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Admin
• Assignment 2 out 

• Assignment 0 graded (full points for all, but check 
comments) 

• Tip at home: pin video.  Can swap me to be big 
using the button on the top-right 

• Any questions or comments before we begin?



Tablet “board” or black 
board?



Greedy: Examples
• Cashier’s algorithm to return change in coins? 

• Greedy! To make change for $ , start with biggest 
denomination less than , and so on 

• Optimal for US coins! 
• (Not in general)
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Greedy: Locally Optimal
Greedy algorithms build solutions by making locally optimal 
choices 

 
Surprisingly, sometimes this also leads to globally optimal 
solutions!  

We start with greedy algorithms as the first design paradigm 
because  

• They are natural and intuitive  
• Proving they are optimal is the hard part



Greedy Algorithms 
Takeaway

• The takeaway is that greedy algorithms do not 
usually work

• When greedy algorithms work, it is because the 
problem has structure that greedy can take 
advantage of 

• The question is not “can I use greedy”—-it’s “what 
structure does the problem have?  Does it lead 
to a greedy approach?”



Greedy: Proof Techniques
Two fundamental approaches to proving correctness of greedy 
algorithms  

• Greedy stays ahead: Partial greedy solution is, at all times, 
as good as an "equivalent" portion of any other solution 

• Exchange Property: An optimal solution can be transformed 
into a greedy solution without sacrificing optimality. 



Class Scheduling
Problem. Given the list of start times  and finish times 

 of  classes (labeled ), what is the maximum 
number of non-conflicting classes you can schedule? 

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book



Interval Scheduling
Job scheduling. This is a general job scheduling problem.  
Suppose you have a machine that can run one job at a time and  
job requests with start and finish times:  and . How 
to determine the most number of compatible requests? 
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What to be Greedy About?
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Lets start with obvious one:  start times 

• Schedule jobs with earliest start time first 

• Is this the best way? 

• If not, can we come up with a counter example?

counterexample for earliest start time



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Another possible criterion: 

• Schedule jobs with shortest interval first 

• That is, smallest value of  fi − si

counterexample for shortest interval



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Another possible criterion: 

• Fewest conflict

• Schedule that conflict with fewest other jobs first

counterexample for fewest conflicts



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Criteria that do not work: 

• Earliest start time first 

• Shortest interval works 

• Fewest conflict first 

• How about:  earliest finish time first?

• Surprisingly optimal 

• Need to prove why it is optimal 

• Idea: Free your resource as soon as possible!



Earliest-Finish-Time-First Algorithm



Correctness of Algorithm
• Set  output consists of compatible requests 

• By construction! 

• We want to prove our solution  is optimal (schedules the 
maximum number of jobs) 

• Let  be an optimal set of jobs.  Goal: show ,i.e., 
greedy also selects the same number of jobs and thus is optimal 

• Proof technique to prove optimality: 
• Greedy always “stays ahead” (or rather never falls behind) 
• We will compare partial solutions of greedy vs an optimal and 

show that greedy is doing better or just as well 
• Intuition:  greedy frees up the resource as soon as possible 
• Lets use this metric to compare greedy and optimal

S

S

𝒪 |S | = |𝒪 |



Get Ahead Stay Ahead Proof
Correctness proof.  Let   and  be the sequence 
of compatible jobs selected by the greedy and optimal algorithm 
respectively, ordered by increasing finish time.  

Lemma 1.  For all , we have:  . 

Proof.  (By induction) Base case:  is true, why? 

• Assume holds for :  

• For th job, note that  (why?) 

• Using inductive hypothesis:  

• Greedy picks earliest finish time among compatible jobs (which 
includes ) thus  

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

i = 1
k − 1 fgk−1

≤ fok−1

k fok−1
≤ sok

fgk−1
≤ fok−1

≤ sok

ok fgk
≤ fok

∎



Are We Done? Almost
Let   and  be the sequence of compatible jobs selected 
by the greedy and optimal algorithm respectively, ordered by finish times. 

Lemma 1.  For all , we have:  .   

Lemma 2. The greedy algorithm returns an optimal set of jobs , that is, 
. 

Proof. (By contradiction) 

Suppose  is not optimal, then the optimal set  must select more jobs, 
that is, . 

That is, there is a job  that starts after  ends 

What is the contradiction? Greedy keeps selecting jobs until no more 
compatible jobs left. Since  by Lemma 1, greedy would also select 
compatible job   

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

S
k = m

S 𝒪
m > k

ok+1 ok

fgk
≤ fok

ok+1 ( ⇒⇐ ) ∎



Implementation & Running Time
Analysis (Running time):

Let’s analyze all the steps: 

• Sorting jobs by finish times  

•  

• Permuting start times in the order of finish times 

•  total (how can we do this bookkeeping?) 

• For each selected job , find next job  such that  

• Iterate through the list until you reach the right interval   

• This part of the algorithm is  per interval, so  

• Overall  time

O(n log n)

O(n)
i j sj ≥ fi

j
O(1) O(n)

O(n log n)



Greedy Algorithms:  Class Quiz
Question. 

• Suppose that each job also has a positive weight and the goal is to 
find a maximum weight subset of mutually compatible intervals. 

• Is the earliest-finish-time-first algorithm still optimal?  

• If no, can we design a simple counter example? 

counterexample for earliest finish time

weight = 1

weight = 100



Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled 

• Only one process can be executed at a time 
• A process must run to completion before another can be 

executed 

• Each process has a duration  and a deadline  

Goal: Schedule tasks:  (start & finish times), 
where , to minimize maximum lateness 

• Satisfy all requests but optimize max lateness 

• Lateness of process  

• Resource is first available at time 0

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}



Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled, each process 
has a duration  and a deadline  

Goal: Schedule tasks:  (start & finish times), 
where , to minimize maximum lateness 

• Lateness of process 

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}
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Minimizing Lateness: Problem
Possible strategies? 

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job  is 
) 

• Earlier deadlines first 

Shortest job first: 

i
di − ti

counterexample1 2

tj 1 10

dj 100 10
Gives max lateness: 1
OPT max lateness: 0



Minimizing Lateness: Problem
Possible strategies 

• Shortest jobs first (get more done faster!) 

• Do jobs with shortest slack time first (slack of job  is 
)

• Earlier deadlines first  

Shortest slack first:

i
di − ti

1 2

tj 1 10

dj 2 10

counterexample

Gives max lateness: 9
OPT max lateness: 1



Minimizing Lateness: Problem
Possible strategies 

• Shortest jobs first (get more done faster!) 

• Do jobs with shortest slack time first (slack of job  is 
) 

• Earlier deadlines first
• Order jobs by their deadline and schedule them in that order 

• Intuition: get the jobs due first done first 

• Surprisingly optimal (We will show this) 

• Disregards job lengths! (Seems counter-intuitive)

i
di − ti



Earliest Deadline First

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Recall: Scheduling with Deadlines
Given interval length  and deadline  for  jobs, 
schedule all tasks, that is, assign start and finish times 

, where , so as to minimize the 
maximum lateness.  

• Lateness of process 

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Greedy: Earliest-Deadline First



Minimizing Lateness: Greedy
Observations about our greedy algorithm 

• It produces a schedule with no idle time 
• It produces a schedule with no inversions 

•  is an inversion if job  is scheduled before  but ’s 
deadline is earlier ( )
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion



Structure of the Solution
• Notice: All schedules with no inversions and no idle time have 

the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Say the two jobs have duration  and same deadline  

• If  is scheduled first at time , the max lateness is: 
 

• If  is scheduled first at time , the max lateness is the same: 

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}



Minimizing Lateness: Review
Given: A list of processes with a duration  and a deadline  

Goal: Schedule tasks:  (start & finish times), 
where , to minimize maximum lateness

• Lateness of process 

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}



Structure of the Solution
• Notice: All schedules with no inversions and no idle time have 

the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Say the two jobs have duration  and same deadline  

• If  is scheduled first at time , the max lateness is: 
 

• If  is scheduled first at time , the max lateness is the same: 

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}



Where We Are Going
• Notice: All schedules with no inversions and no idle time 

have the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Goal. show there exists an optimal schedule with no 
inversions and no idle time 

• Then, we have shown that the optimal schedule has the 
same maximum lateness as greedy! 

• We will show this via an exchange argument 
• Second proof technique to prove greedy is optimal

d



Minimizing Lateness: Greedy
Observations about our greedy algorithm 

• It produces a schedule with no idle time 
• It produces a schedule with no inversions 

•  is an inversion if job  is scheduled before  but ’s 
deadline is earlier ( ) 
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion



Structure of Optimal
Observation about optimal. 

• There exists an optimal schedule with no idle time. 
• (Can always schedule jobs earlier to prevent idleness!) 

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time



Structure of Optimal: Inversions
Observation. If an idle-free schedule has an inversion, then it 
has an adjacent inversion. 

Proof. [Contradiction] 

• Let  be any two  non-adjacent inversions without another 
inversion between them 

• Let  be element immediately to the right of . 

• Case 1.  Then  is an adjacent and closer inversion 
 

• Case 2.  Since , this means that  is a closer 
inversion  

i, j

k j
[dj > dk] j, k

( ⇒⇐ )
[dj < dk] di < dj i, k
( ⇒⇐ ) ∎ j ik

Recall.   is an inversion if job  is scheduled  
before  but ’s deadline is earlier ( )

i, j j
i i di < dj



Claim. Given a schedule with  inversions, we can modify it to 
schedule with  inversions (without increasing the maximum 
lateness).

Proof. (Key Idea) Exchanging two adjacent, inverted jobs  and  
reduces the number of inversions by 1 and does not increase the 
maximum lateness. 

k
k − 1

i j

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j



Claim. Given a schedule with  inversions, we can modify it to 
schedule with  inversions (without increasing the maximum 
lateness).

Proof. Let  be inverted jobs with . Let  be the lateness 
before swapping them and  after the swap. 

•         (swap doesn’t affect other jobs) 

•          (lateness of  improves after swap) 

•  =            =          

k
k − 1

i, j i < j ℓ
ℓ′ 

ℓk = ℓ′ k ∀k ≠ i, j
ℓ′ i ≤ ℓi i
ℓ′ j f′ j − dj fi − dj ≤ fi − di ≤ ℓi ∎

Structure of Optimal: Inversions

ij

i j

before
exchange

after
exchange

f j́

fi
inversion if i < j



Optimality of Greedy
Summarizing the proof.
• All schedules with no inversions and no idle time have the 

same maximum lateness 
• Greedy schedule has no inversions and no idle time 

• Consider an optimal schedule , without loss of generality, we 
can assume that 

•  has no idle time  
•  has no inversions, why?  
• [Iterate and exchange]. If there is an inversion, must be 

adjacent, exchanging them decreases # of inversions by 1 
without increasing max lateness (repeat until no inversions) 

• Greedy and  have same max lateness.  

𝒪

𝒪
𝒪

𝒪 ∎



Exchange Argument
General Pattern. An inductive exchange argument
• You start with an arbitrary optimal solution 
• Prove that WLOG it must have certain nice properties 
• Assume there is an optimal solution that is different from the 

greedy solution  
• Find the “first” difference between the two solutions 
• Argue that we can exchange the optimal choice for the greedy 

choice without making the solution worse (although the 
exchange may make it better) 

• Show that you can iteratively perform the exchange step until 
you get the greedy solution



Greedy Graph Algorithms:
Minimum Spanning Trees



Minimum Cost Spanning Trees



Minimum Spanning Trees
• Many applications! 

• Classic application:  
• Underground cable (Power, Telecom, etc) 

• Efficient broadcasting on a computer network (Note: 
different from shortest paths) 

• Approximate solutions to harder problems, such at TSP 
• Real-time face verification



Minimum Spanning Trees
Problem. Given a connected, undirected graph  with 
edge costs , output a minimum spanning tree, i.e., set of 
edges   such that 

• (a spanning tree of ):  connects all vertices 

• (has minimum weight): for any other spanning tree  of , 
we have 

G = (V, E)
we

T ⊆ E

G T

T′ G

∑
e∈T

we ≤ ∑
e∈T′ 

we



Distinct Edge Weights
• Annoying subtlety in the problem statement is there may be 

multiple minimum spanning trees 

• If a graph has edges with same edge, e.g., all edges have 
weight 1: all spanning trees are min! 

• To simplify discussion in our algorithm design, we will assume 
distinct edge weights 

Lemma. If all edge weights in a connected graph are distinct, 
then it has a unique minimum spanning tree. 

We will relax the distinct-edge-weight assumption later.



Spanning Trees and Cuts
A cut is a partition of the vertices into two nonempty subsets  
and .  A cut edge of a cut  is an edge with one end point 
in  and another in . 

S
V − S S

S V − S

4

8

51

2 3

4

8

56

7

Cut edges = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

1

2 3

6

7

cut S =  { 4, 5, 8 }



Spanning Trees and Cuts
Question. Consider the cut .  Which of the 
following edges are cut edges with respect to this cut? 

A. (1, 7) 

B. (5, 7) 

C. (2, 3)

S = {1,4,6,7}

5

4

7

1
3

8

2

6



Fundamental Cycle
Let  be a spanning tree of . 

• For any edge ,  creates a unique cycle  

• For any edge  is a spanning tree

T G
e ∉ T T ∪ {e} C
f ∈ C : T ∪ {e} − {f}

e

f



Fundamental Cut
Let  be a spanning tree of . 

• For any edge ,   breaks the graph into two 
connected components, let  be the set of cut edges with end 
points in each component 

• For any edge  is a spanning tree

T G
f ∈ T T − {f}

D

e ∈ D : T − {f} ∪ {e}

e

f



Spanning Trees and Cuts
Lemma (Cut Property).  For any cut , let  be the 
minimum weight edge connecting any vertex in  to a vertex in 

, then every minimum spanning tree must include . 

Proof. (By contradiction via an exchange argument)  

Suppose  is a spanning tree that does not contain .   

Main Idea: We will construct another spanning tree 
 with weight less than   

How to find such an edge 

S ⊂ V e = (u, v)
S

V − S e

T e = (u, v)

T′ = T ∪ e − e′ T ( ⇒⇐ )
e′ ?

Exchange argument



Spanning Trees and Cuts
Proof (Cut Property).  
Suppose  is a spanning tree that does not contain .  

• Adding  to  results in a unique cycle  (why?) 

•  must “enter” and “leave” cut , that is,  s.t. 
 

•   (why?) 

•  is  
a spanning tree (why?) 

•    
 

 

T e = (u, v)
e T C

C S ∃e′ = (u′ , v′ ) ∈ C
u′ ∈ S, v′ ∈ V − S
w(e′ ) > w(e)
T′ = T ∪ e − e′ 

w(T′ ) < w(T )

( ⇒⇐ ) ∎



Spanning Trees and Cycles
Lemma (Cycle Property).  For any cycle  in , its highest cost edge 
 is in no MST of . 

Proof. (By contradiction via an exchange argument)  
Suppose a MST  contains . 
• Main Idea: We will construct another spanning tree 

 with weight less than   

• How to find such an 

C G
e G

T e

T′ = T − {e} ∪ {e′ } T ( ⇒⇐ )
e′ ?

Exchange argument



Spanning Trees and Cycles
Lemma (Cycle Property).  For any cycle  in , its highest cost edge 
 is in no MST of . 

Proof. (By contradiction via an exchange argument)  
Suppose a MST  contains . 

• Let  be an edge of weight less than  

• Exchanging  with  in  creates another spanning tree 
 

• Weight of  is less than weight of  

• But we assumed  was the minimum weight spanning tree 
 

 

C G
e G

T e ∈ C
e′ ∈ C e

e e′ T
T − {e} ∪ {e′ }

T − {e} ∪ {e′ } T
T

( ⇒⇐ ) ∎



Class Exercises
• Often the cut edge of minimum weight is called a light edge. 

• Exercise. Show that  

• If for every cut of a graph there is a unique light edge crossing 
the cut, then the graph has a unique minimum spanning tree. 

• Show that the converse is not true by giving a counterexample. 

• Remark: Do not assume distinct edge weights. 



Class Exercise: Solution
• Exercise. Show that if for every cut of a graph there is a unique light 

edge crossing the cut, then the graph has a unique min spanning tree.  

Proof. Suppose there is a unique light edge crossing every cut and there 
are two minimum spanning trees  and  of the graph.  

• WLOG, as the trees are different there must exist an edge  such 
that .   

• breaks the graph into two connected components  

• Consider the unique light edge  going across cut  

• Case 1. Suppose , since  is also a cut edge of this cut, it must 
be that . Then,  is a spanning tree of 
weight less than .    

• Case 2.  Suppose  , let  be the cut edge in  that 
crosses the cut , then in  is a spanning 
tree of weight less than       

T1 T2

e ∈ T1
e ∉ T2

T1 − {e} (S, V − S)
f (S, V − S)

e ≠ f e
w( f ) < w(e) T1 − {e} ∪ {f}

T1 ( ⇒⇐ )
e = f ∉ T2 e′ T2

(S, V − S) T2 − {e′ } ∪ {e}
T2 . ( ⇒⇐ ) ∎



Class Exercises: Solution
• Exercise. 

Show that the converse is not true by giving a counterexample (that 
is, if a graph has a unique minimum spanning tree, then every cut 
must have a unique light edge. 

2

1 1

1
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