
CS 256

Admin
• Videos posted on website

• Assignment 0 delayed to Saturday (Assignment 1
still released tomorrow, due Thursday)

• Zoom link on Glow and slack (no longer emailed)

• TA Office hours coming soon

• I’ll stay after class for questions

Quick Latex Note

• The final X is a chi (the Greek
letter), not an X

• So it’s pronounced lay-tech

• (or lah-tech)

• But not “latex”

Input. A set of hospitals, a set of students and their
preferences (each hospital ranks each student, each
students ranks each hospital)

H n S n

Matching Med-Students to Hospitals

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Definition. A matching is a set of ordered pairs where
 and such that

• Each hospital is in at most one pair in

• Each student is in at most one pair in

A matching is perfect if each hospital is matched to exactly one
student and vice versa (i.e.,)

M (h, s)
h ∈ H s ∈ S

h M
s M

M
|M | = |H | = |S |

Perfect Matchings

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Definition. A perfect matching is unstable if there exists an
unstable pair , that is,

• prefers to its current match in

• prefers to its current match in

Can you point out an unstable pair in this matching?

M
(h, s) ∈ H × S

h s M
s h M

Proceed greedily in rounds until matched. In each round,
• Each hospital makes offer to its top available candidate
• Each student accepts its top offer (irrecoverable contract)

and rejects others

What goes wrong?

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Take a Step Back

• Imagine you are one of these students
• Why is it a bad idea to accept the best offer you

get in the first round?
• You might get a better offer later!

• Can we come up with an example where this
happens, causing an unstable matching?

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris → → →

False Starts

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH
• (Round 2) Only Beth and MA left, and must match

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH
• (Round 2) Only Beth and MA left, and must match

Is this a stable matching?

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed greedily in rounds until matched.

• (Round 1) MA Aamir, NH Aamir, OH Chris
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH
• (Round 2) Only Beth and MA left, and must match

Is this a stable matching?
• Unstable pair: (MA, Chris). What could have avoided it?

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

What Should Students Do?

• Don’t accept immediately (of course)
• What if they can have a preliminary accept?

• “I’m interested, but I also want to wait to see if I
get a better offer”

• That seems to solve the problem we mentioned,
but does it always give a stable matching?

Proceed in rounds until all hospitals matched.* In each round,
• Each free hospital offers to its top choice among candidates it

hasn’t offered yet
• Each free student retains but defers accepting top offer, rejects

others
• If a student receives a better offer than currently retained, they

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed in rounds until all hospitals matched.* In each round,
• Each free hospital offers to its top choice among candidates it

hasn’t offered yet
• Each free student retains but defers accepting top offer, rejects

others
• If a student receives a better offer than currently retained, they

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed in rounds until all hospitals matched.* In each round,
• Each free hospital offers to its top choice among candidates it

hasn’t offered yet
• Each free student retains but defers accepting top offer, rejects

others
• If a student receives a better offer than currently retained, they

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed in rounds until all hospitals matched.* In each round,
• Each free hospital offers to its top choice among candidates it

hasn’t offered yet
• Each free student retains but defers accepting top offer, rejects

others
• If a student receives a better offer than currently retained, they

reject current and retain new offer (trade up)

Gale-Shapely Algorithm

Analyzing Gale-Shapely
Questions to ask

Efficiency: 

• How long does it take to produce a matching?
• How can we efficiently implement each step?

Correctness:
• Does it match everyone? (produce a perfect matching)
• Does it produce a stable matching?

Analyzing the Algorithm: Performance
• Each hospital makes an offer to each student at most once, so the

algorithm makes at most iterations

• What do we do in each iteration?

• Select a free hospital

• Find top ranked not yet offered a post by

• Find 's ranking of a given hospital

• Add to & delete from set of matched pairs

• (possibly) Add a hospital back into the free list

• How long does it take?

• Depends on how we implement each of these!

O(n2)

h
s h

s

Analyzing the Algorithm: Performance II
• Input representation. Index students and hospitals

• Each student provides a sorted list of hospitals (most to least
preferred) and each hospital provides a sorted list of students

• Of students not yet offered a post by , find most preferred:

• Does prefer to the current hospital ?

• For each , create inverse of preference list of hospitals
(Identify efficient data structures for operations)

1,…, n

h O(1)
s h h′

s

Student preference list indexed by rank

1st 2nd 3rd 4th 5th 6th 7th 8th

8 3 7 1 4 5 6 2
pref[]

1 2 3 4 5 6 7 8
4th 8th 2nd 5th 6th 7th 3rd 1st

rank[]

Inverse pref-list indexed by hospital #

student prefers hospital 4 to 6 since rank[4] < rank[6]

for i = 1 to n

 rank[pref[i]] = i

Analyzing the Algorithm: Performance III

Analyzing running time:

• Creating the inverse-list for each student (preprocessing):

• Once created, time to accept/reject proposal by student

• Maintain free hospitals: Queue: for get() and put()

• Add to & delete from set of matched pairs:

• Array, Matched(s) = h currently matched to (or ‘free’) :
Creation time (preprocessing) ; update time

Each iteration thus takes time

Overall, time preprocessing + time in iterations:

• Linear time? Yes! Here input size is size, linear in input size

O(n2)
O(1)

O(1)

s
O(n) O(1)

O(1)

O(n2) O(n2) O(n2)

O(n2)

Analyzing the Algorithm: Correctness
Does it match everyone? (Perfect matching)
• Once a student receives an offer, she has at least a tentative match

for the rest of time.
• Equivalently, if any student is unmatched, then no hospital has

offered them which implies that the hospitals have not exhausted
their preference lists.

• When the algorithm terminates, everyone is matched (i.e., it
produces a perfect matching).

Does it produce a stable matching?

• Key idea: students always ‘trade up’

• breaks match with in favor of only if s prefers to s h h′ h′ h

Analyzing the Algorithm: Correctness II

Lemma. The Gale Shapely Algorithm produces a stable
matching.

Proof. (By contradiction) Let be the resulting matching.
Suppose such that and

• prefers over and prefers over

Thus must have offered to before

• Either broke the match to at some point, or
already had a match that s preferred over

But students always trade up, so s must prefer final match
over , which they prefer over .

M
∃(h, s) (h, s′), (h′ , s) ∈ M

h s s′ s h h′

h s s′

s h s
h′ ′ h

h′

h′ ′ h (⇒⇐) ∎

Historical Perspective
• In 1952, the National Resident Matching Program (NRMP)

adopted the “Boston Pool” algorithm named after regional
clearinghouses in Boston

• In 1962, David Gale and Lloyd Shapley formally analyzed
a generalization of the Boston Pool algorithm

• Shapley & Roth (who extended his work) were awarded
the 2012 Nobel Prize in Economics (Gale did not share
the prize, because he died in 2008.)

• Used to be called the stable marriage problem/algorithm
• Read https://www.nobelprize.org/uploads/2018/06/

popular-economicsciences2012-1.pdf

https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf

Acknowledgements
• Slides adapted from Shikha Singh’s slides, in turn

adapted from Kleinberg Tardos Slides by Kevin Wayne
(https://www.cs.princeton.edu/~wayne/kleinberg-
tardos/pdf/04GreedyAlgorithmsI.pdf)

• Some material taken from Jeff Erickson’s Algorithms
Book (http://jeffe.cs.illinois.edu/teaching/algorithms/
book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

Graphs and Traversals

Review: Undirected Graphs
An undirected graph

• is the set of nodes, is the set of edges

• Captures pairwise relations between objects

• Graph size parameters:

Sometimes we consider weighted graphs, where each edge has a
weight

G = (V, E)
V E

n = |V | , m = |E |

e
w(e)

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 }

m = 11, n = 8

Representing Graphs (Review)
Adjacency matrix.

• matrix where if

• Space

• Checking if takes _____ time?

n-by-n A[u][v] = 1 (u, v) ∈ E

O(n2)
(u, v) ∈ E

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Representing Graphs (Review)
Adjacency matrix.

• matrix where if

• Space

• Checking if takes time

n-by-n A[u][v] = 1 (u, v) ∈ E

O(n2)
(u, v) ∈ E O(1)

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Representing Graphs (Review)
Adjacency list.

• Array of lists, where each list represents the neighbors of a
given node

• Space

• Checking if takes _____ time?

O(n + m)
(u, v) ∈ E

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

3 7

Representing Graphs (Review)

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

3 7

Adjacency list.

• Array of lists, where each list represents the neighbors of a
given node

• Space

• Checking if takes time

O(n + m)
(u, v) ∈ E O(degree(u))

Graph Terminology
• A path in an undirected graph is a sequence of nodes

 such that every pair .

• A path is simple if all nodes are distinct.

• The length of a path is the number of edges on the path

• An undirected graph is connected if for every pair of nodes and
, there is a path between and

• A cycle is path where

• A cycle is simple if all internal nodes are distinct

G = (V, E)
u1, u2, …, uk (ui−1, ui) ∈ E

u
v u v

u1, u2, …, uk u1 = uk (k ≥ 2)

Trees
• An undirected graph is a tree if it is connected and does not contain

a cycle

Lemma. Let be an undirected graph with nodes. Then any two of
these conditions imply the third

• G is connected

• G does not contain a cycle

• G has edges

G n

n − 1

Graph Traversals
• Connectivity. How do we verify if a graph is connected?

• Path. Given , is there a path between them?

• Determined by “traversing the graph”

• Two classic graph traversal algorithms:

• Breadth-first search (BFS)

• Depth-first search (DFS)

• Both have different applications

• Bipartite testing (BFS)

• Topological ordering (DFS), etc

s, t ∈ V

Breadth-first Search
• Explore outwards in all possible direction from starting point, peeling

“one layer after another”

• BFS algorithm: Initialize

•
• all nodes that do not belong to or that are adjacent

to a node in
•
• all nodes that do not belong an earlier layer that are

adjacent to a node in

L0 = {s}
L1 = all neighbors of L0
L2 = L0 L1

L1
…
Li+1 =

Li

s L1 L2 Ln–1

BFS Example

1

2

3

5

7 6

4

BFS Implementation
• Nodes that we have not seen yet

• Nodes that we have visited

• Nodes that have been “explored” (visited all its neighbors as well)

• Suppose we are currently exploring

• Its neighbors will be marked but when should they be explored
compared to other marked unexplored nodes?

• Want to explore all nodes at level before moving on to level
 (first visited is first to be explored)

• Which data structure?

• Queue

u

i
i + 1

s L1 L2 Ln–1

BFS Implementation: Queue
• Nodes that we have not seen yet (never been added to queue)

• Nodes that we have visited (added to queue but not marked)

• When a node is marked (after extraction from queue), all its
neighbors are visited: next time we see it we can ignore it —-its
been explored!

BFS (G, s):
Put s in the queue Q
While Q is not empty

Extract v from Q
If v is unmarked

Mark v
For each edge (v, w):
 Put w into the queue Q

The BFS Tree
• Can remember parent nodes (the node at level that lead us to a

given node at level)

BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty
Extract (p, v) from Q
If v is unmarked
Mark v
parent(v) = p
For each edge (v, w):
 Put (v, w) into the queue Q

i
i + 1

BFS Analysis
• Inserting and extracting from a queue

• time

• Extracting edges of node (assuming adjacency list)

•

• Overall running time?

• Easy to prove time

• Can improve the analysis to

• Node has incident edges

•
Total time processing edges:

O(1)
v

O(1)

O(n2)
O(n + m)

u degree(u) (u, v)

∑
u∈V

degree(u) = 2m

each edge (u, v) is counted exactly twice  
in sum: once in degree(u) and once in degree(v)

BFS Tree Structure
• Property. Let be a BFS tree of , and let be an edge

of . Then, the levels of and differ by at most 1.
T G = (V, E) (x, y)

G x y

L0

L1

L2

L3

BFS Tree Structure
• Property. Let be a BFS tree rooted at of a connected unweighted

graph, then the path from to any node in is the shortest
path from to .

T r
r u ∈ V T

r u

L0

L1

L2

L3

Spanning Trees
• Definition. A spanning tree of an undirected graph is a

connected acyclic subgraph of that contains every node of .

• The tree produced by the BFS algorithm (with (as
edges) is a spanning tree of the component containing .

• Connected component of : all nodes reachable from

• In an undirected graph, a BFS spanning tree gives the shortest
path from to every other vertex in its component

• (We will revisit shortest path in a couple of lectures)

• BFS trees in general are short and thick

G
G G

(u, parent(u))
s

s s

s

BFS Application: Connectivity
• How to whether a graph is connected using traversals?

• If the BFS spanning tree contains all nodes of the graph, then
the graph is connected

• Suppose the graph is not connected

• How can we find all connected components?

• Start BFS with any node , when its done, all nodes in the BFS
tree of are one component

• Pick another node that is not visited and repeat

• Number of trees in resulting forest is the number of components
of the graph

s
s

BFS Application: Bipartite Testing
• Bipartite graph.

• An undirected graph is bipartite if its nodes can be portioned into
two sets such that all edges have endpoint in both sets

• Models many settings

• We already encountered
an application, which is…?

• Common in scheduling,
one set is machine, other
set is jobs

S1, S2

a bipartite graph

• Given a graph verify if it is bipartite

• Hint: need to use traversals

• But first need to understand structure of bipartite graphs

• Question: Can a bipartite graph contain an odd-length cycle?

• How do we prove this?

• In fact, a graph is bipartite if and only if
it does have an odd length cycle

• One direction bipartite implies no
odd length cycle is simple

• Will prove the other direction constructively

G = (V, E)

a bipartite graph

BFS Application: Bipartite Testing

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Note: Conditions (a) and (b) seem hard to check directly; but
conditions (c) and (d) allow an easy check!

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (a) ⇒ (b)

Vertices must alternate between and .V1 V2

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (b) ⇒ (c)

Contradiction: Such an edge implies an odd cycle

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (c) ⇒ (d)

If all BFS trees have a property then some do as well

Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected
graph G :

(a) G is bipartite

(b) G has no odd-length cycle

(c) No BFS tree has edges between vertices at same level

(d) Some BFS tree has no edges between 2 vertices at same level

Proof. (d) ⇒ (a)

Edges must span consecutive levels: levels provide bipartition of G

Implications of the Theorem
How to check if a graph is bipartite?

• When we visit an edge during BFS, we know the level of
both of its endpoints

• So if both ends have the same level, then we can stop ! (
is not bipartite)

• If no such edge is found during traversal, is bipartite

• Alternate levels give the bipartition

Running time?

• Still

• Certificate. If G is not bipartite this algorithm gives us a proof
of it (the odd cycle that is found)!

G

G

O(n + m)

