
Directed Graphs and
Applications of Traversals

Announcements/ Reminders

• TA Office hours today at 3

• Any questions or comments?

Directed Graphs
Notation. .

• Edges have “orientation”

• Edge or sometimes denoted , leaves node and
enters node

• Nodes have “in-degree” and “out-degree”

• No loops or multi-edges (why?)

Terminology of graphs extend
to directed graphs: directed
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v

Directed Graphs in Practice
Web graph:

• Webpages are nodes, hyperlinks are edges

• Orientation of edges is crucial

• Search engines use hyperlink structure to rank web pages

Road network

• Road: nodes

• Edge: one-way street

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

Strong Connectivity & Reachability
Directed reachability. Given a node find all nodes reachable from .

• Can use both BFS and DFS. Both visit exactly the set of nodes
reachable from start node .

• Strong connectivity. Connected components in directed graphs
defined based on mutual reachability. Two vertices in a directed
graph are mutually reachable if there is a directed path from to
and from from to . A graph is strongly connected if every pair
of vertices are mutually reachable

• The mutual reachability relation decomposes the graph into
strongly-connected components

• Strongly-connected components. For each , the set of
vertices mutually reachable from , defines the strongly-connected
component of containing .

s s

s

u, v
G u v

v u G

v ∈ V
v

G v

Strongly Connected Components

Deciding Strongly Connected
First idea. How can we use BFS/DFS to determine strong
connectivity? Recall: BFS/DFS on graph starting at will identifies
all vertices reachable from by directed paths

• Pick a vertex . Check to see whether every other vertex is
reachable from ;

• Now see whether is reachable from every other vertex

Analysis

• First step: one call to BFS: time

• Second step: calls to BFS: time

• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a directed
path from u to v in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Performance)

• : time

• Build : time. [Do you believe this?]

• : time

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

Testing Strong Connectivity

Kosaraju’s Algorithm

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a
directed path from u to v in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Correctness)

• Claim. If is reachable from every node in and every node
in is reachable from then must be strongly connected

• Proof. For any two nodes , they are mutually
reachable through , that is, and

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E

Grev
G

𝖡𝖥𝖲(Grev, v) v Grev
v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph , can you detect if it has a cycle
in linear time?

G

a DAG

v2 v3

v6 v5 v4

v7 v1

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph , can you detect if it has a cycle
in linear time?

G

Cycle-Detection-Directed-DFS(u):
 Set status of u to marked # discovered u
 for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
 else if v is marked but not finished
 report a cycle!
 mark u finished
 # done exploring neighbors of u

Classifying Edges: DFS Directed
• Call a node inactive, if has not been called yet

• Call a node active, if has been called but has
not returned

• Call a node finished, if has returned
• We can keep track of when a node is activated and

finished and use it to classify every edge in the
directed input graph

u DFS(u)
u DFS(u)

u DFS(u)

u → v
G

Classifying Edges: DFS Directed
• Tree edge : the edge is in the DFS tree

• (If is activated just after and finished before)

• The remaining edges fall into three categories:

• Forward edge: where is a proper descendant of in tree

• (If is activated after and finished before)

• Back edge: where is an ancestor of in tree

• is active when begins

• Cross edge: where and are not related in tree (are not
ancestors or descendants of one another)

• is finished when begins

(u, v)
v u u

(u, v) v u
v u u

(u, v) v u
v DFS(u)

(u, v) u v

v DFS(u)

Parenthesis Structure: DFS Directed
• Let denote the time when is discovered, denote the

time when is finished

• Lemma. Given a connected directed graph and any
DFS tree for and vertices

• is a descendant of in the DFS tree if and only if

• are unrelated (no ancestor, descendant relation in the tree)
if and only if and are disjoint

• Both of the following are not possible:

•

•

d[u] u f [u]
u

G = (V, E)
G u, v ∈ V

v u
d[u] < d[v] < f [v] < f [u]
u, v

[d(u), f(u)] [d(v), f(v)]

d[u] < d[v] < f [u] < f [v]
d[v] < d[u] < f [v] < f [u]

(())
()()

(())

Parenthesis Structure: DFS Directed
• Claim. Given a directed graph , it is acyclic if and only if any

DFS tree of has no back edges.

• Proof () : Suppose there are no back edges

• Then all edges in go from a vertex of higher finish time to a
vertex of lower finish time (parenthesis structure)

• Hence there can be no cycles (need a way to go back to an active
node from an active node)

• () Assume has no cycles, and suppose a DFS tree has a back
edge , what is the contradiction?

• There is a path following tree edges and there is a edge
from to (this is our cycle!).

G
G

⇐
G

⇒ G
v → u

u ↝ v
v u ∎

Directed Acyclic Graphs (DAGs)
Analysis. (Correctness) A directed (undirected) graph has a cycle
iff and we can identify a back edge during a DFS traversal.

The following code finds and reports back edges correctly.

Cycle-Detection-Directed-DFS(u):
 Set status of u to marked # discovered u
 for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
 else if v is marked but not finished # active
 report a cycle!
 mark u finished
 # done exploring neighbors of u

Topological Sorting
• Also called “topological ordering”

• Idea: we know how to sort numbers, strings, etc., by
putting them in a list so that if is before in the list,
then

• What if instead of a bunch of objects where any two can
be compared, all we get is a partial ordering based on a
DAG?

• In other words: can we order the vertices such that
comes before for every edge in the DAG?

a b
a ≤ b

u
v (u, v)

Topological Ordering
Problem. Given a DAG find a linear ordering of the
vertices such that for any edge , appears before in
the ordering.

Example. Find an ordering in which courses can be taken that
satisfies prerequisites.

G = (V, E)
(v, w) ∈ E v w

Credits: Bill Jannen, http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg
http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf
https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

Topological Ordering and DAGs
Lemma. If has a topological ordering, then is a DAG.

Proof. [By contradiction] Suppose has a cycle . Let
 be the topological ordering of

• Let be the lowest-indexed node in , and let be the node just
before ; thus is an edge

• By our choice of , we have .

• On the other hand, since is an edge and is a
topological order, we must have

G G
G C

v1, v2, …, vn G

vi C vj
vi (vj, vi)

i i < j
(vj, vi) v1, v2, …, vn

j < i (⇒⇐) ∎

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

• No directed cyclic graph can have a topological ordering

• Does every DAG have a topological ordering?

• Yes, can prove by induction (and construction)

• How do we compute a topological ordering?

• What property should the first node in any topological
ordering satisfy?

• Cannot have incoming edges, i.e., indegree = 0

• Can we use this idea repeatedly?

Topological Ordering and DAGs

Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero.

Proof. [By contradiction] Suppose every vertex has an incoming
edge. Show that the graph must have a cycle.

• Pick any vertex , there must be an edge .

• Walk backwards following these incoming edges for each vertex

• After steps, we must have visited some vertex twice
(why?)

• Nodes between two successive visits to form a cycle

Idea for finding topological ordering. Build order by repeatedly
removing a vertex of in-degree 0 from .

v (u, v)

n + 1 w

w (⇒⇐) ∎

G

Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

 Initialize T[1..n]← 0 and i ← 0
 while V is not empty do
 i←i+1
 Find a vertex v ∈ V with indeg(v) = 0
 T[i] ← v
 Delete v (and its edges) from G
Analysis:

• Correctness, any ideas how to proceed?

• Running time

Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :

• , no edges, the vertex itself forms topological ordering

• Suppose our algorithm is correct for any graph with less than
vertices

• Consider an arbitrary DAG on vertices

• Must contain a vertex with in-degree (we proved it)
• Deleting that vertex and all outgoing edges gives us a

graph with less than vertices that is still a DAG

• Can invoke induction hypothesis on !

• Let be a topological ordering of , then
 must be a topological ordering of

n
n = 1

n

n
v 0

G′ n
G′

u1, u2, …, un−1 G′

v, u1, u2, …, un−1 G ∎

Topological Sorting Algorithm
Running time:

• (Initialize) In-degree array ID[1..n] of all vertices

• time

• Find a vertex with in-degree zero

• time

• Need to keep doing this till we run out of vertices!

• Reduce in-degree of vertices adjacent to a vertex

• time for each : time

• Bottleneck step: finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?

Linear-Time Algorithm
• Need a faster way to find vertices with in-degree 0 instead of

searching through entire in-degree array!

• Idea: Maintain a queue (or stack) of in-degree 0 vertices

• Update : When is deleted, decrement ID[u] for each neighbor
; if ID[u] = 0, add to :

• time

• Total time for previous step over all vertices:

•
 time

• Topological sorting takes time and space!

S
S v

u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)

Topological Ordering by DFS
• Call DFS and maintain finish times of all vertices

• Finish : time completed for all neighbors of

• Return the list of vertices in reverse order of finish times

• Vertex finished last will be first in topological ordering

• New. This generates the topological ordering all all nodes
reachable from the root of the DFS

• Claim. If a DAG contains an edge , then the finish time of
 must be larger than the finish time of .

• is finished only after all its neighbors are finished

(u) DFS(v) u

G u → v
u v

u

Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems

• Find a (directed) cycle in a (directed) graph (or a cycle
containing a specified vertex)

• Find all cut vertices of a graph (A cut vertex is one whose
removal increases the number of connected components)

• Find all bridges of a graph (A bridge is an edge whose removal
increases the number of connected components

• Find all biconnected components of a graph (A biconnected
component is a maximal subgraph having no cut vertices)

All of this can be done in space and time!

v

O(|V | + |E |)

