Directed Graphs and
Applications of Traversals

Announcements/ Reminders

* TA Office hours today at 3

* Any questions or comments”?

Directed Graphs

Notation. G = (V, E).

 Edges have “orientation”

« Edge (u,v) or sometimes denoted u — v, leaves node u and
enters node v

* Nodes have “in-degree” and “out-degree”

 No loops or multi-edges (why?)

Terminology of graphs extend
to directed graphs: directed
paths, cycles, etc.

Directed Graphs in Practice

Web graph:
Webpages are nodes, hyperlinks are edges

Orientation of edges is crucial
Search engines use hyperlink structure to rank web pages

w S ve o
>
§ %
Road network 7 %
& 5 2%
g 3 “x
Vestry s © § %/)@ C
Y St
Vest, 0'9')
stry St 2y
° . | s
-aight St =
. 4 Laight i 8
3 Laight gy O
£ Laight St K>
bert 5t = S] =y
2 = &
e Edge: one-way street : ;3
. 5 73 55 @ 0% y; 4
f & e York ¢ S 0@/ af”
& = 9 & S & .
& 5 7] & &)
[¢ S = §‘27 o &
Beach 5y I g}"
-
Encsson 5¢
45,
&, 8,
- 2 i
Mogre St i’: 80/7 ‘7@, 09’) /’c“'
[} (Y] o ,
& % o8
<
N Moore g st
7] N Moore St P4 a’c/s
s S Cana 3
3 N S N
- Franklin o S . - & =
3 nklin St T - ; 1__ ,§ g > kye % m
g Franklin g¢ m a5)5> \i’c e’S/
: Y A ®
a 5 s g s
Mson Sy (4] o D S
Ham Q L
'son St o, S % Q@
$rds > fg”! e S
r In
7
u,

©2008 Google - Map data ©20Q3\Sanborn, NAVTEQ™ - Terms of Use

Staple g

Strong Connectivity & Reachability

Directed reachability. Given a node s find all nodes reachable from s.

e Can use both BFS and DFS. Both visit exactly the set of nodes
reachable from start node s.

* Strong connectivity. Connected components in directed graphs
defined based on mutual reachability. Two vertices u, v in a directed
graph G are mutually reachable if there is a directed path from u to v
and from from v to u. A graph G is strongly connected if every pair
of vertices are mutually reachable

* The mutual reachabillity relation decomposes the graph into
strongly-connected components

Strongly-connected components. For each v € V| the set of
vertices mutually reachable from v, defines the strongly-connected
component of G containing v.

Strongly Connected Components

Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong
connectivity? Recall: BFS/DFS on graph G starting at v will identifies
all vertices reachable from v by directed paths

o Pick a vertex v. Check to see whether every other vertex is
reachable from v;

« Now see whether v is reachable from every other vertex
Analysis

o First step: one call to BFS: O(n + m) time

« Second step: n — 1 calls to BFS: O(n(n + m)) time

Can we do better?

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
e Build Gyey = (V, E(oy) Where (u,v) € Er iff (V,u) € E

« There is a directed path from v to u in G, iff there is a directed
path fromutovin G

o Call BFS(Gygy, v): Every vertex is reachable from v (in Gyg,)) if
and only if v is reachable from every vertex (in G).

Analysis (Performance)
« BFS(G,v): O(n + m) time
e Build Gygy: O(n + m) time. [Do you believe this?]
« BFS(Gioy,Vv): O(n + m)time

e OQOverall, linear time algorithm!

Kosaraju’s Algorithm

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
o Build Gyey, = (V, E(g\) Where (u,v) € Ep, iff (v,u) € E

« There is a directed path from v to u in Gy, iff there is a
directed path fromutovin G

« Call BFS(Gyg,, v): Every vertex is reachable from v (in Gygy) if
and only if v is reachable from every vertex (in G).

Analysis (Correctness)

Claim. If v is reachable from every node in G and every node
in G is reachable from v then G must be strongly connected

Proof. For any two nodes x,y € V, they are mutually
reachable through v, thatis, x ~ v ~yandy v ~ z I

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time”?

/\/\

V5

\/\/

a DAG

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time?

Cycle-Detection-Directed-DFS(Cu):
Set status of u to marked
for each edges (u, Vv):
1f v's status 1s unmarked:
DFS(v)
else 1f v 1s marked but not finished
report a cycle!
mark u finished

Classifying Edges: DFS Directed

. Call a node u inactive, if DFS(#) has not been called yet

. Call a node u active, if DFS(u#) has been called but has
not returned

. Call a node u finished, if DFS(#) has returned

 We can keep track of when a node is activated and
finished and use it to classity every edge u — v in the

directed input graph G

Classifying Edges: DFS Directed

. Tree edge (u, v): the edge is in the DFS tree
- (If v is activated just after u and finished before u)

- The remaining edges fall into three categories:

. Forward edge: (i, v) where v is a proper descendant of u in tree
- (If v is activated after u and finished before u)

. Back edge: (1, v) where v is an ancestor of u in tree
. v is active when DFS(u) begins

oss edge: (1, v) where u and v are not related in tree (are not
cestors or descendants of one another)

. vis finished when DFS(u) begins

Parenthesis Structure: DFS Directed

« Let d[u] denote the time when u is discovered, f[u] denote the
time when u is finished

« Lemma. Given a connected directed graph G = (V, E) and any
DFS tree for G and verticesu,v € V

e Vis adescendant of u in the DFS tree it and only it

dlu] <d[v] <fIv] < flu]

e U,V are unrelated (no ancestor, descendant relation in the tree)

if and only if [d(u), f(u)] and [d(v), f(v)] are disjoint

e Both of the following are not possible: ()(Y)/
.« d[u] < d[v] < flul <flv. (())
+ d[v] < d[u] < f[v] < flu x (()

Parenthesis Structure: DFS Directed

« Claim. Given a directed graph G, it is acyclic if and only if any
DFS tree of G has no back edges.

e Proof (<) : Suppose there are no back edges

« Then all edges in G go from a vertex of higher finish time to a
vertex of lower finish time (parenthesis structure)

 Hence there can be no cycles (need a way to go back to an active
node from an active node)

« (=) Assume G has no cycles, and suppose a DFS tree has a back
edge v = u, what is the contradiction?

e Thereis a path u ~ v following tree edges and there is a edge
from v to u (this is our cycle!). B

Directed Acyclic Graphs (DAGS)

Analysis. (Correctness) A directed (undirected) graph has a cycle
iff and we can identity a back edge during a DFS traversal.

The following code finds and reports back edges correcitly.

Cycle-Detection-Directed-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)
else 1f v 1s marked but not finished
report a cycle!
mark u finished

Topological Sorting

* Also called "topological ordering”

dea: we know how to sort numbers, strings, etc., by

outting them in a list so that if a is before b in the list,
thena < b

 What if instead of a bunch of objects where any two can

be compared, all we get is a partial ordering based on a
DAG?

e |In other words: can we order the vertices such that u
comes before v for every edge (u, v) in the DAG?

Topological Ordering

Problem. Given a DAG G = (V, E) find a linear ordering of the
vertices such that for any edge (v, w) € E, v appears before w in
the ordering.

Example. Find an ordering in which courses can be taken that
satisfies prerequisites.

Computer Science Course Prerequisites

134

331

337T 339

Credits: Bill Jannen, http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg
http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

Topological Ordering: Example

Any linear ordering in which
all the arrows go to the right
is a valid solution

Not a valid topological
sort! /
'<’ ¢epe
—

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/Raol ect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf
https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

Topological Ordering and DAGs

Lemma. If G has a topological ordering, then G is a DAG.

Proof. [By contradiction] Suppose G has a cycle C. Let
Vi, Vo, ..., V, be the topological ordering of G

. Letv; be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v]-, V;) is an edge
« By our choice of 7, we have 1 <.

« On the other hand, since (vj, Vv;) is an edge and v, V,, ..., V, is a
topological order, we must have j < i (=<)

the directed cycle C

© 0 g o o® o6

\

the supposed topological order: vy, ..., v,

Topological Ordering and DAGs

* No directed cyclic graph can have a topological ordering

 Does every DAG have a topological ordering?
* Yes, can prove by induction (and construction)
e How do we compute a topological ordering?

 What property should the first node in any topological
ordering satisfy?

 (Cannot have incoming edges, i.e., indegree = 0

GRTON

® ®©-0xE
0@9“

 (Can we use this idea repeatedly?

Finding a Topological Ordering

Claim. Every DAG has a vertex with in-degree zero.

Proof. [By contradiction] Suppose every vertex has an incoming
edge. Show that the graph must have a cycle.

« Pick any vertex v, there must be an edge (u, v).

* Walk backwards following these incoming edges for each vertex

« After n + 1 steps, we must have visited some vertex w twice
(why?)

« Nodes between two successive visits to w form a cycle (=<) i

Idea for finding topological ordering. Build order by repeatedly
removing a vertex of in-degree 0 from G.

Topological Sorting Algorithm

TopologicalSorting(G) <« G = (V,E) 1s a DAG

Initialize T[1l..n]J< @ and 1 <« 0
while V 1s not empty do
1<1+1
Find a vertex v € V with indeg(v) = 0
T[1] « Vv
Delete v (and 1ts edges) from G
Analysis:

e Correctness, any ideas how to proceed?

* Running time

Topological Sorting Algorithm

Analysis (Correctness). Proof by induction on number of vertices n:
« n = 1, no edges, the vertex itself forms topological ordering

e SUPPOSe our algorithm is correct for any graph with less than n
vertices

« Consider an arbitrary DAG on n vertices
« Must contain a vertex v with in-degree 0 (we proved it)

* Deleting that vertex and all outgoing edges gives us a
graph G’ with less than n vertices that is still a DAG

« Can invoke induction hypothesis on G'!

 Letuy,u,,...,u,_; be atopological ordering of G’, then
V, Uy, Uy, ..., U, 1 Must be a topological ordering of G I

Topological Sorting Algorithm

Running time:
* (Initialize) In-degree array ID[1..n] of all vertices
« O(n+ m)time
* Find a vertex with in-degree zero
e O(n)time
. Need to keep doing this till we run out of vertices! O(n?)
 Reduce in-degree of verticas adjacent to a vertex
« (O(outdegree(v)) time . each v: O(n 4+ m) time

 Bottleneck step: finding vertices wi. in-degree zero

Can we do better?

Linear-Time Algorithm

Need a faster way to find vertices with in-degree 0 instead of
searching through entire in-degree array!

Idea: Maintain a queue (or stack) S of in-degree 0 vertices

Update S: When v is deleted, decrement ID[u] for each neighbor
u; if ID[u] =0, add u to S:

« O(outdegree(v)) time
Total time for previous step over all vertices:

) Z O(outdegree(v)) = O(n + m) time
veV

Topological sorting takes O(n + m) time and space!

Topological Ordering by DFS

e (Call DFS and maintain finish times of all vertices
 Finish(u): time DFS(v) completed for all neighbors of u
 Return the list of vertices in reverse order of finish times

* Vertex finished last will be first in topological ordering

* New. This generates the topological ordering all all nodes
reachable from the root of the DFS

« Claim. If a DAG G contains an edge u — v, then the finish time of
u must be larger than the finish time of v.

e U is finished only after all its neighbors are finished

Traversals: Many More Applications

BFS and/or DFS can also be used to solve many other problems

 Find a (directed) cycle in a (directed) graph (or a cycle
containing a specified vertex v)

* Find all cut vertices of a graph (A cut vertex is one whose
removal increases the number of connected components)

 Find all bridges of a graph (A bridge is an edge whose removal
increases the number of connected components

* Find all biconnected components of a graph (A biconnected
component is a maximal subgraph having no cut vertices)

All of this can be done in O(| V| + | E|) space and time!

