
Topological Sort and
Greedy Algorithms

Admin

• Assignment 1 due tomorrow

• Office hours on google calendar

• Mine 1-3 today, 3:30-5:30 tomorrow

• Assignment 0 back soon!

Assignment 0 Discussion

Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf
https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

Topological Ordering and DAGs
Lemma. If has a topological ordering, then is a DAG.

Proof. [By contradiction] Suppose has a cycle . Let
 be the topological ordering of

• Let be the lowest-indexed node in , and let be the node just
before ; thus is an edge

• By our choice of , we have .

• On the other hand, since is an edge and is a
topological order, we must have

G G
G C

v1, v2, …, vn G

vi C vj
vi (vj, vi)

i i < j
(vj, vi) v1, v2, …, vn

j < i (⇒⇐) ∎

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

• No directed cyclic graph can have a topological ordering

• Does every DAG have a topological ordering?

• Yes, can prove by induction (and construction)

• How do we compute a topological ordering?

• What property should the first node in any topological
ordering satisfy?

• Cannot have incoming edges, i.e., indegree = 0

• Can we use this idea repeatedly?

Topological Ordering and DAGs

Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero.

Proof. [By contradiction] Suppose every vertex has an incoming
edge. Show that the graph must have a cycle.

• Pick any vertex , there must be an edge .

• Walk backwards following these incoming edges for each vertex

• After steps, we must have visited some vertex twice
(why?)

• Nodes between two successive visits to form a cycle

Idea for finding topological ordering. Build order by repeatedly
removing a vertex of in-degree 0 from .

v (u, v)

n + 1 w

w (⇒⇐) ∎

G

Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

 Initialize T[1..n]← 0 and i ← 0
 while V is not empty do
 i←i+1
 Find a vertex v ∈ V with indeg(v) = 0
 T[i] ← v
 Delete v (and its edges) from G
Analysis:

• Correctness, any ideas how to proceed?

• Running time

Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :

• , no edges, the vertex itself forms topological ordering

• Suppose our algorithm is correct for any graph with less than
vertices

• Consider an arbitrary DAG on vertices

• Must contain a vertex with in-degree (we proved it)
• Deleting that vertex and all outgoing edges gives us a

graph with less than vertices that is still a DAG

• Can invoke induction hypothesis on !

• Let be a topological ordering of , then
 must be a topological ordering of

n
n = 1

n

n
v 0

G′ n
G′

u1, u2, …, un−1 G′

v, u1, u2, …, un−1 G ∎

Topological Sorting Algorithm
Running time:

• (Initialize) In-degree array ID[1..n] of all vertices

• time

• Find a vertex with in-degree zero

• time

• Need to keep doing this till we run out of vertices!

• Reduce in-degree of vertices adjacent to a vertex

• time for each : time

• Bottleneck step: finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?

Linear-Time Algorithm
• Need a faster way to find vertices with in-degree 0 instead of

searching through entire in-degree array!

• Idea: Maintain a queue (or stack) of in-degree 0 vertices

• Update : When is deleted, decrement ID[u] for each neighbor
; if ID[u] = 0, add to :

• time

• Total time for previous step over all vertices:

•
 time

• Topological sorting takes time and space!

S
S v

u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)

Topological Ordering by DFS
• Call DFS and maintain finish times of all vertices

• Finish : time completed for all neighbors of

• Return the list of vertices in reverse order of finish times

• Vertex finished last will be first in topological ordering

• New. This generates the topological ordering all all nodes
reachable from the root of the DFS

• Claim. If a DAG contains an edge , then the finish time of
 must be larger than the finish time of .

• is finished only after all its neighbors are finished

(u) DFS(v) u

G u → v
u v

u

Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems

• Find a (directed) cycle in a (directed) graph (or a cycle
containing a specified vertex)

• Find all cut vertices of a graph (A cut vertex is one whose
removal increases the number of connected components)

• Find all bridges of a graph (A bridge is an edge whose removal
increases the number of connected components

• Find all biconnected components of a graph (A biconnected
component is a maximal subgraph having no cut vertices)

All of this can be done in space and time!

v

O(|V | + |E |)

Greedy: Examples
• Cashier’s algorithm to return change in coins?

• Greedy! To make change for $, start with biggest
denomination less than , and so on

• Optimal for US coins!
• (Not in general)

r
r

Greedy: Locally Optimal
Greedy algorithms build solutions by making locally optimal
choices

Surprisingly, sometimes this also leads to globally optimal
solutions!

We start with greedy algorithms as the first design paradigm
because

• They are natural and intuitive
• Proving they are optimal is the hard part

Greedy Algorithms
Takeaway

• The takeaway is that greedy algorithms do not
usually work

• When greedy algorithms work, it is because the
problem has structure that greedy can take
advantage of

Greedy: Proof Techniques
Two fundamental approaches to proving correctness of greedy
algorithms

• Greedy stays ahead: Partial greedy solution is, at all times,
as good as an "equivalent" portion of any other solution

• Exchange Property: An optimal solution can be transformed
into a greedy solution without sacrificing optimality.

Class Scheduling
Problem. Given the list of start times and finish times

 of classes (labeled), what is the maximum
number of non-conflicting classes you can schedule?

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book

Interval Scheduling
Job scheduling. This is a general job scheduling problem.
Suppose you have a machine that can run one job at a time and
job requests with start and finish times: and . How
to determine the most number of compatible requests?

n
s1, …, sn f1, …, fn

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatible

What to be Greedy About?
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Lets start with obvious one: start times

• Schedule jobs with earliest start time first

• Is this the best way?

• If not, can we come up with a counter example?

counterexample for earliest start time

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Another possible criterion:

• Schedule jobs with shortest interval first

• That is, smallest value of fi − si

counterexample for shortest interval

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Another possible criterion:

• Fewest conflict

• Schedule that conflict with fewest other jobs first

counterexample for fewest conflicts

Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep

choosing compatible jobs based on it

• Criteria that do not work:

• Earliest start time first

• Shortest interval works

• Fewest conflict first

• How about: earliest finish time first?

• Surprisingly optimal

• Need to prove why it is optimal

• Idea: Free your resource as soon as possible!

Earliest-Finish-Time-First Algorithm

Correctness of Algorithm
• Set output consists of compatible requests

• By construction!

• We want to prove our solution is optimal (schedules the
maximum number of jobs)

• Let be an optimal set of jobs. Goal: show ,i.e.,
greedy also selects the same number of jobs and thus is optimal

• Proof technique to prove optimality:
• Greedy always “stays ahead” (or rather never falls behind)
• We will compare partial solutions of greedy vs an optimal and

show that greedy is doing better or just as well
• Intuition: greedy frees up the resource as soon as possible
• Lets use this metric to compare greedy and optimal

S

S

𝒪 |S | = |𝒪 |

Get Ahead Stay Ahead Proof
Correctness proof. Let and be the sequence
of compatible jobs selected by the greedy and optimal algorithm
respectively, ordered by increasing finish time.

Lemma 1. For all , we have: .

Proof. (By induction) Base case: is true, why?

• Assume holds for :

• For th job, note that (why?)

• Using inductive hypothesis:

• Greedy picks earliest finish time among compatible jobs (which
includes) thus

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

i = 1
k − 1 fgk−1

≤ fok−1

k fok−1
≤ sok

fgk−1
≤ fok−1

≤ sok

ok fgk
≤ fok

∎

Are We Done? Almost
Let and be the sequence of compatible jobs selected
by the greedy and optimal algorithm respectively, ordered by finish times.

Lemma 1. For all , we have: .

Lemma 2. The greedy algorithm returns an optimal set of jobs , that is,
.

Proof. (By contradiction)

Suppose is not optimal, then the optimal set must select more jobs,
that is, .

That is, there is a job that starts after ends

What is the contradiction? Greedy keeps selecting jobs until no more
compatible jobs left. Since by Lemma 1, greedy would also select
compatible job

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

S
k = m

S 𝒪
m > k

ok+1 ok

fgk
≤ fok

ok+1 (⇒⇐) ∎

Implementation & Running Time
Analysis (Running time):

Let’s analyze all the steps:

• Sorting jobs by finish times

•

• Permuting start times in the order of finish times

•

• For each selected job , find next job such that

• Iterate through the list until you reach the right interval

• This part of the algorithm is per interval, so

• Overall time

O(n log n)

O(n)
i j sj ≥ fi

j
O(1) O(n)

O(n log n)

Greedy Algorithms: Class Quiz
Question.

• Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.

• Is the earliest-finish-time-first algorithm still optimal?

• If no, can we design a simple counter example?

counterexample for earliest finish time

weight = 1

weight = 100

Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled

• Only one process can be executed at a time
• A process must run to completion before another can be

executed

• Each process has a duration and a deadline

Goal: Schedule tasks: (start & finish times),
where , to minimize maximum lateness

• Satisfy all requests but optimize max lateness

• Lateness of process

• Resource is first available at time 0

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled, each process
has a duration and a deadline

Goal: Schedule tasks: (start & finish times),
where , to minimize maximum lateness

• Lateness of process

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

lateness = 0lateness = 2 max lateness = 6

Minimizing Lateness: Problem
Possible strategies?

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first

Shortest job first:

i
di − ti

counterexample1 2

tj 1 10

dj 100 10
Gives max lateness: 1
OPT max lateness: 0

Minimizing Lateness: Problem
Possible strategies

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first (triage!)

Shortest slack first:

i
di − ti

1 2

tj 1 10

dj 2 10

counterexample

Gives max lateness: 9
OPT max lateness: 1

Minimizing Lateness: Problem
Possible strategies

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job is
)

• Earlier deadlines first (triage!)
• How all computer scientists schedule their work

• Order jobs by their deadline and schedule them in that order

• Intuition: get the jobs due first done first

• Surprisingly optimal (We will show this)

• Disregards job lengths! (Seems counter-intuitive)

i
di − ti

Earliest Deadline First

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Recall: Scheduling with Deadlines
Given interval length and deadline for jobs,
schedule all tasks, that is, assign start and finish times

, where , so as to minimize the
maximum lateness.

• Lateness of process

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: Earliest-Deadline First

Minimizing Lateness: Greedy
Observations about our greedy algorithm

• It produces a schedule with no idle time
• It produces a schedule with no inversions

• is an inversion if job is scheduled before but ’s
deadline is earlier ()
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

Structure of the Solution
• Notice: All schedules with no inversions and no idle time have

the same maximum lateness
• Distinct deadlines, unique schedule

• Non-distinct deadlines: Consider two jobs with deadline ;
the maximum lateness does not depend on the order in
which they are scheduled

• Say the two jobs have duration and same deadline

• If is scheduled first at time , the max lateness is:

• If is scheduled first at time , the max lateness is the same:

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}

Continued in Next Lecture

Acknowledgments

• The pictures in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

