
CS 256
Graph Traversals



Admin
• Assignment 1 is out 

• Start soon! 

• Finish up Assignment 0 

• Slack 

• In-person class hopefully starts Monday 

• I’ll send an email over the weekend 

• Colloquium 3:15 PM today: what other students did in industry 
over the summer



BFS Tree Structure
• Property. Let  be a BFS tree of , and let  be an edge 

of . Then, the levels of  and  differ by at most 1.
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BFS Tree Structure
• Property. Let  be a BFS tree rooted at  of a connected unweighted 

graph, then the path from  to any node  in  is the shortest 
path from  to .
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Spanning Trees
• Definition. A spanning tree of an undirected graph  is a 

connected acyclic subgraph of  that contains every node of . 

• The tree produced by the BFS algorithm (with (  as 
edges) is a spanning tree of the component containing .  

• Connected component of : all nodes reachable from  

• In an undirected graph, a BFS spanning tree gives the shortest 
path from  to every other vertex in its component  

• (We will revisit shortest path in a couple of lectures) 

• BFS trees in general are short and thick
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BFS Application: Connectivity
• How to whether a graph is connected using traversals? 

• If the BFS spanning tree contains all nodes of the graph, then 
the graph is connected 

• Suppose the graph is not connected 

• How can we find all connected components? 

• Start BFS with any node , when its done, all nodes in the BFS 
tree of  are one component 

• Pick another node that is not visited and repeat  

• Number of trees in resulting forest is the number of components 
of the graph
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BFS Application: Bipartite Testing
• Bipartite graph.  

• An undirected graph is bipartite if its nodes can be portioned into 
two sets  such that all edges have endpoint in both sets 

• Models many settings 

• We already encountered 
an application, which is…? 

• Common in scheduling, 
one set is machine, other 
set is jobs

S1, S2

a bipartite graph



• Given a graph  verify if it is bipartite  

• Hint:  need to use traversals  

• But first need to understand structure of bipartite graphs 

• Question: Can a bipartite graph contain an odd-length cycle? 

• How do we prove this? 

• In fact, a graph is bipartite if and only if 
it does not have an odd length cycle 

• Let’s prove this!

G = (V, E)

a bipartite graph

BFS Application: Bipartite Testing



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges (in G) between vertices at same level  

(d) Some BFS tree has no edges (in G) between 2 vertices at same 
level  

Note: Conditions (a) and (b) seem hard to check directly; but 
conditions (c) and (d) allow an easy check!



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (a) ⇒ (b)  

Vertices must alternate between  and .V1 V2



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (b) ⇒ (c)  

Contradiction: Such an edge implies an odd cycle



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (c) ⇒ (d)  

If all BFS trees have a property then some do as well



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (d) ⇒ (a)  

Edges must span consecutive levels: levels provide bipartition of G



Implications of the Theorem
How to check if a graph is bipartite?  

• When we visit an edge during BFS, we know the level of 
both of its endpoints 

• So if both ends have the same level, then we can stop ! (  
is not bipartite) 

• If no such edge is found during traversal,  is bipartite  

• Alternate levels give the bipartition 

Running time? 

• Still  

• Certificate. If G is not bipartite this algorithm gives us a proof 
of it (the odd cycle that is found)!

G

G

O(n + m)



Depth-First Search and 
Directed Graphs



Story So Far
• Breadth-first search 

• Using breadth-first search for connectivity 

• Using bread-first search for testing bipartiteness 

BFS (G, s):
Put s in the queue Q
While Q is not empty

Extract v from Q
If v is unmarked

Mark v
For each edge (v, w):
  Put w into the queue Q



Generalizing BFS: Whatever-First
If we change how we store the explored vertices (the data structure we 
use), it changes how we traverse 

Whatever-First-Search (G, s):
Put s in the bag 
While bag is not empty

Extract v from bag
If v is unmarked

Mark v
For each edge (v, w):
  Put w into the bag 

Depth-first search: when bag is a stack, not queue

We can optimize this algorithm by 
checking whether the node  is marked 

before we place it the bag.
w



Depth-First Search: Recursive
• Perhaps the most natural traversal algorithm 

• Can be written recursively as well  

• Both versions are the same; can actually see the “recursion stack” 
in the iterative version

Recursive-DFS(u):   
   Set status of u to marked # discovered u
   for each edges (u, v):
      if v's status is unmarked:
         DFS(v)
   # done exploring neighbors of u



Depth-first Search Example
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DFS Running Time
• Inserts and extracts to a stack:  time  

• For every node , explore  edges 

•
 

• Connected graphs have  and thus is  and for 
general graphs, it is 

O(1)
v degree(v)

∑
v

degree(v) = 2m

m ≥ n − 1 O(m)
O(n + m)



• DFS returns a spanning tree, similar to BFS 

• The spanning tree formed by parent edges in a DFS are usually 
long and skinny

DFS-Tree(G, s):
Put (∅, s) in the stack S
While S is not empty

Extract (p, v) from S
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):
  Put (v, w) into the stack S

Depth-First Search Tree



Depth-First Search Tree
Lemma. For every edge  in , one of  or  is an ancestor 
of the other in . 

Proof.  Obvious if edge  is in .   

Suppose edge  is not in .  Without loss of generality, suppose DFS 
is called on  before .  

• When the edge  is inspected   must have been already marked 
visited (why?) 

• Or else  and we assumed otherwise 

• Since ,  is not marked visited during the DFS call on  

• Must have been marked during a recursive call within DFS( ) 

• Thus  is a descendant of    

e = (u, v) G u v
T

e T
e T

u v
u, v v

(u, v) ∈ T
(u, v) ∉ T v u

u
v u ∎



Detecting Cycles
Question.  Given an undirected connected graph , how can you 
detect (in linear time) that contains a cycle? 

[Hint.  Use DFS]

G

cycle C = 1-2-4-5-3-1



Detecting Cycles
Question.  Given an undirected connected graph , how can you 
detect (in linear time) that contains a cycle? 

Idea.  When we encounter a back edge  during DFS, that edge 
is necessarily part of a cycle (cycle formed by following tree edges 
from  to  and then the back edge from  to ).

G

(u, v)

u v v u

Cycle-Detection-DFS(u):   
   Set status of u to marked # discovered u
   for each edges (u, v):
      if v's status is unmarked:
         DFS(v)
      else    # found an edge to a marked node
         found a back edge, report a cycle!
   # done exploring neighbors of u



Directed Graphs
Notation. . 

• Edges have “orientation” 

• Edge  or sometimes denoted , leaves node  and 
enters node  

• Nodes have “in-degree” and “out-degree” 

• No loops or multi-edges (why?) 

Terminology of graphs extend 
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u → v u
v



Directed Graphs in Practice
Web graph:  

• Webpages are nodes, hyperlinks are edges 

• Orientation of edges is crucial 

• Search engines use hyperlink structure to rank web pages 

Road network 

• Road: nodes 

• Edge: one-way street

Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.



Strong Connectivity & Reachability
Directed reachability. Given a node  find all nodes reachable from .

• Can use both BFS and DFS.  Both visit exactly the set of nodes 
reachable from start node . 

• Strong connectivity.  Connected components in directed graphs 
defined based on mutual reachability. Two vertices  in a directed 
graph  are mutually reachable if there is a directed path from  to  
and from from  to .  A graph  is strongly connected if every pair 
of vertices are mutually reachable 

• The mutual reachability relation decomposes the graph into 
strongly-connected components 

• Strongly-connected components. For each , the set of 
vertices mutually reachable from , defines the strongly-connected 
component of  containing .

s s
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Strongly Connected Components



Deciding Strongly Connected
First idea. How can we use BFS/DFS to determine strong 
connectivity? Recall: BFS/DFS on graph  starting at  will identifies 
all vertices reachable from  by directed paths 

• Pick a vertex . Check to see whether every other vertex is 
reachable from ;  

• Now see whether  is reachable from every other vertex 

Analysis

• First step: one call to BFS:  time 

• Second step:  calls to BFS:  time 

• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from v to u in  iff there is a directed 
path from u to v in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Performance) 

• :  time 

• Build :  time. [Do you believe this?] 

• :   time 

• Overall, linear time algorithm!

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v Grev

v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

Testing Strong Connectivity

Kosaraju’s Algorithm



Idea.  Flip the edges of G and do a BFS on the new graph 

• Build  where    

• There is a directed path from v to u in  iff there is a 
directed path from u to v in  

• Call : Every vertex is reachable from  (in ) if 
and only if  is reachable from every vertex (in ). 

Analysis (Correctness) 

• Claim. If  is reachable from every node in  and every node 
in  is reachable from  then  must be strongly connected 

• Proof.  For any two nodes , they are mutually 
reachable through , that is,  and  

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E

Grev
G

𝖡𝖥𝖲(Grev, v) v Grev
v G

v G
G v G

x, y ∈ V
v x ↝ v ↝ y y ↝ v ↝ z ∎

Testing Strong Connectivity



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

Question.  Given a directed graph , can you detect if it has a cycle 
in linear time?  Can we apply the same strategy (DFS) as we did for 
undirected graphs?

G

a DAG

v2 v3

v6 v5 v4

v7 v1



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

Question.  Given a directed graph , can you detect if it has a cycle 
in linear time?  Can we apply the same strategy (DFS) as we did for 
undirected graphs?

G

a DAG

v2 v3

v6 v5 v4

v7 v1



Directed Acyclic Graphs (DAGs)
Definition. A directed graph is acyclic (or a DAG) if it contains no 
(directed) cycles. 

Question.  Given a directed graph , can you detect if it has a cycle 
in linear time?  Can we apply the same strategy (DFS) as we did for 
undirected graphs?

G

Cycle-Detection-Directed-DFS(u):   
   Set status of u to marked # discovered u
   for each edges (u, v):
      if v's status is unmarked:
         DFS(v)
      else if v is marked but not finished 
         report a cycle!
   mark u finished   
   # done exploring neighbors of u


