (1926)

 The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-

Zubrzycki / Prim / Sollin / Brosh a

e QOldest, most-ignored MST algorit

* Jarnik’s Algorithm (“Prims Algorithm”,

gorithm

nm, but actually very good

1929)

* Published by Jarnik, independently discovered by Kruskal in

1956, by Prims in 1957
* Kruskal’s Algorithm (1956)

» Kruskal designed this because he found Boruvka'’s algorithm

‘unnecessarily complicated”

Can we do better?

Best known algorithm by Chazelle (1999)

A Minimum Spanning Tree Algorithm with Inverse-Ackermann
Type Complexity*

BERNARD CHAZELLE'

NECI Research Tech Report 99-099 (July 1999)
Journal of the ACM, 47(6), 2000, pp. 1028-1047.

Abstract

panning tree of a connected

A deterministic algorithm for cqe
graph is presented. Its running timeli e« is the classical functional
inverse of Ackermann’s function and i ber of vertices (resp. edges).
The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric

assumptions on the edge costs.

1 Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going as far back
as Boruvka's work in 1926 [1, 9, 13]. In fact, MST is perhaps the oldest open problem in
computer science. According to Nesetfil [13], “this is a cornerstone problem of combinatorial

At i tratiar arnd 3 e canen 1te rradla ? Mavibhianl alanrifbh e 1110 991) 1aar o) $39vma sirhara o

Can we do better?

Using randomness, can get O(n + m) time!

A Randomized Linear-Time Algorithm
to Find Minimum Spanning Trees

DAVID R. KARGER

Stanford University, Stanford, California

PHILIP N. KLEIN

Brown University, Providence, Rhode Island
AND
ROBERT E. TARJAN

Princeton University and NEC Research Institute, Princeton, New Jersey

Abstract, We present ajrandomized linear-time algorithm fo find & minimum spanning tree in a

connected graph with edBeWeTg 180 f§estandom sampling in combination with a
recently discovered linear-time dlgorlthm for verifying a minimum spanning tree. Our computa-
tional model is a unit-cost random-access machine with the restriction that the only operations
allowed on edge weights are binary comparisons.

Categorics and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexityl:
Nonnumerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete

Optimal MST Algorithm?

Has been discovered but don't know its running time!

An Optimal Minimum Spanning Tree Algorithm

SETH PETTIE AND VIJAYA RAMACHANDRAN

The University of Texas at Austin, Austin, Texas

Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph with »n vertices and m edges that runs in time O(7 *(m, n)) where 7 * is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known for 7* are 7*(m, n) = Q(m)and 7*(m,n) = O(m - a(m, n)), where « is
a certain natural inverse of Ackermann’s function.

Even under the assumption that 7 * is superlinear, we show that if the input graph is selected from
G n,m, our algorithm runs in linear time with high probability, regardless of n, m, or the permutation of

edge weights. The analysis uses a new martingale for G, ,, similar to the edge-exposure martingale
PI\Q‘ f:'

