
Greedy: Scheduling 
and Minimum 

Spanning Trees



Admin

• Readings: we’re a tad behind the schedule on the 
website—I’ll revisit the schedule after mountain day 

• Questions or comments?



Recall: Scheduling with Deadlines
Given interval length  and deadline  for  jobs, 
schedule all tasks, that is, assign start and finish times 

, where , so as to minimize the 
maximum lateness.  

• Lateness of process 

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1
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Greedy: Earliest-Deadline First



Minimizing Lateness: Greedy
Observations about our greedy algorithm 

• It produces a schedule with no idle time 
• It produces a schedule with no inversions 

•  is an inversion if job  is scheduled before  but ’s 
deadline is earlier ( )
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion



Structure of the Solution
• Notice: All schedules with no inversions and no idle time have 

the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Say the two jobs have duration  and same deadline  

• If  is scheduled first at time , the max lateness is: 
 

• If  is scheduled first at time , the max lateness is the same: 

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}



Where We Are Going
• Notice: All schedules with no inversions and no idle time 

have the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Goal. show there exists an optimal schedule with no 
inversions and no idle time 

• Then, we have shown that the optimal schedule has the 
same maximum lateness as greedy! 

• We will show this via an exchange argument 
• Second proof technique to prove greedy is optimal

d



Minimizing Lateness: Greedy
Observations about our greedy algorithm 

• It produces a schedule with no idle time 
• It produces a schedule with no inversions 

•  is an inversion if job  is scheduled before  but ’s 
deadline is earlier ( ) 
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion



Structure of Optimal
Observation about optimal. 

• There exists an optimal schedule with no idle time. 
• (Can always schedule jobs earlier to prevent idleness!) 

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time



Structure of Optimal: Inversions
Observation. If an idle-free schedule has an inversion, then it 
has an adjacent inversion. 

Proof. [Contradiction] 

• Let  be any two  non-adjacent inversions without another 
inversion between them 

• Let  be element immediately to the right of . 

• Case 1.  Then  is an adjacent and closer inversion 
 

• Case 2.  Since , this means that  is a closer 
inversion  

i, j

k j
[dj > dk] j, k

( ⇒⇐ )
[dj < dk] di < dj i, k
( ⇒⇐ ) ∎ j ik

Recall.   is an inversion if job  is scheduled  
before  but ’s deadline is earlier ( )

i, j j
i i di < dj



Claim. Given a schedule with  inversions, we can modify it to 
schedule with  inversions (without increasing the maximum 
lateness).

Proof. (Key Idea) Exchanging two adjacent, inverted jobs  and  
reduces the number of inversions by 1 and does not increase the 
maximum lateness. 

k
k − 1

i j

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j



Claim. Given a schedule with  inversions, we can modify it to 
schedule with  inversions (without increasing the maximum 
lateness).

Proof. Let  be inverted jobs with . Let  be the lateness 
before swapping them and  after the swap. 

•         (swap doesn’t affect other jobs) 

•          (lateness of  improves after swap) 

•  =            =          

k
k − 1

i, j i < j ℓ
ℓ′ 

ℓk = ℓ′ k ∀k ≠ i, j
ℓ′ i ≤ ℓi i
ℓ′ j f′ j − dj fi − dj ≤ fi − di ≤ ℓi ∎

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j



Optimality of Greedy
Summarizing the proof.
• All schedules with no inversions and no idle time have the 

same maximum lateness 
• Greedy schedule has no inversions and no idle time 

• Consider an optimal schedule , without loss of generality, we 
can assume that 

•  has no idle time  
•  has no inversions, why?  
• [Iterate and exchange]. If there is an inversion, must be 

adjacent, exchanging them decreases # of inversions by 1 
without increasing max lateness (repeat until no inversions) 

• Greedy and  have same max lateness.  

𝒪

𝒪
𝒪

𝒪 ∎



Exchange Argument
General Pattern.
• You start with an arbitrary optimal solution 
• Prove that WLOG it must have certain nice properties 
• Assume there is an optimal solution that is different from the 

greedy solution  
• Find the “first” difference between the two solutions 
• Argue that we can exchange the optimal choice for the greedy 

choice without making the solution worse (although the 
exchange may make it better) 

• Show that you can iteratively perform the exchange step until 
you get the greedy solution



Greedy Graph Algorithms:
Minimum Spanning Trees



Minimum Cost Spanning Trees



Minimum Spanning Trees
Problem. Given a connected, undirected graph  with 
edge costs , output a minimum spanning tree, i.e., set of 
edges   such that 

• (a spanning tree of ):  connects all vertices 

• (has minimum weight): for any other spanning tree  of , 
we have 

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′ 

we



Minimum Spanning Trees
• Many applications! 

• Classic application:  
• Underground cable (Power, Telecom, etc) 

• Efficient broadcasting on a computer network (Note: 
different from shortest paths) 

• Approximate solutions to harder problems, such at TSP 
• Real-time face verification



Spanning Trees and Cuts
A cut is a partition of the vertices into two nonempty subsets  
and .  A cut edge of a cut  is an edge with one end point 
in  and another in . 

S
V − S S

S V − S

4

8

51

2 3

4

8

56

7

Cut edges = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

1

2 3

6

7

cut S =  { 4, 5, 8 }



Spanning Trees and Cuts
Question. Consider the cut .  Which of the 
following edges are cut edges with respect to this cut? 

A. (1, 7) 

B. (5, 7) 

C. (2, 3)

S = {1,4,6,7}

5

4

7

1
3

8

2

6



Fundamental Cycle
Let  be a spanning tree of . 

• For any edge ,  creates a unique cycle  

• For any edge  is a spanning tree

T G
e ∉ T T ∪ {e} C
f ∈ C : T ∪ {e} − {f}

e

f



Fundamental Cut
Let  be a spanning tree of . 

• For any edge ,   breaks the graph into two 
connected components, let  be the set of cut edges with end 
points in each component 

• For any edge  is a spanning tree

T G
f ∈ T T − {f}

D

e ∈ D : T − {f} ∪ {e}

e

f



Spanning Trees and Cuts
Lemma (Cut Property).  For any cut , if  is the 
strictly smallest edge connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include . 

Proof. (By contradiction via an exchange argument)  

Suppose  is a spanning tree that does not contain .   

Main Idea: We will construct another spanning tree 
 with weight less than   

How to find such an edge 

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T ( ⇒⇐ )
e′ ?

Exchange argument



Spanning Trees and Cuts
Proof (Cut Property).  
Suppose  is a spanning tree that does not contain .  

• Adding  to  results in a unique cycle  (why?) 

•  must “enter” and “leave” cut , that is,  s.t. 
 

•   (why?) 

•  is  
a spanning tree (why?) 

•    
 

 

T e = (u, v)
e T C

C S ∃e′ = (u′ , v′ ) ∈ C
u′ ∈ S, v′ ∈ V − S
w(e′ ) > w(e)
T′ = T ∪ e − e′ 

w(T′ ) < w(T )

( ⇒⇐ ) ∎



Spanning Trees and Cuts
• What if there’s no unique minimum? 

Lemma (Cut Property).  For any cut , if  are 
the smallest edges connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include some . 

S ⊂ V e1, e2, …, ek
S

V − S ei



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

•  

•

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

•  

•  

• Implementation crux. Find and add min-cost edge for the cut 
 and add it to the tree in each iteration, update cut edges  

• How can we prove that this finds the MST? 

• Cut property!  (On board.)

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)



Jarník’s (“Prims Algorithm”)
• Initialize  for any vertex  and  

• While : 

• Find the min-cost edge  with one end  and 
 

•  

•  

• Implementation crux. Find and add min-cost edge for the cut  
and add it to the tree in each iteration, update cut edges  

• Running time? 

• Naive implementation may take  

• Need to maintain set of edges adjacent to nodes in  and extract 
min-cost cut edge from it each time 

• Which data structure from CS 136 can we use?

S = {u} u ∈ V T = ∅
|T | ≤ n − 1

e = (u, v) u ∈ S
v ∈ V − S
T ← T ∪ {e}
S ← S ∪ {v}

(S, V − S)

O(nm)
T



CS136 Review: Priority Queue
Managing such a set typically involves the following operations on  

• Insert. Insert a new element into  

• Delete. Delete an element from 

• ExtractMin. Retrieve highest priority element in 

Priorities are encoded as a ‘key’ value 

Typically: higher priority <—> lower key value

Heap as Priority Queue. Combines tree structure with array access 

• Insert and delete:  time (‘tree’ traversal & moves) 

• Extract min. Delete item with minimum key value: 

S
S

S
S

O(log n)
O(log n)



Heap Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X 3 7 5 11 17 14 30 21 35 24 19 22 - - -H



• Use Binary heaps

• Create a priority queue initially holding all edges incident to . 

• At each step, dequeue edges from the priority queue until we 
find an edge  where  and .   

• Add  to .  

• Add to the queue all edges incident to  whose endpoints aren't 
in .  

• Each edge is enqueued and dequeued at most once 

• Total runtime:  

• In any graph,  

• So 

u

(x, y) x ∈ S y ∉ S
(x, y) T

y
S

O(m log m)

m = O(n2)
O(m log m) = O(m log n)

“Prims” Implementation



• Implementation using Binary heaps 

• Total runtime:  

• If a Fibonacci heap is used instead of binary heap: 

• Runs in  “amortized time” 

• Support amortized -time inserts,  time extract min

O(m log n)

O(m + n log n)
O(1) O(log n)

“Prims” Implementation

Definition.  If  operations take total time , then 
the amortized time per operation is .

k O(t ⋅ k)
O(t)



Kruskal’s Algorithm

• Another MST algorithm 

• Why do you think we’re looking at a second one?



Kruskal’s Algorithm
Idea: Add the cheapest remaining edge that does not create a cycle. 
• Initialize ,  

• While : 

• Remove cheapest edge  from  

• If adding  to  does not create a cycle  

•

T = ∅ H ← E
|T | < n − 1

e H
e T

T ← T ∪ {e}



Kruskal’s Algorithm

• Does it give us the correct MST?   

• Proof? 

• How quickly can we find the minimum remaining 
edge? 

• How quickly can we determine if an edge creates a 
cycle?



Kruskal’s Implementation
• Sort edges by weight or extra edges stored in a min-heap (weight 

as priorities):  

• Turns out this is the dominant cost 

• Determine whether  contains a cycle 

• Maintain a partition of :  components of  

• Let  denote component of  

• Adding edge  creates a cycle if and only if 
 

• Add an edge to : update components

O(m log m)

T ∪ {e}

V T

[u] u

e = (v, w)
[v] = [w]

T



Union-Find Data Structure
Manages a dynamic partition of a set  

• Provides the following methods: 
• MakeUnionFind(): Initialize 

• Find(x): Return name of set containing  

• Union(X, Y): Replace sets X, Y with  

Kruskal’s Algorithm can then use 
• Find for cycle checking  

• Union to update after adding an edge to  

• Sorting is still dominant step but imagine if edges were presented in 
sorted order!

S

x

X ∪ Y

T



Union-Find: First Attempt
Let  be the set.  

Idea: Each element stores the label of its partition 
• MakeUnionFind(): Set  for each   :    

• Find(x): Return     :   
• Union(X,Y):  

• For each , set  to the label of the larger set 

•  
• Doing this changes fewer names; how many times can an 

element change labels? 
• Each time an element changes labels, size of its set 

increases by at least 2:  times

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)
L[x] O(1)

z ∈ X ∪ Y L[z]
O(n)

O(log n)



Aside: Amortized Complexity
• Way to account for the average cost of a sequence of operations, 

where some operations may be expensive but happen infrequently 

• Here we do at most  unions and total time spent on unions is 
  

• What is the amortized complexity of a union operation? 

•

n
O(n log n)

O(log n)

Definition.  If  operations take total time , then 
the amortized time per operation is .

k O(t ⋅ k)
O(t)



Union-Find: First Attempt
Let  be the set.  

Idea: Each element stores the label of its set 
• MakeUnionFind(): Set  for each   :    

• Find(x): Return     :   
• Union(X,Y):  

• For each , set  to the label of the larger set 

•  

• Can happen at most  times 

• A sequence of  union operations take  time 

• Amortized cost of union 

S = {1, 2, …, n}

L[x] = x x ∈ S O(n)
L[x] O(1)

z ∈ X ∪ Y L[z]
O(n)

O(log n)
n O(n log n)

O(log n)



Kruskal’s with Union-Find
Note: If sorting is the bottleneck, the first attempt at union-find is good 
enough for Kruskals: 
• Each time label of a vertex changes, its component size grows by at 

least 2: happens  times 

• Total time spent updating vertex labels:    

• Running time: ; space 
 

Not done with union-find. But as for union-find itself, we can still do a 
lot better…

O(log2 n)
O(n log n)

O(m log m + n log n) = O(m log n)
O(n + m)



Union-Find with Trees
• Trees let us find many elements given one root (i.e. representative); 

use one tree for each subset 
• Up tree. If we reverse the pointers (child to parent), we can find a 

single root from many elements 
• Union now will just require pointing one root to another 

Initial state:  

Intermediate state:

1 2 3 4 5 6 7

1

2

3

45

6

7



Union-Find with Trees
Intermediate state: 

Union(1, 7)

1

2

3

45

6

7

1

2

3

45

6

7



Union-Find with Trees
Intermediate state: 

Find(6)

1

2

3

45

6

7

1

2

3

45

6

7



Union-Find with Trees
• Bad case! 
• Find(1) takes  timeO(n)

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1, n)

…

…

1

2

3

n

:
:

Find(1)   n steps!!



Union-Find with Trees
• Improvement (Union): point smaller to bigger tree 

 
 
 
 
 
 
 
 
 
 

• Overall: Find  time (why?) 

• Union: 

O(log n)
O(1)

1 2 3 n

1

2 3 n
Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

…
:
:

1

2

3 n

…

…



Union-Find with Trees
• First attempt (arrays)

• Union: amortized , worst-case  

• Find:  
• Second attempt (up trees)

• Union:  

• Find:  

• Question. Do we always have to pay  cost for one of union 
or find? 

• Surprisingly no, we can do better! 
• Possible to get cost of both essentially constant!

O(log n) O(n)
O(1)

O(1)
O(log n)

Ω(log n)



Union-Find: Path Compression
• Heuristic.  On a Find operation point all the nodes on the search 

path directly to the root 
 
 
 
 
 
 
 
 
 

• This does not change the worst case time complexity, which is still 
 and  for UnionO(log n) O(1)

1

2

3

45

6

7 1

2 3 456

7

Find(3)

8 9

10

8 910



• Self adjustment improves amortized complexity! 
 
 
 
 
 
 
 
 
 
 
 

• Amortized complexity of find becomes very close to constant!

PC-Find(x)

x

Union-Find: Path Compression



Surprising Result: Hopcroft Ulman’73
• Amortized complexity of union find with path compression improves 

significantly! 
• Time complexity for  union and find operations on  elements is 

 

•  is the number of times you need to apply the log function 
before you get to a number <= 1 

• Very small! Less than 5 for all reasonable values 

n n
O(n log* n)
log* n



Surprising Result: Tarjan ‘75
• Improved bound on amortized complexity of union-find with path 

compression  

• Time complexity for  union and find operations on  elements is 
,  where  

•  is extremely slow-growing, inverse-Ackermann function

• Essentially a constant

• Grows much muuchch morrree slowly than 

•  for all values in practice 

• Result. Union and Find become (essentially) amortized constant 
time in practice (just short of  in theory) !

n n
O(nα(n))

α(n)

log*

α(n) ≤ 4

O(1)



Ackermann & Inverse Ackermann
 
 
 
 

Inverse Ackerman 
 
 
 
 
 
 
 
“I am not smart enough to understand this” — Seidel



Inverse Ackermann 
• Inverse Ackerman: The function  grows much more slowly 

than  for any fixed c  

• With , you count how many times does applying  over and 
over gets the result to become small 

• With the inverse Ackermann, essentially you count how many times 
does applying  (not log!) over and over gets the result to 
become small 

•

•  for 

α(n)
log*c n

log* log

log*

α(n) = min{k | log
k

* * * * … * (n) ≤ 2}

α(n) = 4 n = 222216



Many Applications of Union-Find
• Good for applications in need of clustering 

• cities connected by roads 
• cities belonging to the same country 
• connected components of a graph 

• Maintaining equivalence classes 
• Maze creation!



MST Algorithms History
• Borůvka’s Algorithm (1926) 

• The Borvka / Choquet / Florek-ukaziewicz-Perkal-Steinhaus-
Zubrzycki / Prim / Sollin / Brosh algorithm  

• Oldest, most-ignored MST algorithm, but actually very good 

• Jarník’s Algorithm (“Prims Algorithm”, 1929) 

• Published by Jarník, independently discovered by Kruskal in 
1956, by Prims in 1957 

• Kruskal’s Algorithm (1956) 

• Kruskal designed this because he found Borůvka’s algorithm 
“unnecessarily complicated”



Can we do better?
Best known algorithm by Chazelle (1999)



Can we do better?
Using randomness, can get  time!O(n + m)



Optimal MST Algorithm?
Has been discovered but don’t know its running time!


