
Topological Sort and
Greedy Algorithms



Admin

• Assignment 1 due tomorrow 

• Office hours on google calendar 

• Mine 1-3 today, 3:30-5:30 tomorrow 

• Assignment 0 back soon!



Assignment 0 Discussion



Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf
https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf


Topological Ordering and DAGs
Lemma.  If  has a topological ordering, then  is a DAG. 

Proof.  [By contradiction] Suppose  has a cycle .  Let 
  be the topological ordering of 

• Let  be the lowest-indexed node in , and let  be the node just 
before ; thus  is an edge 

• By our choice of , we have . 

• On the other hand, since  is an edge and  is a 
topological order, we must have   
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the supposed topological order:  v1, …, vn

the directed cycle C



• No directed cyclic graph can have a topological ordering 

• Does every DAG have a topological ordering? 

• Yes, can prove by induction (and construction) 

• How do we compute a topological ordering? 

• What property should the first node in any topological 
ordering satisfy? 

• Cannot have incoming edges, i.e., indegree = 0 

• Can we use this idea repeatedly?

Topological Ordering and DAGs



Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero. 

Proof.  [By contradiction] Suppose every vertex has an incoming 
edge.  Show that the graph must have a cycle. 

• Pick any vertex , there must be an edge .  

• Walk backwards following these incoming edges for each vertex  

• After  steps, we must have visited some vertex  twice 
(why?) 

• Nodes between two successive visits to  form a cycle   

 
Idea for finding topological ordering. Build order by repeatedly 
removing a vertex of in-degree 0 from .

v (u, v)

n + 1 w

w ( ⇒⇐ ) ∎

G



Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

   Initialize T[1..n]← 0 and i ← 0 
   while V is not empty do
       i←i+1
       Find a vertex v ∈ V with indeg(v) = 0 
       T[i] ← v
       Delete v (and its edges) from G
Analysis:   

• Correctness,  any ideas how to proceed? 

• Running time



Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :  

• , no edges, the vertex itself forms topological ordering 

• Suppose our algorithm is correct for any graph with less than  
vertices 

• Consider an arbitrary DAG on  vertices 

• Must contain a vertex  with in-degree  (we proved it) 
• Deleting that vertex and all outgoing edges gives us a 

graph  with less than  vertices that is still a DAG 

• Can invoke induction hypothesis on  !  

• Let  be a topological ordering of , then 
 must be a topological ordering of  

n
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Topological Sorting Algorithm
Running time:

• (Initialize) In-degree array ID[1..n] of all vertices 

•  time 

• Find a vertex with in-degree zero 

•  time 

• Need to keep doing this till we run out of vertices!  

• Reduce in-degree of vertices adjacent to a vertex 

•  time for each :  time 

• Bottleneck step: finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?



Linear-Time Algorithm
• Need a faster way to find vertices with in-degree 0 instead of 

searching through entire in-degree array!

• Idea: Maintain a queue (or stack)  of in-degree 0 vertices 

• Update : When  is deleted, decrement ID[u] for each neighbor 
; if ID[u] = 0, add  to :  

•  time 

• Total time for previous step over all vertices:  

•
 time 

• Topological sorting takes  time and space!

S
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u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)



Topological Ordering by DFS
• Call DFS and maintain finish times of all vertices 

• Finish : time  completed for all neighbors of  

• Return the list of vertices in reverse order of finish times  

• Vertex finished last will be first in topological ordering 

• New.  This generates the topological ordering all all nodes 
reachable from the root of the DFS 

• Claim. If a DAG  contains an edge , then the finish time of 
 must be larger than the finish time of . 

•  is finished only after all its neighbors are finished

(u) DFS(v) u

G u → v
u v

u



Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems  

• Find a (directed) cycle in a (directed) graph (or a cycle 
containing a specified vertex ) 

• Find all cut vertices of a graph (A cut vertex is one whose 
removal increases the number of connected components) 

• Find all bridges of a graph (A bridge is an edge whose removal 
increases the number of connected components 

• Find all biconnected components of a graph (A biconnected 
component is a maximal subgraph having no cut vertices) 

All of this can be done in  space and time!

v

O( |V | + |E | )



Greedy: Examples
• Cashier’s algorithm to return change in coins? 

• Greedy! To make change for $ , start with biggest 
denomination less than , and so on 

• Optimal for US coins! 
• (Not in general)

r
r



Greedy: Locally Optimal
Greedy algorithms build solutions by making locally optimal 
choices 

 
Surprisingly, sometimes this also leads to globally optimal 
solutions!  

We start with greedy algorithms as the first design paradigm 
because  

• They are natural and intuitive  
• Proving they are optimal is the hard part



Greedy Algorithms 
Takeaway

• The takeaway is that greedy algorithms do not 
usually work 

• When greedy algorithms work, it is because the 
problem has structure that greedy can take 
advantage of



Greedy: Proof Techniques
Two fundamental approaches to proving correctness of greedy 
algorithms  

• Greedy stays ahead: Partial greedy solution is, at all times, 
as good as an "equivalent" portion of any other solution 

• Exchange Property: An optimal solution can be transformed 
into a greedy solution without sacrificing optimality. 



Class Scheduling
Problem. Given the list of start times  and finish times 

 of  classes (labeled ), what is the maximum 
number of non-conflicting classes you can schedule? 

s1, …, sn
f1, …, fn n 1,…, n

From Erickson’s Algorithms Book



Interval Scheduling
Job scheduling. This is a general job scheduling problem.  
Suppose you have a machine that can run one job at a time and  
job requests with start and finish times:  and . How 
to determine the most number of compatible requests? 

n
s1, …, sn f1, …, fn

time
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What to be Greedy About?
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Lets start with obvious one:  start times 

• Schedule jobs with earliest start time first 

• Is this the best way? 

• If not, can we come up with a counter example?

counterexample for earliest start time



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Another possible criterion: 

• Schedule jobs with shortest interval first 

• That is, smallest value of  fi − si

counterexample for shortest interval



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Another possible criterion: 

• Fewest conflict

• Schedule that conflict with fewest other jobs first

counterexample for fewest conflicts



Many Ways to be Greedy
• Algorithmic idea: Pick a criterion to be greedy about. Keep 

choosing compatible jobs based on it  

• Criteria that do not work: 

• Earliest start time first 

• Shortest interval works 

• Fewest conflict first 

• How about:  earliest finish time first?

• Surprisingly optimal 

• Need to prove why it is optimal 

• Idea: Free your resource as soon as possible!



Earliest-Finish-Time-First Algorithm



Correctness of Algorithm
• Set  output consists of compatible requests 

• By construction! 

• We want to prove our solution  is optimal (schedules the 
maximum number of jobs) 

• Let  be an optimal set of jobs.  Goal: show ,i.e., 
greedy also selects the same number of jobs and thus is optimal 

• Proof technique to prove optimality: 
• Greedy always “stays ahead” (or rather never falls behind) 
• We will compare partial solutions of greedy vs an optimal and 

show that greedy is doing better or just as well 
• Intuition:  greedy frees up the resource as soon as possible 
• Lets use this metric to compare greedy and optimal

S

S

𝒪 |S | = |𝒪 |



Get Ahead Stay Ahead Proof
Correctness proof.  Let   and  be the sequence 
of compatible jobs selected by the greedy and optimal algorithm 
respectively, ordered by increasing finish time.  

Lemma 1.  For all , we have:  . 

Proof.  (By induction) Base case:  is true, why? 

• Assume holds for :  

• For th job, note that  (why?) 

• Using inductive hypothesis:  

• Greedy picks earliest finish time among compatible jobs (which 
includes ) thus  

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

i = 1
k − 1 fgk−1

≤ fok−1

k fok−1
≤ sok

fgk−1
≤ fok−1

≤ sok

ok fgk
≤ fok

∎



Are We Done? Almost
Let   and  be the sequence of compatible jobs selected 
by the greedy and optimal algorithm respectively, ordered by finish times. 

Lemma 1.  For all , we have:  .   

Lemma 2. The greedy algorithm returns an optimal set of jobs , that is, 
. 

Proof. (By contradiction) 

Suppose  is not optimal, then the optimal set  must select more jobs, 
that is, . 

That is, there is a job  that starts after  ends 

What is the contradiction? Greedy keeps selecting jobs until no more 
compatible jobs left. Since  by Lemma 1, greedy would also select 
compatible job   

g1, …, gk o1, …, om

i ≤ k fgi
≤ foi

S
k = m

S 𝒪
m > k

ok+1 ok

fgk
≤ fok

ok+1 ( ⇒⇐ ) ∎



Implementation & Running Time
Analysis (Running time):

Let’s analyze all the steps: 

• Sorting jobs by finish times  

•  

• Permuting start times in the order of finish times 

•  

• For each selected job , find next job  such that  

• Iterate through the list until you reach the right interval   

• This part of the algorithm is  per interval, so  

• Overall  time

O(n log n)

O(n)
i j sj ≥ fi

j
O(1) O(n)

O(n log n)



Greedy Algorithms:  Class Quiz
Question. 

• Suppose that each job also has a positive weight and the goal is to 
find a maximum weight subset of mutually compatible intervals. 

• Is the earliest-finish-time-first algorithm still optimal?  

• If no, can we design a simple counter example? 

counterexample for earliest finish time

weight = 1

weight = 100



Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled 

• Only one process can be executed at a time 
• A process must run to completion before another can be 

executed 

• Each process has a duration  and a deadline  

Goal: Schedule tasks:  (start & finish times), 
where , to minimize maximum lateness 

• Satisfy all requests but optimize max lateness 

• Lateness of process  

• Resource is first available at time 0

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}



Minimizing Lateness: Problem
Given: A list of processes needs to be scheduled, each process 
has a duration  and a deadline  

Goal: Schedule tasks:  (start & finish times), 
where , to minimize maximum lateness 

• Lateness of process 

ti di

(ti, di) → (si, fi)
fi = si + ti

i : Li = max{0, fi − di}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9
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tj 3
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lateness = 0lateness = 2 max lateness = 6



Minimizing Lateness: Problem
Possible strategies? 

• Shortest jobs first (get more done faster!)

• Do jobs with shortest slack time first (slack of job  is 
) 

• Earlier deadlines first 

Shortest job first: 

i
di − ti

counterexample1 2

tj 1 10

dj 100 10
Gives max lateness: 1
OPT max lateness: 0



Minimizing Lateness: Problem
Possible strategies 

• Shortest jobs first (get more done faster!) 

• Do jobs with shortest slack time first (slack of job  is 
)

• Earlier deadlines first (triage!) 

Shortest slack first:

i
di − ti

1 2

tj 1 10

dj 2 10

counterexample

Gives max lateness: 9
OPT max lateness: 1



Minimizing Lateness: Problem
Possible strategies 

• Shortest jobs first (get more done faster!) 

• Do jobs with shortest slack time first (slack of job  is 
) 

• Earlier deadlines first (triage!)
• How all computer scientists schedule their work 

• Order jobs by their deadline and schedule them in that order 

• Intuition: get the jobs due first done first 

• Surprisingly optimal (We will show this) 

• Disregards job lengths! (Seems counter-intuitive)

i
di − ti



Earliest Deadline First

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Recall: Scheduling with Deadlines
Given interval length  and deadline  for  jobs, 
schedule all tasks, that is, assign start and finish times 

, where , so as to minimize the 
maximum lateness.  

• Lateness of process 

ti di i ∈ {1,…, n}

(ti, di) → (si, fi) fi = si + ti

i : Li = max{0, fi − di}

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Greedy: Earliest-Deadline First



Minimizing Lateness: Greedy
Observations about our greedy algorithm 

• It produces a schedule with no idle time 
• It produces a schedule with no inversions 

•  is an inversion if job  is scheduled before  but ’s 
deadline is earlier ( ) 
i, j j i i

di < dj

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion



Structure of the Solution
• Notice: All schedules with no inversions and no idle time have 

the same maximum lateness 
• Distinct deadlines, unique schedule 

• Non-distinct deadlines: Consider two jobs with deadline ; 
the maximum lateness does not depend on the order in 
which they are scheduled 

• Say the two jobs have duration  and same deadline  

• If  is scheduled first at time , the max lateness is: 
 

• If  is scheduled first at time , the max lateness is the same: 

d

ti, tj d

i s
max{0,(s + ti + tj) − d}

j s
max{0,(s + ti + tj) − d}



Continued in Next Lecture
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