
Greedy Algorithms

Admin
• Assignment 2 out

• Assignment 0 graded (full points for all, but check
comments)

• Tip at home: pin video. Can swap me to be big
using the button on the top-right

• Any questions or comments before we begin?

Tablet “board” or black
board?

Greedy: Examples
• Cashier’s algorithm to return change in coins?

• Greedy! To make change for $, start with biggest
denomination less than , and so on

• Optimal for US coins!
• (Not in general)

r
r

Greedy: Locally Optimal
Greedy algorithms build solutions by making locally optimal
choices

Surprisingly, sometimes this also leads to globally optimal
solutions!

We start with greedy algorithms as the first design paradigm
because

• They are natural and intuitive
• Proving they are optimal is the hard part

Greedy Algorithms
Takeaway

• The takeaway is that greedy algorithms do not
usually work

• When greedy algorithms work, it is because the
problem has structure that greedy can take
advantage of

• The question is not “can I use greedy”—-it’s “what
structure does the problem have? Does it lead
to a greedy approach?”

Greedy: Proof Techniques
Two fundamental approaches to proving correctness of greedy
algorithms

• Greedy stays ahead: Partial greedy solution is, at all times,
as good as an "equivalent" portion of any other solution

• Exchange Property: An optimal solution can be transformed
into a greedy solution without sacrificing optimality.

Class Scheduling
Problem. Given the list of start times and finish times

 of classes (labeled), what is the maximum
number of non-conflicting classes you can schedule?

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book

Interval Scheduling
Job scheduling. This is a general job scheduling problem.
Suppose you have a machine that can run one job at a time and
job requests with start and finish times: and . How
to determine the most number of compatible requests?

n
s1, …, sn f1, …, fn

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatible

What to be Greedy About?
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Lets start with obvious one: start times

• Schedule jobs with earliest start time first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for earliest start time

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Another possible criterion:

• Schedule jobs with shortest interval first

• That is, smallest value of fi − si

counterexample for shortest interval

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Another possible criterion:

• Fewest conflict

• Schedule that conflict with fewest other jobs first

counterexample for fewest conflicts

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Criteria that do not work:

• Earliest start time first

• Shortest interval works

• Fewest conflict first

• How about: earliest finish time first?

• Surprisingly optimal

• Need to prove why it is optimal

• Idea: Free your resource as soon as possible!

Earliest-Finish-Time-First Algorithm

Correctness of Algorithm
• Set output consists of compatible requests

• By construction!

• We want to prove our solution is optimal (schedules the
maximum number of jobs)

• Let be an optimal set of jobs. Goal: show ,i.e.,
greedy also selects the same number of jobs and thus is optimal

• Proof technique to prove optimality:
• Greedy always “stays ahead” (or rather never falls behind)
• We will compare partial solutions of greedy vs an optimal and

show that greedy is doing better or just as well
• Intuition: greedy frees up the resource as soon as possible
• Lets use this metric to compare greedy and optimal

S

S

𝒪 |S | = |𝒪 |

Get Ahead Stay Ahead Proof
Correctness proof. Let and be the sequence
of compatible jobs selected by the greedy and optimal algorithm
respectively, ordered by increasing finish time.

Lemma 1. For all , we have: .

Proof. (By induction) Base case: is true, why?

• Assume holds for :

• For th job, note that (why?)

• Using inductive hypothesis:

• Greedy picks earliest finish time among compatible jobs (which
includes) thus

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

i = 1
k − 1 fgk−1

≤ fok−1

k fok−1
≤ sok

fgk−1
≤ fok−1

≤ sok

ok fgk
≤ fok

∎

Are We Done? Almost
Let and be the sequence of compatible jobs selected
by the greedy and optimal algorithm respectively, ordered by finish times.

Lemma 1. For all , we have: .

Lemma 2. The greedy algorithm returns an optimal set of jobs , that is,
.

Proof. (By contradiction)

Suppose is not optimal, then the optimal set must select more jobs,
that is, .

That is, there is a job that starts after ends

What is the contradiction? Greedy keeps selecting jobs until no more
compatible jobs left. Since by Lemma 1, greedy would also select
compatible job

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

S
k = m

S 𝒪
m > k

ok+1 ok

fgk
≤ fok

ok+1 (⇒⇐) ∎

Implementation & Running Time
Analysis (Running time):

Let’s analyze all the steps:

• Sorting jobs by finish times

•

• Permuting start times in the order of finish times

• total (how can we do this bookkeeping?)

• For each selected job , find next job such that

• Iterate through the list until you reach the right interval

• This part of the algorithm is per interval, so

• Overall time

O(n log n)

O(n)
i j sj ≥ fi

j
O(1) O(n)

O(n log n)

Greedy Algorithms: Class Quiz
Question.

• Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.

• Is the earliest-finish-time-first algorithm still optimal?

• If no, can we design a simple counter example?

counterexample for earliest finish time

weight = 1

weight = 100

Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled

• Only one process can be executed at a time
• A process must run to completion before another can be

executed

• Each process has a duration and a deadline

Goal: Schedule tasks: (start & finish times),
where , to minimize maximum lateness

• Satisfy all requests but optimize max lateness

• Lateness of process

• Resource is first available at time 0

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled, each process
has a duration and a deadline

Goal: Schedule tasks: (start & finish times),
where , to minimize maximum lateness

• Lateness of process

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

lateness = 0lateness = 2 max lateness = 6

Minimizing Lateness: Problem
Possible strategies?

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first

Shortest job first:

i
di − ti

counterexample1 2

tj 1 10

dj 100 10
Gives max lateness: 1
OPT max lateness: 0

Minimizing Lateness: Problem
Possible strategies

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first

Shortest slack first:

i
di − ti

1 2

tj 1 10

dj 2 10

counterexample

Gives max lateness: 9
OPT max lateness: 1

Minimizing Lateness: Problem
Possible strategies

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first
• Order jobs by their deadline and schedule them in that order

• Intuition: get the jobs due first done first

• Surprisingly optimal (We will show this)

• Disregards job lengths! (Seems counter-intuitive)

i
di − ti

Earliest Deadline First

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Recall: Scheduling with Deadlines
Given interval length and deadline for jobs,
schedule all tasks, that is, assign start and finish times

, where , so as to minimize the
maximum lateness.

• Lateness of process

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: Earliest-Deadline First

Minimizing Lateness: Greedy
Observations about our greedy algorithm

• It produces a schedule with no idle time
• It produces a schedule with no inversions

• is an inversion if job is scheduled before but ’s
deadline is earlier ()
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

Structure of the Solution
• Notice: All schedules with no inversions and no idle time have

the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Say the two jobs have duration and same deadline

• If is scheduled first at time , the max lateness is:

• If is scheduled first at time , the max lateness is the same:

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}

Minimizing Lateness: Review
Given: A list of processes with a duration and a deadline

Goal: Schedule tasks: (start & finish times),
where , to minimize maximum lateness

• Lateness of process

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

Structure of the Solution
• Notice: All schedules with no inversions and no idle time have

the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Say the two jobs have duration and same deadline

• If is scheduled first at time , the max lateness is:

• If is scheduled first at time , the max lateness is the same:

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}

Where We Are Going
• Notice: All schedules with no inversions and no idle time

have the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Goal. show there exists an optimal schedule with no
inversions and no idle time

• Then, we have shown that the optimal schedule has the
same maximum lateness as greedy!

• We will show this via an exchange argument
• Second proof technique to prove greedy is optimal

d

Minimizing Lateness: Greedy
Observations about our greedy algorithm

• It produces a schedule with no idle time
• It produces a schedule with no inversions

• is an inversion if job is scheduled before but ’s
deadline is earlier ()
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

Structure of Optimal
Observation about optimal.

• There exists an optimal schedule with no idle time.
• (Can always schedule jobs earlier to prevent idleness!)

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time

Structure of Optimal: Inversions
Observation. If an idle-free schedule has an inversion, then it
has an adjacent inversion.

Proof. [Contradiction]

• Let be any two non-adjacent inversions without another
inversion between them

• Let be element immediately to the right of .

• Case 1. Then is an adjacent and closer inversion

• Case 2. Since , this means that is a closer
inversion

i, j

k j
[dj > dk] j, k

(⇒⇐)
[dj < dk] di < dj i, k
(⇒⇐) ∎ j ik

Recall. is an inversion if job is scheduled
before but ’s deadline is earlier ()

i, j j
i i di < dj

Claim. Given a schedule with inversions, we can modify it to
schedule with inversions (without increasing the maximum
lateness).

Proof. (Key Idea) Exchanging two adjacent, inverted jobs and
reduces the number of inversions by 1 and does not increase the
maximum lateness.

k
k − 1

i j

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j

Claim. Given a schedule with inversions, we can modify it to
schedule with inversions (without increasing the maximum
lateness).

Proof. Let be inverted jobs with . Let be the lateness
before swapping them and after the swap.

• (swap doesn’t affect other jobs)

• (lateness of improves after swap)

• = =

k
k − 1

i, j i < j ℓ
ℓ′

ℓk = ℓ′ k ∀k ≠ i, j
ℓ′ i ≤ ℓi i
ℓ′ j f′ j − dj fi − dj ≤ fi − di ≤ ℓi ∎

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j

Optimality of Greedy
Summarizing the proof.
• All schedules with no inversions and no idle time have the

same maximum lateness
• Greedy schedule has no inversions and no idle time

• Consider an optimal schedule , without loss of generality, we
can assume that

• has no idle time
• has no inversions, why?
• [Iterate and exchange]. If there is an inversion, must be

adjacent, exchanging them decreases # of inversions by 1
without increasing max lateness (repeat until no inversions)

• Greedy and have same max lateness.

𝒪

𝒪
𝒪

𝒪 ∎

Exchange Argument
General Pattern. An inductive exchange argument
• You start with an arbitrary optimal solution
• Prove that WLOG it must have certain nice properties
• Assume there is an optimal solution that is different from the

greedy solution
• Find the “first” difference between the two solutions
• Argue that we can exchange the optimal choice for the greedy

choice without making the solution worse (although the
exchange may make it better)

• Show that you can iteratively perform the exchange step until
you get the greedy solution

Greedy Graph Algorithms:
Minimum Spanning Trees

Minimum Cost Spanning Trees

Minimum Spanning Trees
• Many applications!

• Classic application:
• Underground cable (Power, Telecom, etc)

• Efficient broadcasting on a computer network (Note:
different from shortest paths)

• Approximate solutions to harder problems, such at TSP
• Real-time face verification

Minimum Spanning Trees
Problem. Given a connected, undirected graph with
edge costs , output a minimum spanning tree, i.e., set of
edges such that

• (a spanning tree of): connects all vertices

• (has minimum weight): for any other spanning tree of ,
we have

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′

we

Distinct Edge Weights
• Annoying subtlety in the problem statement is there may be

multiple minimum spanning trees

• If a graph has edges with same edge, e.g., all edges have
weight 1: all spanning trees are min!

• To simplify discussion in our algorithm design, we will assume
distinct edge weights

Lemma. If all edge weights in a connected graph are distinct,
then it has a unique minimum spanning tree.

We will relax the distinct-edge-weight assumption later.

Spanning Trees and Cuts
A cut is a partition of the vertices into two nonempty subsets
and . A cut edge of a cut is an edge with one end point
in and another in .

S
V − S S

S V − S

4

8

51

2 3

4

8

56

7

Cut edges = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

1

2 3

6

7

cut S = { 4, 5, 8 }

Spanning Trees and Cuts
Question. Consider the cut . Which of the
following edges are cut edges with respect to this cut?

A. (1, 7)

B. (5, 7)

C. (2, 3)

S = {1,4,6,7}

5

4

7

1
3

8

2

6

Fundamental Cycle
Let be a spanning tree of .

• For any edge , creates a unique cycle

• For any edge is a spanning tree

T G
e ∉ T T ∪ {e} C
f ∈ C : T ∪ {e} − {f}

e

f

Fundamental Cut
Let be a spanning tree of .

• For any edge , breaks the graph into two
connected components, let be the set of cut edges with end
points in each component

• For any edge is a spanning tree

T G
f ∈ T T − {f}

D

e ∈ D : T − {f} ∪ {e}

e

f

Spanning Trees and Cuts
Lemma (Cut Property). For any cut , let be the
minimum weight edge connecting any vertex in to a vertex in

, then every minimum spanning tree must include .

Proof. (By contradiction via an exchange argument)

Suppose is a spanning tree that does not contain .

Main Idea: We will construct another spanning tree
 with weight less than

How to find such an edge

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T (⇒⇐)
e′ ?

Exchange argument

Spanning Trees and Cuts
Proof (Cut Property).
Suppose is a spanning tree that does not contain .

• Adding to results in a unique cycle (why?)

• must “enter” and “leave” cut , that is, s.t.

• (why?)

• is
a spanning tree (why?)

•

T e = (u, v)
e T C

C S ∃e′ = (u′ , v′) ∈ C
u′ ∈ S, v′ ∈ V − S
w(e′) > w(e)
T′ = T ∪ e − e′

w(T′) < w(T)

(⇒⇐) ∎

Spanning Trees and Cycles
Lemma (Cycle Property). For any cycle in , its highest cost edge
 is in no MST of .

Proof. (By contradiction via an exchange argument)
Suppose a MST contains .
• Main Idea: We will construct another spanning tree

 with weight less than

• How to find such an

C G
e G

T e

T′ = T − {e} ∪ {e′ } T (⇒⇐)
e′ ?

Exchange argument

Spanning Trees and Cycles
Lemma (Cycle Property). For any cycle in , its highest cost edge
 is in no MST of .

Proof. (By contradiction via an exchange argument)
Suppose a MST contains .

• Let be an edge of weight less than

• Exchanging with in creates another spanning tree

• Weight of is less than weight of

• But we assumed was the minimum weight spanning tree

C G
e G

T e ∈ C
e′ ∈ C e

e e′ T
T − {e} ∪ {e′ }

T − {e} ∪ {e′ } T
T

(⇒⇐) ∎

Class Exercises
• Often the cut edge of minimum weight is called a light edge.

• Exercise. Show that

• If for every cut of a graph there is a unique light edge crossing
the cut, then the graph has a unique minimum spanning tree.

• Show that the converse is not true by giving a counterexample.

• Remark: Do not assume distinct edge weights.

Class Exercise: Solution
• Exercise. Show that if for every cut of a graph there is a unique light

edge crossing the cut, then the graph has a unique min spanning tree.

Proof. Suppose there is a unique light edge crossing every cut and there
are two minimum spanning trees and of the graph.

• WLOG, as the trees are different there must exist an edge such
that .

• breaks the graph into two connected components

• Consider the unique light edge going across cut

• Case 1. Suppose , since is also a cut edge of this cut, it must
be that . Then, is a spanning tree of
weight less than .

• Case 2. Suppose , let be the cut edge in that
crosses the cut , then in is a spanning
tree of weight less than

T1 T2

e ∈ T1
e ∉ T2

T1 − {e} (S, V − S)
f (S, V − S)

e ≠ f e
w(f) < w(e) T1 − {e} ∪ {f}

T1 (⇒⇐)
e = f ∉ T2 e′ T2

(S, V − S) T2 − {e′ } ∪ {e}
T2 . (⇒⇐) ∎

Class Exercises: Solution
• Exercise.

Show that the converse is not true by giving a counterexample (that
is, if a graph has a unique minimum spanning tree, then every cut
must have a unique light edge.

2

1 1

1

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

