
Greedy: Scheduling
and Minimum

Spanning Trees

Admin

• Readings: we’re a tad behind the schedule on the
website—I’ll revisit the schedule after mountain day

• Questions or comments?

Recall: Scheduling with Deadlines
Given interval length and deadline for jobs,
schedule all tasks, that is, assign start and finish times

, where , so as to minimize the
maximum lateness.

• Lateness of process

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: Earliest-Deadline First

Minimizing Lateness: Greedy
Observations about our greedy algorithm

• It produces a schedule with no idle time
• It produces a schedule with no inversions

• is an inversion if job is scheduled before but ’s
deadline is earlier ()
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

Structure of the Solution
• Notice: All schedules with no inversions and no idle time have

the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Say the two jobs have duration and same deadline

• If is scheduled first at time , the max lateness is:

• If is scheduled first at time , the max lateness is the same:

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}

Where We Are Going
• Notice: All schedules with no inversions and no idle time

have the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Goal. show there exists an optimal schedule with no
inversions and no idle time

• Then, we have shown that the optimal schedule has the
same maximum lateness as greedy!

• We will show this via an exchange argument
• Second proof technique to prove greedy is optimal

d

Minimizing Lateness: Greedy
Observations about our greedy algorithm

• It produces a schedule with no idle time
• It produces a schedule with no inversions

• is an inversion if job is scheduled before but ’s
deadline is earlier ()
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

Structure of Optimal
Observation about optimal.

• There exists an optimal schedule with no idle time.
• (Can always schedule jobs earlier to prevent idleness!)

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time

Structure of Optimal: Inversions
Observation. If an idle-free schedule has an inversion, then it
has an adjacent inversion.

Proof. [Contradiction]

• Let be any two non-adjacent inversions without another
inversion between them

• Let be element immediately to the right of .

• Case 1. Then is an adjacent and closer inversion

• Case 2. Since , this means that is a closer
inversion

i, j

k j
[dj > dk] j, k

(⇒⇐)
[dj < dk] di < dj i, k
(⇒⇐) ∎ j ik

Recall. is an inversion if job is scheduled
before but ’s deadline is earlier ()

i, j j
i i di < dj

Claim. Given a schedule with inversions, we can modify it to
schedule with inversions (without increasing the maximum
lateness).

Proof. (Key Idea) Exchanging two adjacent, inverted jobs and
reduces the number of inversions by 1 and does not increase the
maximum lateness.

k
k − 1

i j

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j

Claim. Given a schedule with inversions, we can modify it to
schedule with inversions (without increasing the maximum
lateness).

Proof. Let be inverted jobs with . Let be the lateness
before swapping them and after the swap.

• (swap doesn’t affect other jobs)

• (lateness of improves after swap)

• = =

k
k − 1

i, j i < j ℓ
ℓ′

ℓk = ℓ′ k ∀k ≠ i, j
ℓ′ i ≤ ℓi i
ℓ′ j f′ j − dj fi − dj ≤ fi − di ≤ ℓi ∎

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j

Optimality of Greedy
Summarizing the proof.
• All schedules with no inversions and no idle time have the

same maximum lateness
• Greedy schedule has no inversions and no idle time

• Consider an optimal schedule , without loss of generality, we
can assume that

• has no idle time
• has no inversions, why?
• [Iterate and exchange]. If there is an inversion, must be

adjacent, exchanging them decreases # of inversions by 1
without increasing max lateness (repeat until no inversions)

• Greedy and have same max lateness.

𝒪

𝒪
𝒪

𝒪 ∎

Exchange Argument
General Pattern.
• You start with an arbitrary optimal solution
• Prove that WLOG it must have certain nice properties
• Assume there is an optimal solution that is different from the

greedy solution
• Find the “first” difference between the two solutions
• Argue that we can exchange the optimal choice for the greedy

choice without making the solution worse (although the
exchange may make it better)

• Show that you can iteratively perform the exchange step until
you get the greedy solution

Greedy Graph Algorithms:
Minimum Spanning Trees

Minimum Cost Spanning Trees

Minimum Spanning Trees
Problem. Given a connected, undirected graph with
edge costs , output a minimum spanning tree, i.e., set of
edges such that

• (a spanning tree of): connects all vertices

• (has minimum weight): for any other spanning tree of ,
we have

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′

we

Minimum Spanning Trees
• Many applications!

• Classic application:
• Underground cable (Power, Telecom, etc)

• Efficient broadcasting on a computer network (Note:
different from shortest paths)

• Approximate solutions to harder problems, such at TSP
• Real-time face verification

Spanning Trees and Cuts
A cut is a partition of the vertices into two nonempty subsets
and . A cut edge of a cut is an edge with one end point
in and another in .

S
V − S S

S V − S

4

8

51

2 3

4

8

56

7

Cut edges = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

1

2 3

6

7

cut S = { 4, 5, 8 }

Spanning Trees and Cuts
Question. Consider the cut . Which of the
following edges are cut edges with respect to this cut?

A. (1, 7)

B. (5, 7)

C. (2, 3)

S = {1,4,6,7}

5

4

7

1
3

8

2

6

Fundamental Cycle
Let be a spanning tree of .

• For any edge , creates a unique cycle

• For any edge is a spanning tree

T G
e ∉ T T ∪ {e} C
f ∈ C : T ∪ {e} − {f}

e

f

Fundamental Cut
Let be a spanning tree of .

• For any edge , breaks the graph into two
connected components, let be the set of cut edges with end
points in each component

• For any edge is a spanning tree

T G
f ∈ T T − {f}

D

e ∈ D : T − {f} ∪ {e}

e

f

Spanning Trees and Cuts
Lemma (Cut Property). For any cut , if is the
strictly smallest edge connecting any vertex in to a vertex in

, then every minimum spanning tree must include .

Proof. (By contradiction via an exchange argument)

Suppose is a spanning tree that does not contain .

Main Idea: We will construct another spanning tree
 with weight less than

How to find such an edge

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T (⇒⇐)
e′ ?

Exchange argument

Spanning Trees and Cuts
Proof (Cut Property).
Suppose is a spanning tree that does not contain .

• Adding to results in a unique cycle (why?)

• must “enter” and “leave” cut , that is, s.t.

• (why?)

• is
a spanning tree (why?)

•

T e = (u, v)
e T C

C S ∃e′ = (u′ , v′) ∈ C
u′ ∈ S, v′ ∈ V − S
w(e′) > w(e)
T′ = T ∪ e − e′

w(T′) < w(T)

(⇒⇐) ∎

Spanning Trees and Cuts
• What if there’s no unique minimum?

Lemma (Cut Property). For any cut , if are
the smallest edges connecting any vertex in to a vertex in

, then every minimum spanning tree must include some .

S ⊂ V e1, e2, …, ek
S

V − S ei

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

•

•

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

•

•

• Implementation crux. Find and add min-cost edge for the cut
 and add it to the tree in each iteration, update cut edges

• How can we prove that this finds the MST?

• Cut property! (On board.)

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

Jarník’s (“Prims Algorithm”)
• Initialize for any vertex and

• While :

• Find the min-cost edge with one end and

•

•

• Implementation crux. Find and add min-cost edge for the cut
and add it to the tree in each iteration, update cut edges

• Running time?

• Naive implementation may take

• Need to maintain set of edges adjacent to nodes in and extract
min-cost cut edge from it each time

• Which data structure from CS 136 can we use?

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

O(nm)
T

CS136 Review: Priority Queue
Managing such a set typically involves the following operations on

• Insert. Insert a new element into

• Delete. Delete an element from

• ExtractMin. Retrieve highest priority element in

Priorities are encoded as a ‘key’ value

Typically: higher priority <—> lower key value

Heap as Priority Queue. Combines tree structure with array access

• Insert and delete: time (‘tree’ traversal & moves)

• Extract min. Delete item with minimum key value:

S
S

S
S

O(log n)
O(log n)

Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X 3 7 5 11 17 14 30 21 35 24 19 22 - - -H

• Use Binary heaps

• Create a priority queue initially holding all edges incident to .

• At each step, dequeue edges from the priority queue until we
find an edge where and .

• Add to .

• Add to the queue all edges incident to whose endpoints aren't
in .

• Each edge is enqueued and dequeued at most once

• Total runtime:

• In any graph,

• So

u

(x, y) x ∈ S y ∉ S
(x, y) T

y
S

O(m log m)

m = O(n2)
O(m log m) = O(m log n)

“Prims” Implementation

• Implementation using Binary heaps

• Total runtime:

• If a Fibonacci heap is used instead of binary heap:

• Runs in “amortized time”

• Support amortized -time inserts, time extract min

O(m log n)

O(m + n log n)
O(1) O(log n)

“Prims” Implementation

Definition. If operations take total time , then
the amortized time per operation is .

k O(t ⋅ k)
O(t)

Kruskal’s Algorithm

• Another MST algorithm

• Why do you think we’re looking at a second one?

Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle.
• Initialize ,

• While :

• Remove cheapest edge from

• If adding to does not create a cycle

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}

Kruskal’s Algorithm

• Does it give us the correct MST?

• Proof?

• How quickly can we find the minimum remaining
edge?

• How quickly can we determine if an edge creates a
cycle?

Kruskal’s Implementation
• Sort edges by weight or extra edges stored in a min-heap (weight

as priorities):

• Turns out this is the dominant cost

• Determine whether contains a cycle

• Maintain a partition of : components of

• Let denote component of

• Adding edge creates a cycle if and only if

• Add an edge to : update components

O(m log m)

T ∪ {e}

V T

[u] u

e = (v, w)
[v] = [w]

T

Union-Find Data Structure
Manages a dynamic partition of a set

• Provides the following methods:
• MakeUnionFind(): Initialize

• Find(x): Return name of set containing

• Union(X, Y): Replace sets X, Y with

Kruskal’s Algorithm can then use
• Find for cycle checking

• Union to update after adding an edge to

• Sorting is still dominant step but imagine if edges were presented in
sorted order!

S

x

X ∪ Y

T

Union-Find: First Attempt
Let be the set.

Idea: Each element stores the label of its partition
• MakeUnionFind(): Set for each :

• Find(x): Return :
• Union(X,Y):

• For each , set to the label of the larger set

•
• Doing this changes fewer names; how many times can an

element change labels?
• Each time an element changes labels, size of its set

increases by at least 2: times

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)
L[x] O(1)

z ∈ X ∪ Y L[z]
O(n)

O(log n)

Aside: Amortized Complexity
• Way to account for the average cost of a sequence of operations,

where some operations may be expensive but happen infrequently

• Here we do at most unions and total time spent on unions is

• What is the amortized complexity of a union operation?

•

n
O(n log n)

O(log n)

Definition. If operations take total time , then
the amortized time per operation is .

k O(t ⋅ k)
O(t)

Union-Find: First Attempt
Let be the set.

Idea: Each element stores the label of its set
• MakeUnionFind(): Set for each :

• Find(x): Return :
• Union(X,Y):

• For each , set to the label of the larger set

•

• Can happen at most times

• A sequence of union operations take time

• Amortized cost of union

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)
L[x] O(1)

z ∈ X ∪ Y L[z]
O(n)

O(log n)
n O(n log n)

O(log n)

Kruskal’s with Union-Find
Note: If sorting is the bottleneck, the first attempt at union-find is good
enough for Kruskals:
• Each time label of a vertex changes, its component size grows by at

least 2: happens times

• Total time spent updating vertex labels:

• Running time: ; space

Not done with union-find. But as for union-find itself, we can still do a
lot better…

O(log2 n)
O(n log n)

O(m log m + n log n) = O(m log n)
O(n + m)

Union-Find with Trees
• Trees let us find many elements given one root (i.e. representative);

use one tree for each subset
• Up tree. If we reverse the pointers (child to parent), we can find a

single root from many elements
• Union now will just require pointing one root to another

Initial state:

Intermediate state:

1 2 3 4 5 6 7

1

2

3

45

6

7

Union-Find with Trees
Intermediate state:

Union(1, 7)

1

2

3

45

6

7

1

2

3

45

6

7

Union-Find with Trees
Intermediate state:

Find(6)

1

2

3

45

6

7

1

2

3

45

6

7

Union-Find with Trees
• Bad case!
• Find(1) takes timeO(n)

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1, n)

…

…

1

2

3

n

:
:

Find(1) n steps!!

Union-Find with Trees
• Improvement (Union): point smaller to bigger tree

• Overall: Find time (why?)

• Union:

O(log n)
O(1)

1 2 3 n

1

2 3 n
Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

…
:
:

1

2

3 n

…

…

Union-Find with Trees
• First attempt (arrays)

• Union: amortized , worst-case

• Find:
• Second attempt (up trees)

• Union:

• Find:

• Question. Do we always have to pay cost for one of union
or find?

• Surprisingly no, we can do better!
• Possible to get cost of both essentially constant!

O(log n) O(n)
O(1)

O(1)
O(log n)

Ω(log n)

Union-Find: Path Compression
• Heuristic. On a Find operation point all the nodes on the search

path directly to the root

• This does not change the worst case time complexity, which is still
 and for UnionO(log n) O(1)

1

2

3

45

6

7 1

2 3 456

7

Find(3)

8 9

10

8 910

• Self adjustment improves amortized complexity!

• Amortized complexity of find becomes very close to constant!

PC-Find(x)

x

Union-Find: Path Compression

Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves

significantly!
• Time complexity for union and find operations on elements is

• is the number of times you need to apply the log function
before you get to a number <= 1

• Very small! Less than 5 for all reasonable values

n n
O(n log* n)
log* n

Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path

compression

• Time complexity for union and find operations on elements is
, where

• is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than

• for all values in practice

• Result. Union and Find become (essentially) amortized constant
time in practice (just short of in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)

Ackermann & Inverse Ackermann
 
 
 
 

Inverse Ackerman 
 
 
 
 
 
 
 
“I am not smart enough to understand this” — Seidel

Inverse Ackermann
• Inverse Ackerman: The function grows much more slowly

than for any fixed c  

• With , you count how many times does applying over and
over gets the result to become small

• With the inverse Ackermann, essentially you count how many times
does applying (not log!) over and over gets the result to
become small 

•

• for

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216

Many Applications of Union-Find
• Good for applications in need of clustering

• cities connected by roads
• cities belonging to the same country
• connected components of a graph

• Maintaining equivalence classes
• Maze creation!

MST Algorithms History
• Borůvka’s Algorithm (1926)

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm

• Oldest, most-ignored MST algorithm, but actually very good

• Jarník’s Algorithm (“Prims Algorithm”, 1929)

• Published by Jarník, independently discovered by Kruskal in
1956, by Prims in 1957

• Kruskal’s Algorithm (1956)

• Kruskal designed this because he found Borůvka’s algorithm
“unnecessarily complicated”

Can we do better?
Best known algorithm by Chazelle (1999)

Can we do better?
Using randomness, can get time!O(n + m)

Optimal MST Algorithm?
Has been discovered but don’t know its running time!

