CS 256 Graph Traversals

Admin

- Assignment 1 is out
- Start soon!
- Finish up Assignment 0
- Slack
- In-person class hopefully starts Monday
- I'll send an email over the weekend
- Colloquium 3:15 PM today: what other students did in industry over the summer

BFS Tree Structure

- Property. Let T be a BFS tree of $G=(V, E)$, and let (x, y) be an edge of G. Then, the levels of x and y differ by at most 1 .

(a)
(b)
(c)

BFS Tree Structure

- Property. Let T be a BFS tree rooted at r of a connected unweighted graph, then the path from r to any node $u \in V$ in T is the shortest path from r to u.

(b)
(c)

Spanning Trees

- Definition. A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G.
- The tree produced by the BFS algorithm (with ((u, parent $(u))$ as edges) is a spanning tree of the component containing s.
- Connected component of s : all nodes reachable from s
- In an undirected graph, a BFS spanning tree gives the shortest path from s to every other vertex in its component
- (We will revisit shortest path in a couple of lectures)
- BFS trees in general are short and thick

BFS Application: Connectivity

- How to whether a graph is connected using traversals?
- If the BFS spanning tree contains all nodes of the graph, then the graph is connected
- Suppose the graph is not connected
- How can we find all connected components?
- Start BFS with any node s, when its done, all nodes in the BFS tree of s are one component
- Pick another node that is not visited and repeat
- Number of trees in resulting forest is the number of components of the graph

BFS Application: Bipartite Testing

- Bipartite graph.
- An undirected graph is bipartite if its nodes can be portioned into two sets S_{1}, S_{2} such that all edges have endpoint in both sets
- Models many settings
- We already encountered an application, which is...?
- Common in scheduling, one set is machine, other set is jobs

a bipartite graph

BFS Application: Bipartite Testing

- Given a graph $G=(V, E)$ verify if it is bipartite
- Hint: need to use traversals
- But first need to understand structure of bipartite graphs
- Question: Can a bipartite graph contain an odd-length cycle?
- How do we prove this?
- In fact, a graph is bipartite if and only if it does not have an odd length cycle
- Let's prove this!

a bipartite graph

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected graph G :
(a) G is bipartite
(b) G has no odd-length cycle
(c) No BFS tree has edges (in G) between vertices at same level
(d) Some BFS tree has no edges (in G) between 2 vertices at same level

Note: Conditions (a) and (b) seem hard to check directly; but conditions (c) and (d) allow an easy check!

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected graph G :
(a) G is bipartite
(b) G has no odd-length cycle
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (a) \Rightarrow (b)
Vertices must alternate between V_{1} and V_{2}.

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected graph G :
(a) G is bipartite
(b) G has no odd-length cycle
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (b) \Rightarrow (c)
Contradiction: Such an edge implies an odd cycle

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected graph G :
(a) G is bipartite
(b) G has no odd-length cycle
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (c) $\Rightarrow(\mathrm{d})$
If all BFS trees have a property then some do as well

Bipartite Testing: Using BFS

Theorem. The following statements are equivalent for a connected graph G :
(a) G is bipartite
(b) G has no odd-length cycle
(c) No BFS tree has edges between vertices at same level
(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (d) \Rightarrow (a)
Edges must span consecutive levels: levels provide bipartition of G

Implications of the Theorem

How to check if a graph is bipartite?

- When we visit an edge during BFS, we know the level of both of its endpoints
- So if both ends have the same level, then we can stop ! (G is not bipartite)
- If no such edge is found during traversal, G is bipartite
- Alternate levels give the bipartition

Running time?

- Still $O(n+m)$
- Certificate. If G is not bipartite this algorithm gives us a proof of it (the odd cycle that is found)!

Depth-First Search and Directed Graphs

Story So Far

- Breadth-first search
- Using breadth-first search for connectivity
- Using bread-first search for testing bipartiteness BFS (G, s):
Put s in the queue Q While Q is not empty

Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
Put w into the queue Q

Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the data structure we use), it changes how we traverse

Whatever-First-Search (G, s):
Put s in the bag
While bag is not empty
Extract v from bag
If v is unmarked

We can optimize this algorithm by checking whether the node w is marked before we place it the bag. Mark v

For each edge (v, w):
Put w into the bag

Depth-first search: when bag is a stack, not queue

Depth-First Search: Recursive

- Perhaps the most natural traversal algorithm
- Can be written recursively as well
- Both versions are the same; can actually see the "recursion stack" in the iterative version

```
Recursive-DFS(u):
    Set status of u to marked # discovered u
    for each edges (u, v):
        if v's status is unmarked:
        DFS(v)
    # done exploring neighbors of u
```


Depth-first Search Example

DFS Running Time

- Inserts and extracts to a stack: $O(1)$ time
- For every node v, explore degree(v) edges

$$
\text { - } \sum_{v} \operatorname{degree}(v)=2 m
$$

- Connected graphs have $m \geq n-1$ and thus is $O(m)$ and for general graphs, it is $O(n+m)$

```
ITERATIVEDFS(s):
    Push(s)
    while the stack is not empty
        v\leftarrowPOP
        if v}\mathrm{ is unmarked
        mark v
        for each edge vw
                        Push(w)
```


Depth-First Search Tree

- DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):
Put ($\varnothing, 5$) in the stack S
While S is not empty
Extract (p, v) from S
If v is unmarked
Mark v parent(v) $=p$ For each edge (v, w):

Put (v, w) into the stack S

- The spanning tree formed by parent edges in a DFS are usually long and skinny

Depth-First Search Tree

Lemma. For every edge $e=(u, v)$ in G, one of u or v is an ancestor of the other in T.

Proof. Obvious if edge e is in T.
Suppose edge e is not in T. Without loss of generality, suppose DFS is called on u before v.

- When the edge u, v is inspected v must have been already marked visited (why?)
- Or else $(u, v) \in T$ and we assumed otherwise
- Since $(u, v) \notin T, v$ is not marked visited during the DFS call on u
- Must have been marked during a recursive call within DFS(u)
- Thus v is a descendant of u ■

Detecting Cycles

Question. Given an undirected connected graph G, how can you detect (in linear time) that contains a cycle?
[Hint. Use DFS]

cycle $C=1-2-4-5-3-1$

Detecting Cycles

Question. Given an undirected connected graph G, how can you detect (in linear time) that contains a cycle?

Idea. When we encounter a back edge (u, v) during DFS, that edge is necessarily part of a cycle (cycle formed by following tree edges from u to v and then the back edge from v to u).

```
Cycle-Detection-DFS(u):
    Set status of u to marked # discovered u
    for each edges (u, v):
            if v's status is unmarked:
            DFS(v)
            else # found an edge to a marked node
        found a back edge, report a cycle!
    # done exploring neighbors of u
```


Directed Graphs

Notation. $G=(V, E)$.

- Edges have "orientation"
- Edge (u, v) or sometimes denoted $u \rightarrow v$, leaves node u and enters node v
- Nodes have "in-degree" and "out-degree"
- No loops or multi-edges (why?)

Terminology of graphs extend to directed graphs: directed paths, cycles, etc.

Directed Graphs in Practice

Web graph:

- Webpages are nodes, hyperlinks are edges
- Orientation of edges is crucial
- Search engines use hyperlink structure to rank web pages

Road network

- Road: nodes
- Edge: one-way street

Strong Connectivity \& Reachability

Directed reachability. Given a node s find all nodes reachable from s.

- Can use both BFS and DFS. Both visit exactly the set of nodes reachable from start node s.
- Strong connectivity. Connected components in directed graphs defined based on mutual reachability. Two vertices u, v in a directed graph G are mutually reachable if there is a directed path from u to v and from from v to u. A graph G is strongly connected if every pair of vertices are mutually reachable
- The mutual reachability relation decomposes the graph into strongly-connected components
- Strongly-connected components. For each $v \in V$, the set of vertices mutually reachable from v, defines the strongly-connected component of G containing v.

Strongly Connected Components

Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong connectivity? Recall: BFS/DFS on graph G starting at v will identifies all vertices reachable from v by directed paths

- Pick a vertex v. Check to see whether every other vertex is reachable from v;
- Now see whether v is reachable from every other vertex

Analysis

- First step: one call to BFS: $O(n+m)$ time
- Second step: $n-1$ calls to BFS: $O(n(n+m))$ time
- Can we do better?

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\mathrm{rev}}=\left(V, E_{\mathrm{rev}}\right)$ where $(u, v) \in E_{\mathrm{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{r e v}$ iff there is a directed path from u to vin G
- Call $\operatorname{BFS}\left(G_{\mathrm{rev}}, v\right)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Analysis (Performance)

- $\operatorname{BFS}(G, v): O(n+m)$ time
- Build $G_{\text {rev }}: O(n+m)$ time. [Do you believe this?]
- $\operatorname{BFS}\left(G_{\mathrm{rev}}, v\right): O(n+m)$ time
- Overall, linear time algorithm!

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\mathrm{rev}}=\left(V, E_{\mathrm{rev}}\right)$ where $(u, v) \in E_{\mathrm{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{r e v}$ iff there is a directed path from u to vin G
- Call $\operatorname{BFS}\left(G_{\mathrm{rev}}, v\right)$: Every vertex is reachable from v (in $G_{\text {rev }}$) if and only if v is reachable from every vertex (in G).

Analysis (Correctness)

- Claim. If v is reachable from every node in G and every node in G is reachable from v then G must be strongly connected
- Proof. For any two nodes $x, y \in V$, they are mutually reachable through v, that is, $x \leadsto v \leadsto y$ and $y \leadsto v \leadsto z \square$

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

a DAG

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

a DAG

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

Cycle-Detection-Directed-DFS(u):
Set status of u to marked \# discovered u
for each edges (u, v):
if v's status is unmarked: DFS (v)
else if v is marked but not finished report a cycle!
mark u finished
\# done exploring neighbors of u

