CS 256
Graph Traversals

Admin

Assignment 1 is out

e Start soon!

Finish up Assignment O

e Slack

In-person class hopefully starts Monday
* |'ll send an email over the weekend

Colloguium 3:15 PM today: what other students did in industry
over the summer

BFS Tree Structure

« Property. Let T'be a BFS tree of G = (V, E), and let (x, y) be an edge
of G. Then, the levels of x and y differ by at most 1.

BFS Tree Structure

« Property. Let T be a BFS tree rooted at r of a connected unweighted

graph, then the path from r to any node u € V in T is the shortest
path from r to u.

Spanning Trees

« Definition. A spanning tree of an undirected graph G is a
connected acyclic subgraph of G that contains every node of G.

The tree produced by the BFS algorithm (with ((u, parent(u)) as
edges) is a spanning tree of the component containing s.

« Connected component of s: all nodes reachable from s

In an undirected graph, a BFS spanning tree gives the shortest
path from s to every other vertex in its component

(We will revisit shortest path in a couple of lectures)

BFS trees in general are short and thick

BFS Application: Connectivity

 How to whether a graph is connected using traversals?

e |f the BFS spanning tree contains all nodes of the graph, then
the graph is connected

e Suppose the graph is not connected
« How can we find all connected components?

« Start BFS with any node s, when its done, all nodes in the BFS
tree of § are one component

* Pick another node that is not visited and repeat

 Number of trees in resulting forest is the number of components
of the graph

BFS Application: Bipartite Testing

Bipartite graph.

An undirected graph is bipartite if its nodes can be portioned into
two sets 8, S, such that all edges have endpoint in both sets

* Models many settings

* We already encountered
an application, which is...?

e Common in scheduling,
one set IS machine, other
set is jobs

a bipartite graph

BFS Application: Bipartite Testing

« Given agraph G = (V, E) verify if it is bipartite

* Hint: need to use traversals

e But first need to understand structure of bipartite grap
* Question: Can a bipartite graph contain an odd-lengt
 How do we prove this?

* |nfact, a graph is bipartite if and only if
It does not have an odd length cycle

* Let’s prove this!

NS

N cycle?

a bipartite graph

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges (in G) between vertices at same level

(d) Some BFS tree has no edges (in G) between 2 vertices at same
level

Note: Conditions (a) and (b) seem hard to check directly; but
conditions (c) and (d) allow an easy check!

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected
graph G :

a) G is bipartite

(a)
(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level
Proof. (a) = (b)

Vertices must alternate between V; and V.

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected
graph G :

a) G is bipartite

(a)
(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level
Proof. (b) = (c)

Contradiction: Such an edge implies an odd cycle

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected
graph G :

a) G is bipartite

(a)
(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level
Proof. (c) = (d)

If all BFS trees have a property then some do as well

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected
graph G :

a) G is bipartite

(a)
(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level
Proof. (d) = (a)

Edges must span consecutive levels: levels provide bipartition of G

Implications of the Theorem

How to check if a graph is bipartite?

 When we visit an edge during BFS, we know the level of
both of its endpoints

« So if both ends have the same level, then we can stop ! (G
IS not bipartite)

« If no such edge is found during traversal, G is bipartite
* Alternate levels give the bipartition
Running time”

« Still O(n + m)

* Certificate. If G is not bipartite this algorithm gives us a proof
of it (the odd cycle that is found)!

Depth-First Search and
Directed Graphs

Story So Far

 Breadth-first search
e Using breadth-first search for connectivity

e Using bread-first search for testing bipartiteness

BFS (G, s):
Put s 1n the queue Q
While Q 1s not empty
Extract v from Q
If v 1s unmarked
Mark v
For each edge (v, w):
Put w 1nto the queue Q

Generalizing BFS: Whatever-First

It we change how we store the explored vertices (the data structure we
use), it changes how we traverse

Whatever-First-Search (G, s):
Put s 1n the bag
While bag 1s not empty

We can optimize this algorithm by
Extract v from bag checking whether the node w is marked

If v is unmarked before we place it the bag.

Mark v
For each edge (v, w):
Put w into the bag

Depth-first search: when bag is a stack, not queue

Depth-First Search: Recursive

* Perhaps the most natural traversal algorithm
e Can be written recursively as well

* Both versions are the same; can actually see the “recursion stack”
In the iterative version

Recursive-DFS(u):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)

Depth-first Search Example

— 3

DFS Running Time

Inserts and extracts to a stack: O(1) time

For every node v, explore degree(v) edges

) Z degree(v) = 2m

Connected graphs have m > n — 1 and thus is O(m) and for
general graphs, it is O(n + m)

ITERATIVEDFS(s):
PusH(s)
while the stack is not empty
Vv <« PopP
if v is unmarked
mark v
for each edge vw
PusH(w)

Depth-First Search Tree

 DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):

Put (2, s) 1n the stack S

While S 1s not empty

Extract (p, v) from S
If v 1s unmarked
Mark v
parent(v) = p
For each edge (v, w):
Put (v, w) 1nto the stack S

* The spanning tree formed by parent edges in a DFS are usually
long and skinny

Depth-First Search Tree

Lemma. For every edge ¢ = (i, v) in G, one of u or v is an ancestor
of the other in T

Proof. Obvious if edge e isin T.

Suppose edge e is not in 1. Without loss of generality, suppose DFS

IS ca

e W

led on u before v.

nen the edge u, v is inspected v must have been already marked

visited (why?)

« Orelse (u,v) € T and we assumed otherwise

« Since (u,v) & T, v is not marked visited during the DFS call on u

« Must have been marked during a recursive call within DFS(u)

e Thusvisadescendantofu BN

Detecting Cycles

Question. Given an undirected connected graph G, how can you
detect (in linear time) that contains a cycle”

[Hint. Use DFS]

cycleC =1-2-4-5-3-1

Detecting Cycles

Question. Given an undirected connected graph G, how can you
detect (in linear time) that contains a cycle”

Idea. \When we encounter a back edge (1, v) during DFS, that edge

IS necessarily part of a cycle (cycle formed by following tree edges
from u to v and then the back edge from v to u).

Cycle-Detection-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)
else
found a back edge, report a cycle!

Directed Graphs

Notation. G = (V, E).

 Edges have “orientation”

« Edge (u,v) or sometimes denoted u — v, leaves node u and
enters node v

* Nodes have “in-degree” and “out-degree”

 No loops or multi-edges (why?)

Terminology of graphs extend
to directed graphs: directed
paths, cycles, etc.

Directed Graphs in Practice

Web graph:
Webpages are nodes, hyperlinks are edges

Orientation of edges is crucial
Search engines use hyperlink structure to rank web pages

w S ve o
>
§ %
Road network 7 %
& 5 2%
g 3 “x
Vestry s © § %/)@ C
Y St
Vest, 0'9')
stry St 2y
° . | s
-aight St =
. 4 Laight i 8
3 Laight gy O
£ Laight St K>
bert 5t = S] =y
2 = &
e Edge: one-way street : ;3
. 5 73 55 @ 0% y; 4
f & e York ¢ S 0@/ af”
& = 9 & S & .
& 5 7] & &)
[¢ S = §‘27 o &
Beach 5y I g}"
-
Encsson 5¢
45,
&, 8,
- 2 i
Mogre St i’: 80/7 ‘7@, 09’) /’c“'
[} (Y] o ,
& % o8
<
N Moore g st
7] N Moore St P4 a’c/s
s S Cana 3
3 N S N
- Franklin o S . - & =
3 nklin St T - ; 1__ ,§ g > kye % m
g Franklin g¢ m a5)5> \i’c e’S/
: Y A ®
a 5 s g s
Mson Sy (4] o D S
Ham Q L
'son St o, S % Q@
$rds > fg”! e S
r In
7
u,

©2008 Google - Map data ©20Q3\Sanborn, NAVTEQ™ - Terms of Use

Staple g

Strong Connectivity & Reachability

Directed reachability. Given a node s find all nodes reachable from s.

e Can use both BFS and DFS. Both visit exactly the set of nodes
reachable from start node s.

* Strong connectivity. Connected components in directed graphs
defined based on mutual reachability. Two vertices u, v in a directed
graph G are mutually reachable if there is a directed path from u to v
and from from v to u. A graph G is strongly connected if every pair
of vertices are mutually reachable

* The mutual reachabillity relation decomposes the graph into
strongly-connected components

Strongly-connected components. For each v € V| the set of
vertices mutually reachable from v, defines the strongly-connected
component of G containing v.

Strongly Connected Components

Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong
connectivity? Recall: BFS/DFS on graph G starting at v will identifies
all vertices reachable from v by directed paths

o Pick a vertex v. Check to see whether every other vertex is
reachable from v;

« Now see whether v is reachable from every other vertex
Analysis

o First step: one call to BFS: O(n + m) time

« Second step: n — 1 calls to BFS: O(n(n + m)) time

Can we do better?

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
e Build Gyey = (V, E(oy) Where (u,v) € Er iff (V,u) € E

« There is a directed path from v to u in G, iff there is a directed
path fromutovin G

o Call BFS(Gygy, v): Every vertex is reachable from v (in Gyg,)) if
and only if v is reachable from every vertex (in G).

Analysis (Performance)
« BFS(G,v): O(n + m) time
e Build Gygy: O(n + m) time. [Do you believe this?]
« BFS(Gioy,Vv): O(n + m)time

e OQOverall, linear time algorithm!

Kosaraju’s Algorithm

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
o Build Gyey, = (V, E(g\) Where (u,v) € Ep, iff (v,u) € E

« There is a directed path from v to u in Gy, iff there is a
directed path fromutovin G

« Call BFS(Gyg,, v): Every vertex is reachable from v (in Gygy) if
and only if v is reachable from every vertex (in G).

Analysis (Correctness)

Claim. If v is reachable from every node in G and every node
in G is reachable from v then G must be strongly connected

Proof. For any two nodes x,y € V, they are mutually
reachable through v, thatis, x ~ v ~yandy v ~ z I

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time”? Can we apply the same strategy (DFS) as we did for
undirected graphs?

/\/\

V5

\/\/

a DAG

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time”? Can we apply the same strategy (DFS) as we did for
undirected graphs?

/\/\

V5

\/\/

a DAG

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs®?

Cycle-Detection-Directed-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)
else 1f v 1s marked but not finished
report a cycle!
mark u finished

