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Admin
• Videos posted on website 

• Assignment 0 delayed to Saturday (Assignment 1 
still released tomorrow, due Thursday) 

• Zoom link on Glow and slack (no longer emailed) 

• TA Office hours coming soon 

• I’ll stay after class for questions



Quick Latex Note

• The final X is a chi (the Greek 
letter), not an X 

• So it’s pronounced lay-tech 

• (or lah-tech) 

• But not “latex”



Input. A set  of  hospitals, a set  of  students and their 
preferences (each hospital ranks each student, each 
students ranks each hospital) 

H n S n

Matching Med-Students to Hospitals

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



Definition. A matching  is a set of ordered pairs  where 
 and  such that 

• Each hospital  is in at most one pair in  

• Each student  is in at most one pair in  

A matching  is perfect if each hospital is matched to exactly one 
student and vice versa (i.e., )

M (h, s)
h ∈ H s ∈ S

h M
s M

M
|M | = |H | = |S |

Perfect Matchings

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Definition. A perfect matching  is unstable if there exists an 
unstable pair , that is, 

•  prefers  to its current match in  

•  prefers  to its current match in  

Can you point out an unstable pair in this matching? 

M
(h, s) ∈ H × S

h s M
s h M



Proceed greedily in rounds until matched. In each round, 
• Each hospital makes offer to its top available candidate 
• Each student accepts its top offer (irrecoverable contract) 

and rejects others 

What goes wrong?

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Take a Step Back

• Imagine you are one of these students 
• Why is it a bad idea to accept the best offer you 

get in the first round? 
• You might get a better offer later! 

• Can we come up with an example where this 
happens, causing an unstable matching?



Proceed greedily in rounds until matched.  

• (Round 1) MA  Aamir, NH  Aamir, OH  Chris → → →

False Starts

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH



Proceed greedily in rounds until matched.  

• (Round 1) MA  Aamir, NH  Aamir, OH  Chris 
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Proceed greedily in rounds until matched.  

• (Round 1) MA  Aamir, NH  Aamir, OH  Chris 
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH 
• (Round 2) Only Beth and MA left, and must match

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Proceed greedily in rounds until matched.  

• (Round 1) MA  Aamir, NH  Aamir, OH  Chris 
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH 
• (Round 2) Only Beth and MA left, and must match 

Is this a stable matching?

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Proceed greedily in rounds until matched.  

• (Round 1) MA  Aamir, NH  Aamir, OH  Chris 
• (Round 1) Aamir rejects MA, accepts NH, Chris accepts OH 
• (Round 2) Only Beth and MA left, and must match 

Is this a stable matching? 
• Unstable pair: (MA, Chris). What could have avoided it?

→ → →

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



What Should Students Do?

• Don’t accept immediately (of course) 
• What if they can have a preliminary accept? 

• “I’m interested, but I also want to wait to see if I 
get a better offer” 

• That seems to solve the problem we mentioned, 
but does it always give a stable matching?



Proceed in rounds until all hospitals matched.* In each round, 
• Each free hospital offers to its top choice among candidates it 

hasn’t offered yet 
• Each free student retains but defers accepting top offer, rejects 

others 
• If a student receives a better offer than currently retained, they 

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Proceed in rounds until all hospitals matched.* In each round, 
• Each free hospital offers to its top choice among candidates it 

hasn’t offered yet 
• Each free student retains but defers accepting top offer, rejects 

others 
• If a student receives a better offer than currently retained, they 

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Proceed in rounds until all hospitals matched.* In each round, 
• Each free hospital offers to its top choice among candidates it 

hasn’t offered yet 
• Each free student retains but defers accepting top offer, rejects 

others 
• If a student receives a better offer than currently retained, they 

reject current and retain new offer (trade up)

Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir



Gale-Shapely Deferred Acceptance Algorithm

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir

Proceed in rounds until all hospitals matched.* In each round, 
• Each free hospital offers to its top choice among candidates it 

hasn’t offered yet 
• Each free student retains but defers accepting top offer, rejects 

others 
• If a student receives a better offer than currently retained, they 

reject current and retain new offer (trade up)



Gale-Shapely Algorithm



Analyzing Gale-Shapely
Questions to ask 

Efficiency: 

• How long does it take to produce a matching? 
• How can we efficiently implement each step? 

Correctness:
• Does it match everyone? (produce a perfect matching) 
• Does it produce a stable matching? 



Analyzing the Algorithm: Performance
• Each hospital makes an offer to each student at most once, so the 

algorithm makes at most  iterations 

• What do we do in each iteration? 

• Select a free hospital   

• Find top ranked  not yet offered a post by  

• Find 's ranking of a given hospital 

• Add to & delete from set of matched pairs 

• (possibly) Add a hospital back into the free list 

• How long does it take? 

• Depends on how we implement each of these!

O(n2)

h
s h

s



Analyzing the Algorithm: Performance II
• Input representation. Index students and hospitals  

• Each student provides a sorted list of hospitals (most to least 
preferred) and each hospital provides a sorted list of students 

• Of students not yet offered a post by , find most preferred:  

• Does  prefer  to the current hospital ?  

• For each , create inverse of preference list of hospitals 
(Identify efficient data structures for operations)

1,…, n

h O(1)
s h h′ 

s

Student preference list indexed by rank

1st 2nd 3rd 4th 5th 6th 7th 8th

8 3 7 1 4 5 6 2
pref[]

1 2 3 4 5 6 7 8
4th 8th 2nd 5th 6th 7th 3rd 1st

rank[]

Inverse pref-list indexed by hospital #

student prefers hospital 4 to 6 since rank[4] < rank[6]

for i = 1 to n

    rank[pref[i]] = i



Analyzing the Algorithm: Performance III

Analyzing running time: 

• Creating the inverse-list for each student (preprocessing):   

• Once created,  time to accept/reject proposal by student 

• Maintain free hospitals:   Queue:  for get() and put() 

• Add to & delete from set of matched pairs: 

• Array, Matched(s) = h currently matched to  (or ‘free’) : 
Creation time  (preprocessing) ; update time  

Each iteration thus takes  time 

Overall,  time preprocessing +  time in iterations:    

• Linear time? Yes! Here input size is  size, linear in input size

O(n2)
O(1)

O(1)

s
O(n) O(1)

O(1)

O(n2) O(n2) O(n2)

O(n2)



Analyzing the Algorithm: Correctness
Does it match everyone? (Perfect matching)
• Once a student receives an offer, she has at least a tentative match 

for the rest of time.  
• Equivalently, if any student is unmatched, then no hospital has 

offered them which implies that the hospitals have not exhausted 
their preference lists.  

• When the algorithm terminates, everyone is matched (i.e., it 
produces a perfect matching). 

Does it produce a stable matching?

• Key idea: students always ‘trade up’ 

•  breaks match with  in favor of  only if s prefers  to s h h′ h′ h



Analyzing the Algorithm: Correctness II

Lemma. The Gale Shapely Algorithm produces a stable 
matching. 

Proof. (By contradiction) Let  be the resulting matching. 
Suppose  such that  and

•  prefers  over  and  prefers  over   

Thus  must have offered to  before  

• Either  broke the match to  at some point, or  
already had a match  that s preferred over  

But students always trade up, so s must prefer final match  
over , which they prefer over .  

M
∃(h, s) (h, s′ ), (h′ , s) ∈ M

h s s′ s h h′ 

h s s′ 

s h s
h′ ′ h

h′ 

h′ ′ h ( ⇒⇐ ) ∎



Historical Perspective
• In 1952, the National Resident Matching Program (NRMP) 

adopted the “Boston Pool” algorithm named after regional 
clearinghouses in Boston 

• In 1962, David Gale and Lloyd Shapley formally analyzed 
a generalization of the Boston Pool algorithm  

•  Shapley & Roth (who extended his work) were awarded 
the 2012 Nobel Prize in Economics (Gale did not share 
the prize, because he died in 2008.) 

• Used to be called the stable marriage problem/algorithm 
• Read https://www.nobelprize.org/uploads/2018/06/

popular-economicsciences2012-1.pdf

https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
https://www.nobelprize.org/uploads/2018/06/popular-economicsciences2012-1.pdf
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Graphs and Traversals



Review: Undirected Graphs
An undirected graph  

•  is the set of nodes,  is the set of edges 

• Captures pairwise relations between objects 

• Graph size parameters:  

Sometimes we consider weighted graphs, where each edge  has a 
weight  

G = (V, E)
V E

n = |V | , m = |E |

e
w(e)

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 } 

m = 11, n = 8



Representing Graphs (Review)
Adjacency matrix.

•  matrix where  if  

• Space  

• Checking if  takes _____ time? 

n-by-n A[u][v] = 1 (u, v) ∈ E

O(n2)
(u, v) ∈ E

   1 2 3 4 5 6 7 8
1  0 1 1 0 0 0 0 0
2  1 0 1 1 1 0 0 0
3  1 1 0 0 1 0 1 1
4  0 1 0 0 1 0 0 0
5  0 1 1 1 0 1 0 0
6  0 0 0 0 1 0 0 0
7  0 0 1 0 0 0 0 1
8  0 0 1 0 0 0 1 0



Representing Graphs (Review)
Adjacency matrix.

•  matrix where  if  

• Space  

• Checking if  takes   time 

n-by-n A[u][v] = 1 (u, v) ∈ E

O(n2)
(u, v) ∈ E O(1)

   1 2 3 4 5 6 7 8
1  0 1 1 0 0 0 0 0
2  1 0 1 1 1 0 0 0
3  1 1 0 0 1 0 1 1
4  0 1 0 0 1 0 0 0
5  0 1 1 1 0 1 0 0
6  0 0 0 0 1 0 0 0
7  0 0 1 0 0 0 0 1
8  0 0 1 0 0 0 1 0



Representing Graphs (Review)
Adjacency list.

• Array of lists, where each list represents the neighbors of a 
given node 

• Space  

• Checking if  takes _____ time?

O(n + m)
(u, v) ∈ E

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

3 7



Representing Graphs (Review)

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

3 7

Adjacency list.

• Array of lists, where each list represents the neighbors of a 
given node 

• Space  

• Checking if  takes  time

O(n + m)
(u, v) ∈ E O(degree(u))



Graph Terminology
• A path in an undirected graph  is a sequence of nodes 

  such that every pair .  

• A path is simple if all nodes are distinct. 

• The length of a path is the number of edges on the path 

• An undirected graph is connected if for every pair of nodes  and 
, there is a path between  and  

• A cycle is path  where   

• A cycle is simple if all internal nodes are distinct

G = (V, E)
u1, u2, …, uk (ui−1, ui) ∈ E

u
v u v

u1, u2, …, uk u1 = uk (k ≥ 2)



Trees
• An undirected graph is a tree if it is connected and does not contain 

a cycle  

Lemma. Let  be an undirected graph with  nodes. Then any two of 
these conditions imply the third  

• G is connected 

• G does not contain a cycle 

• G has  edges

G n

n − 1



Graph Traversals
• Connectivity.  How do we verify if a graph is connected? 

• Path.  Given , is there a path between them? 

• Determined by “traversing the graph” 

• Two classic graph traversal algorithms: 

• Breadth-first search (BFS) 

• Depth-first search (DFS) 

• Both have different applications 

• Bipartite testing (BFS) 

• Topological ordering (DFS), etc

s, t ∈ V



Breadth-first Search
• Explore outwards in all possible direction from starting point, peeling 

“one layer after another” 

• BFS algorithm: Initialize  

•  
• all nodes that do not belong to  or  that are adjacent 

to a node in  
•  
•  all nodes that do not belong an earlier layer that are 

adjacent to a node in 

L0 = {s}
L1 = all neighbors of L0
L2 = L0 L1

L1
…
Li+1 =

Li

s L1 L2 Ln–1



BFS Example

1

2

3

5

7 6

4



BFS Implementation
• Nodes that we have not seen yet  

• Nodes that we have visited 

• Nodes that have been “explored” (visited all its neighbors as well) 

• Suppose we are currently exploring  

• Its neighbors will be marked but when should they be explored 
compared to other marked unexplored nodes? 

• Want to explore all nodes at level  before moving on to level 
 (first visited is first to be explored) 

• Which data structure? 

• Queue

u

i
i + 1

s L1 L2 Ln–1



BFS Implementation: Queue
• Nodes that we have not seen yet (never been added to queue) 

• Nodes that we have visited (added to queue but not marked) 

• When a node is marked (after extraction from queue), all its 
neighbors are visited:  next time we see it we can ignore it —-its 
been explored! 

BFS (G, s):
Put s in the queue Q
While Q is not empty

Extract v from Q
If v is unmarked

Mark v
For each edge (v, w):
  Put w into the queue Q



The BFS Tree
• Can remember parent nodes (the node at level  that lead us to a 

given node at level ) 

BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty
Extract (p, v) from Q
If v is unmarked
Mark v
parent(v) = p
For each edge (v, w):
  Put (v, w) into the queue Q

i
i + 1



BFS Analysis
• Inserting and extracting from a queue 

•  time 

• Extracting edges of node  (assuming adjacency list) 

•  

• Overall running time? 

• Easy to prove  time  

• Can improve the analysis to  

• Node  has  incident edges  

•
Total time processing edges:  

O(1)
v

O(1)

O(n2)
O(n + m)

u degree(u) (u, v)

∑
u∈V

degree(u) = 2m

each edge (u, v) is counted exactly twice  
in sum: once in degree(u) and once in degree(v)



BFS Tree Structure
• Property. Let  be a BFS tree of , and let  be an edge 

of . Then, the levels of  and  differ by at most 1.
T G = (V, E) (x, y)

G x y

L0

L1

L2

L3



BFS Tree Structure
• Property. Let  be a BFS tree rooted at  of a connected unweighted 

graph, then the path from  to any node  in  is the shortest 
path from  to .

T r
r u ∈ V T

r u

L0

L1

L2

L3



Spanning Trees
• Definition. A spanning tree of an undirected graph  is a 

connected acyclic subgraph of  that contains every node of . 

• The tree produced by the BFS algorithm (with (  as 
edges) is a spanning tree of the component containing .  

• Connected component of : all nodes reachable from  

• In an undirected graph, a BFS spanning tree gives the shortest 
path from  to every other vertex in its component  

• (We will revisit shortest path in a couple of lectures) 

• BFS trees in general are short and thick

G
G G

(u, parent(u))
s

s s

s



BFS Application: Connectivity
• How to whether a graph is connected using traversals? 

• If the BFS spanning tree contains all nodes of the graph, then 
the graph is connected 

• Suppose the graph is not connected 

• How can we find all connected components? 

• Start BFS with any node , when its done, all nodes in the BFS 
tree of  are one component 

• Pick another node that is not visited and repeat  

• Number of trees in resulting forest is the number of components 
of the graph

s
s



BFS Application: Bipartite Testing
• Bipartite graph.  

• An undirected graph is bipartite if its nodes can be portioned into 
two sets  such that all edges have endpoint in both sets 

• Models many settings 

• We already encountered 
an application, which is…? 

• Common in scheduling, 
one set is machine, other 
set is jobs

S1, S2

a bipartite graph



• Given a graph  verify if it is bipartite  

• Hint:  need to use traversals  

• But first need to understand structure of bipartite graphs 

• Question: Can a bipartite graph contain an odd-length cycle? 

• How do we prove this? 

• In fact, a graph is bipartite if and only if 
it does have an odd length cycle 

• One direction bipartite implies no 
odd length cycle is simple 

• Will prove the other direction constructively

G = (V, E)

a bipartite graph

BFS Application: Bipartite Testing



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Note: Conditions (a) and (b) seem hard to check directly; but 
conditions (c) and (d) allow an easy check!



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (a) ⇒ (b)  

Vertices must alternate between  and .V1 V2



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (b) ⇒ (c)  

Contradiction: Such an edge implies an odd cycle



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (c) ⇒ (d)  

If all BFS trees have a property then some do as well



Bipartite Testing: Using BFS
Theorem. The following statements are equivalent for a connected 
graph G : 

(a) G is bipartite 

(b) G has no odd-length cycle 

(c) No BFS tree has edges between vertices at same level  

(d) Some BFS tree has no edges between 2 vertices at same level  

Proof. (d) ⇒ (a)  

Edges must span consecutive levels: levels provide bipartition of G



Implications of the Theorem
How to check if a graph is bipartite?  

• When we visit an edge during BFS, we know the level of 
both of its endpoints 

• So if both ends have the same level, then we can stop ! (  
is not bipartite) 

• If no such edge is found during traversal,  is bipartite  

• Alternate levels give the bipartition 

Running time? 

• Still  

• Certificate. If G is not bipartite this algorithm gives us a proof 
of it (the odd cycle that is found)!

G

G

O(n + m)


