
CS 256
Graph Traversals

Admin
• Assignment 1 is out

• Start soon!

• Finish up Assignment 0

• Slack

• In-person class hopefully starts Monday

• I’ll send an email over the weekend

• Colloquium 3:15 PM today: what other students did in industry
over the summer

BFS Tree Structure
• Property. Let be a BFS tree of , and let be an edge

of . Then, the levels of and differ by at most 1.
T G = (V, E) (x, y)

G x y

L0

L1

L2

L3

BFS Tree Structure
• Property. Let be a BFS tree rooted at of a connected unweighted

graph, then the path from to any node in is the shortest
path from to .

T r
r u ∈ V T

r u

L0

L1

L2

L3

Spanning Trees
• Definition. A spanning tree of an undirected graph is a

connected acyclic subgraph of that contains every node of .

• The tree produced by the BFS algorithm (with (as
edges) is a spanning tree of the component containing .

• Connected component of : all nodes reachable from

• In an undirected graph, a BFS spanning tree gives the shortest
path from to every other vertex in its component

• (We will revisit shortest path in a couple of lectures)

• BFS trees in general are short and thick

G
G G

(u, parent(u))
s

s s

s

BFS Application: Connectivity
• How to whether a graph is connected using traversals?

• If the BFS spanning tree contains all nodes of the graph, then
the graph is connected

• Suppose the graph is not connected

• How can we find all connected components?

• Start BFS with any node , when its done, all nodes in the BFS
tree of are one component

• Pick another node that is not visited and repeat

• Number of trees in resulting forest is the number of components
of the graph

s
s

BFS Application: Bipartite Testing
• Bipartite graph.

• An undirected graph is bipartite if its nodes can be portioned into
two sets such that all edges have endpoint in both sets

• Models many settings

• We already encountered
an application, which is…?

• Common in scheduling,
one set is machine, other
set is jobs

S1, S2

a bipartite graph

• Given a graph verify if it is bipartite

• Hint: need to use traversals

• But first need to understand structure of bipartite graphs

• Question: Can a bipartite graph contain an odd-length cycle?

• How do we prove this?

• In fact, a graph is bipartite if and only if
it does not have an odd length cycle

• Let’s prove this!

G = (V, E)

a bipartite graph

BFS Application: Bipartite Testing

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges (in G) between vertices at same level

(d) Some BFS tree has no edges (in G) between 2 vertices at same
level

Note: Conditions (a) and (b) seem hard to check directly; but
conditions (c) and (d) allow an easy check!

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (a) ⇒ (b)

Vertices must alternate between and .V1 V2

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (b) ⇒ (c)

Contradiction: Such an edge implies an odd cycle

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (c) ⇒ (d)

If all BFS trees have a property then some do as well

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (d) ⇒ (a)

Edges must span consecutive levels: levels provide bipartition of G

Implications of the Theorem
How to check if a graph is bipartite?

• When we visit an edge during BFS, we know the level of
both of its endpoints

• So if both ends have the same level, then we can stop ! (
is not bipartite)

• If no such edge is found during traversal, is bipartite

• Alternate levels give the bipartition

Running time?

• Still

• Certificate. If G is not bipartite this algorithm gives us a proof
of it (the odd cycle that is found)!

G

G

O(n + m)

Depth-First Search and
Directed Graphs

Story So Far
• Breadth-first search

• Using breadth-first search for connectivity

• Using bread-first search for testing bipartiteness

BFS (G, s):
Put s in the queue Q
While Q is not empty

Extract v from Q
If v is unmarked

Mark v
For each edge (v, w):
 Put w into the queue Q

Generalizing BFS: Whatever-First
If we change how we store the explored vertices (the data structure we
use), it changes how we traverse

Whatever-First-Search (G, s):
Put s in the bag
While bag is not empty

Extract v from bag
If v is unmarked

Mark v
For each edge (v, w):
 Put w into the bag

Depth-first search: when bag is a stack, not queue

We can optimize this algorithm by
checking whether the node is marked

before we place it the bag.
w

Depth-First Search: Recursive
• Perhaps the most natural traversal algorithm

• Can be written recursively as well

• Both versions are the same; can actually see the “recursion stack”
in the iterative version

Recursive-DFS(u):
 Set status of u to marked # discovered u
 for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
 # done exploring neighbors of u

Depth-first Search Example

1

2 3

5

6
7

4

DFS Running Time
• Inserts and extracts to a stack: time

• For every node , explore edges

•

• Connected graphs have and thus is and for
general graphs, it is

O(1)
v degree(v)

∑
v

degree(v) = 2m

m ≥ n − 1 O(m)
O(n + m)

• DFS returns a spanning tree, similar to BFS

• The spanning tree formed by parent edges in a DFS are usually
long and skinny

DFS-Tree(G, s):
Put (∅, s) in the stack S
While S is not empty

Extract (p, v) from S
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
 Put (v, w) into the stack S

Depth-First Search Tree

Depth-First Search Tree
Lemma. For every edge in , one of or is an ancestor
of the other in .

Proof. Obvious if edge is in .

Suppose edge is not in . Without loss of generality, suppose DFS
is called on before .

• When the edge is inspected must have been already marked
visited (why?)

• Or else and we assumed otherwise

• Since , is not marked visited during the DFS call on

• Must have been marked during a recursive call within DFS()

• Thus is a descendant of

e = (u, v) G u v
T

e T
e T

u v
u, v v

(u, v) ∈ T
(u, v) ∉ T v u

u
v u ∎

Detecting Cycles
Question. Given an undirected connected graph , how can you
detect (in linear time) that contains a cycle?

[Hint. Use DFS]

G

cycle C = 1-2-4-5-3-1

Detecting Cycles
Question. Given an undirected connected graph , how can you
detect (in linear time) that contains a cycle?

Idea. When we encounter a back edge during DFS, that edge
is necessarily part of a cycle (cycle formed by following tree edges
from to and then the back edge from to).

G

(u, v)

u v v u

Cycle-Detection-DFS(u):
 Set status of u to marked # discovered u
 for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
 else # found an edge to a marked node
 found a back edge, report a cycle!
 # done exploring neighbors of u

Directed Graphs
Notation. .

• Edges have “orientation”

• Edge or sometimes denoted , leaves node and
enters node

• Nodes have “in-degree” and “out-degree”

• No loops or multi-edges (why?)

Terminology of graphs extend
to directed graphs: directed
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v

Directed Graphs in Practice
Web graph:

• Webpages are nodes, hyperlinks are edges

• Orientation of edges is crucial

• Search engines use hyperlink structure to rank web pages

Road network

• Road: nodes

• Edge: one-way street

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

Strong Connectivity & Reachability
Directed reachability. Given a node find all nodes reachable from .

• Can use both BFS and DFS. Both visit exactly the set of nodes
reachable from start node .

• Strong connectivity. Connected components in directed graphs
defined based on mutual reachability. Two vertices in a directed
graph are mutually reachable if there is a directed path from to
and from from to . A graph is strongly connected if every pair
of vertices are mutually reachable

• The mutual reachability relation decomposes the graph into
strongly-connected components

• Strongly-connected components. For each , the set of
vertices mutually reachable from , defines the strongly-connected
component of containing .

s s

s

u, v
G u v

v u G

v ∈ V
v

G v

Strongly Connected Components

Deciding Strongly Connected
First idea. How can we use BFS/DFS to determine strong
connectivity? Recall: BFS/DFS on graph starting at will identifies
all vertices reachable from by directed paths

• Pick a vertex . Check to see whether every other vertex is
reachable from ;

• Now see whether is reachable from every other vertex

Analysis

• First step: one call to BFS: time

• Second step: calls to BFS: time

• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a directed
path from u to v in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Performance)

• : time

• Build : time. [Do you believe this?]

• : time

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

Testing Strong Connectivity

Kosaraju’s Algorithm

Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a
directed path from u to v in

• Call : Every vertex is reachable from (in) if
and only if is reachable from every vertex (in).

Analysis (Correctness)

• Claim. If is reachable from every node in and every node
in is reachable from then must be strongly connected

• Proof. For any two nodes , they are mutually
reachable through , that is, and

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E

Grev
G

𝖡𝖥𝖲(Grev, v) v Grev
v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph , can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs?

G

a DAG

v2 v3

v6 v5 v4

v7 v1

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph , can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs?

G

a DAG

v2 v3

v6 v5 v4

v7 v1

Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph , can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs?

G

Cycle-Detection-Directed-DFS(u):
 Set status of u to marked # discovered u
 for each edges (u, v):
 if v's status is unmarked:
 DFS(v)
 else if v is marked but not finished
 report a cycle!
 mark u finished
 # done exploring neighbors of u

