
Directed Graphs and 
Applications of Traversals



Announcements/ Reminders

• TA Office hours today at 3 

• Any questions or comments?



Directed Graphs
Notation. . 

• Edges have “orientation” 

• Edge  or sometimes denoted , leaves node  and 
enters node  

• Nodes have “in-degree” and “out-degree” 

• No loops or multi-edges (why?) 

Terminology of graphs extend 
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v



Directed Graphs in Practice
Web graph:  

• Webpages are nodes, hyperlinks are edges 

• Orientation of edges is crucial 

• Search engines use hyperlink structure to rank web pages 

Road network 

• Road: nodes 

• Edge: one-way street

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.



Strong Connectivity & Reachability
Directed reachability. Given a node  find all nodes reachable from .

• Can use both BFS and DFS.  Both visit exactly the set of nodes 
reachable from start node . 

• Strong connectivity.  Connected components in directed graphs 
defined based on mutual reachability. Two vertices  in a directed 
graph  are mutually reachable if there is a directed path from  to  
and from from  to .  A graph  is strongly connected if every pair 
of vertices are mutually reachable 

• The mutual reachability relation decomposes the graph into 
strongly-connected components 

• Strongly-connected components. For each , the set of 
vertices mutually reachable from , defines the strongly-connected 
component of  containing .
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Strongly Connected Components



Deciding Strongly Connected
First idea. How can we use BFS/DFS to determine strong 
connectivity? Recall: BFS/DFS on graph  starting at  will identifies 
all vertices reachable from  by directed paths 

• Pick a vertex . Check to see whether every other vertex is 
reachable from ;  

• Now see whether  is reachable from every other vertex 

Analysis

• First step: one call to BFS:  time 

• Second step:  calls to BFS:  time 

• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from v to u in  iff there is a directed 
path from u to v in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Performance) 

• :  time 

• Build :  time. [Do you believe this?] 

• :   time 

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

Testing Strong Connectivity

Kosaraju’s Algorithm



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from v to u in  iff there is a 
directed path from u to v in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Correctness) 

• Claim. If  is reachable from every node in  and every node 
in  is reachable from  then  must be strongly connected 

• Proof.  For any two nodes , they are mutually 
reachable through , that is,  and  

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E

Grev
G

𝖡𝖥𝖲(Grev, v) v Grev
v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

Question.  Given a directed graph , can you detect if it has a cycle 
in linear time? 

G

a DAG

v2 v3

v6 v5 v4

v7 v1



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

Question.  Given a directed graph , can you detect if it has a cycle 
in linear time? 

G

Cycle-Detection-Directed-DFS(u):   
   Set status of u to marked # discovered u
   for each edges (u, v):
      if v's status is unmarked:
         DFS(v)
      else if v is marked but not finished 
         report a cycle!
   mark u finished   
   # done exploring neighbors of u



Classifying Edges: DFS Directed
• Call a node  inactive, if  has not been called yet 

• Call a node  active, if  has been called but has 
not returned 

• Call a node  finished, if  has returned  
• We can keep track of when a node is activated and 

finished and use it to classify every edge  in the 
directed input graph 

u DFS(u)
u DFS(u)

u DFS(u)

u → v
G



Classifying Edges: DFS Directed
• Tree edge : the edge is in the DFS tree  

• (If  is activated just after  and finished before ) 

• The remaining edges fall into three categories: 

• Forward edge:  where  is a proper descendant of  in tree 

• (If  is activated after  and finished before ) 

• Back edge:  where  is an ancestor of  in tree 

•  is active when  begins 

• Cross edge:  where  and  are not related in tree (are not 
ancestors or descendants of one another) 

•  is finished when  begins

(u, v)
v u u

(u, v) v u
v u u

(u, v) v u
v DFS(u)

(u, v) u v

v DFS(u)



Parenthesis Structure: DFS Directed
• Let  denote the time when  is discovered,  denote the 

time when  is finished 

• Lemma.  Given a connected directed graph  and any 
DFS tree for  and vertices  

•  is a descendant of  in the DFS tree if and only if 
 

•  are unrelated (no ancestor, descendant relation in the tree) 
if and only if  and  are disjoint  

• Both of the following are not possible: 

•  

•

d[u] u f [u]
u

G = (V, E)
G u, v ∈ V

v u
d[u] < d[v] < f [v] < f [u]
u, v

[d(u), f(u)] [d(v), f(v)]

d[u] < d[v] < f [u] < f [v]
d[v] < d[u] < f [v] < f [u]

( ( ) )
( )( )

( () )



Parenthesis Structure: DFS Directed
• Claim.  Given a directed graph , it is acyclic if and only if any 

DFS tree of  has no back edges.  

• Proof ( ) : Suppose there are no back edges  

• Then all edges in  go from a vertex of higher finish time to a 
vertex of lower finish time (parenthesis structure) 

• Hence there can be no cycles (need a way to go back to an active 
node from an active node) 

• ( ) Assume  has no cycles, and suppose a DFS tree has a back 
edge , what is the contradiction? 

• There is a path  following tree edges and there is a edge 
from  to  (this is our cycle!). 

G
G

⇐
G

⇒ G
v → u

u ↝ v
v u ∎



Directed Acyclic Graphs (DAGs)
Analysis.  (Correctness) A directed (undirected) graph has a cycle 
iff and we can identify a back edge during a DFS traversal. 

The following code finds and reports back edges correctly. 

Cycle-Detection-Directed-DFS(u):   
   Set status of u to marked # discovered u
   for each edges (u, v):
      if v's status is unmarked:
         DFS(v)
      else if v is marked but not finished # active
         report a cycle!
   mark u finished   
   # done exploring neighbors of u



Topological Sorting
• Also called “topological ordering” 

• Idea: we know how to sort numbers, strings, etc., by 
putting them in a list so that if  is before  in the list, 
then  

• What if instead of a bunch of objects where any two can 
be compared, all we get is a partial ordering based on a 
DAG? 

• In other words: can we order the vertices such that  
comes before  for every edge  in the DAG?

a b
a ≤ b

u
v (u, v)



Topological Ordering
Problem.  Given a DAG  find a linear ordering of the 
vertices such that for any edge ,  appears before  in 
the ordering. 

Example.  Find an ordering in which courses can be taken that 
satisfies prerequisites. 

G = (V, E)
(v, w) ∈ E v w

Credits:  Bill Jannen, http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg

http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg
http://www.cs.williams.edu/~jannen/teaching/cs-prereqs.svg


Topological Ordering: Example

Taken from: https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf

https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf
https://courses.cs.washington.edu/courses/cse326/03wi/lectures/RaoLect20.pdf


Topological Ordering and DAGs
Lemma.  If  has a topological ordering, then  is a DAG. 

Proof.  [By contradiction] Suppose  has a cycle .  Let 
  be the topological ordering of 

• Let  be the lowest-indexed node in , and let  be the node just 
before ; thus  is an edge 

• By our choice of , we have . 

• On the other hand, since  is an edge and  is a 
topological order, we must have   

G G
G C

v1, v2, …, vn G

vi C vj
vi (vj, vi)

i i < j
(vj, vi) v1, v2, …, vn

j < i ( ⇒⇐ ) ∎

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C



• No directed cyclic graph can have a topological ordering 

• Does every DAG have a topological ordering? 

• Yes, can prove by induction (and construction) 

• How do we compute a topological ordering? 

• What property should the first node in any topological 
ordering satisfy? 

• Cannot have incoming edges, i.e., indegree = 0 

• Can we use this idea repeatedly?

Topological Ordering and DAGs



Finding a Topological Ordering
Claim. Every DAG has a vertex with in-degree zero. 

Proof.  [By contradiction] Suppose every vertex has an incoming 
edge.  Show that the graph must have a cycle. 

• Pick any vertex , there must be an edge .  

• Walk backwards following these incoming edges for each vertex  

• After  steps, we must have visited some vertex  twice 
(why?) 

• Nodes between two successive visits to  form a cycle   

 
Idea for finding topological ordering. Build order by repeatedly 
removing a vertex of in-degree 0 from .

v (u, v)

n + 1 w

w ( ⇒⇐ ) ∎

G



Topological Sorting Algorithm
TopologicalSorting(G) ◃ G = (V,E) is a DAG

   Initialize T[1..n]← 0 and i ← 0 
   while V is not empty do
       i←i+1
       Find a vertex v ∈ V with indeg(v) = 0 
       T[i] ← v
       Delete v (and its edges) from G
Analysis:   

• Correctness,  any ideas how to proceed? 

• Running time



Topological Sorting Algorithm
Analysis (Correctness). Proof by induction on number of vertices :  

• , no edges, the vertex itself forms topological ordering 

• Suppose our algorithm is correct for any graph with less than  
vertices 

• Consider an arbitrary DAG on  vertices 

• Must contain a vertex  with in-degree  (we proved it) 
• Deleting that vertex and all outgoing edges gives us a 

graph  with less than  vertices that is still a DAG 

• Can invoke induction hypothesis on  !  

• Let  be a topological ordering of , then 
 must be a topological ordering of  

n
n = 1

n

n
v 0

G′ n
G′ 

u1, u2, …, un−1 G′ 

v, u1, u2, …, un−1 G ∎



Topological Sorting Algorithm
Running time:

• (Initialize) In-degree array ID[1..n] of all vertices 

•  time 

• Find a vertex with in-degree zero 

•  time 

• Need to keep doing this till we run out of vertices!  

• Reduce in-degree of vertices adjacent to a vertex 

•  time for each :  time 

• Bottleneck step: finding vertices with in-degree zero

O(n + m)

O(n)

O(n2)

O(outdegree(v)) v O(n + m)

Can we do better?



Linear-Time Algorithm
• Need a faster way to find vertices with in-degree 0 instead of 

searching through entire in-degree array!

• Idea: Maintain a queue (or stack)  of in-degree 0 vertices 

• Update : When  is deleted, decrement ID[u] for each neighbor 
; if ID[u] = 0, add  to :  

•  time 

• Total time for previous step over all vertices:  

•
 time 

• Topological sorting takes  time and space!

S
S v

u u S
O(outdegree(v))

∑
v∈V

O(outdegree(v)) = O(n + m)

O(n + m)



Topological Ordering by DFS
• Call DFS and maintain finish times of all vertices 

• Finish : time  completed for all neighbors of  

• Return the list of vertices in reverse order of finish times  

• Vertex finished last will be first in topological ordering 

• New.  This generates the topological ordering all all nodes 
reachable from the root of the DFS 

• Claim. If a DAG  contains an edge , then the finish time of 
 must be larger than the finish time of . 

•  is finished only after all its neighbors are finished

(u) DFS(v) u

G u → v
u v

u



Traversals: Many More Applications
BFS and/or DFS can also be used to solve many other problems  

• Find a (directed) cycle in a (directed) graph (or a cycle 
containing a specified vertex ) 

• Find all cut vertices of a graph (A cut vertex is one whose 
removal increases the number of connected components) 

• Find all bridges of a graph (A bridge is an edge whose removal 
increases the number of connected components 

• Find all biconnected components of a graph (A biconnected 
component is a maximal subgraph having no cut vertices) 

All of this can be done in  space and time!

v

O( |V | + |E | )


