Asymptotic Analysis
& Stable Matchings

Admin

Rubric/latex tips document posted

Wil post a latex intro and some extra resources as
soon as possible (hopefully tonight)

Intro form already due!
Slides, recordings will be posted this afternoon
TA hours sometime after 5PM

Full zoom setup is together! Can ask questions in
chat, by raising physical hand, or “zoom hand”

Anything else”

Measuring Complexity

 What constitutes an efficient algorithm?
* Runs quickly on large, ‘real’ instances of problems
* Qualitatively better than brute force

e Scales well to large instances

Brute Force: Often Inefficient

e Efficient: Qualitatively better than brute force
* Brute force: often exponentially large because

« Might examine all subsets of a set: 2"
« Might examine all orderings of a list: n!

« But 2"is still not efficient even
though it's qualitatively better than n!
« Example of a 2" algorithm is “two towers”

from CS 136

W”

‘(
\

Measuring Complexity : Scalability

* Desirable scalability property. When the input size doubles the
algorithm should slow down by at most some constant factor C

« Examples

e f(n) = n* then f(2n) = 2knk = cn® for any fixed k

« g(n) =logn, then g(2n) =log2 +logn < clognforn > 2
* But not for these functions

. f(n) = 2" then f(2n) = 2% = 2" . 2"

« g(n)=n! theng(2n) = 2n!)>n"-n!

* An algorithm is polynomial time if the above scaling property holds,
.e., their running time is bounded above by a polynomial function

Growth of Functions

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10*° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ L5 oh n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <1lsec <1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec <lsec <1 sec 1sec 12,892 years 10! years very long
n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Worst Case Analysis

But how do we measure running time”?

Worst-case running time: the maximum number of steps
needed to solve a problem instance of size n

Overestimates the typical runtime but gives strong guaranties
“I promise you that my algorithm is ALWAYS this fast!”

Often there’s no easy to identify “worst” case

 Don't fall into the “the worst case is when...” trap!

100%

i GUARANTEE i

Other Types Of Analysis

Probabilistic. Expected running time of a randomized algorithm
-

* e.9., the expected running time of quicksort)I\
/,)

Amortized. Worst-case running time for any sequence of n
operations

e Some operations can be expensive but may make future
operations fast (doing well on average)

* e.g., Union-tfind data structure (we'll study in a few weeks)

Average-case analysis, smoothed analysis, competitive analysis, etc.

How to Measure Cost?

 “Word RAM"” model of computation

e Basic idea: every operation on a primitive type in C,
Java, etc. costs 1 unit of time:

o Adding/multiplying/dividing/etc two ints or floats
costs 1

* An if statement costs 1
A comparison costs 1
* Dereferencing a pointer costs 1

* Array access costs 1

Model of Computation Detalls

e Word RAM model

« Each memory location and input/output cell stores a w-bit
integer (assume w > log, n)

* Primitive operations: arithmetic operations, read/write memory,
array indexing, following a pointer etc. are constant time

* Runnina tinra:- ~oaebare ot arvimitive operations

« Space: number of memory cells utilized

= ___———=

din
“words’ (Ints, floats, |
chars, etc) not bits {

e e e 2

input memory

program

output

Asymptotic Growth

What matters: How functions behave “as n gets large”

15000 -
/
i (10x3 +10x2 +x+500)
10000 - LlOO X2 ~100x + 500J
5000 -

llllllllllllllllllllllll

Asymptotic Upper Bounds

Definition: f(n) is O(g(n)) if there exists constants ¢ > 0 and ny > 0
such that 0 < f(n) < ¢ - g(n) foralln > ny,

In other words, for sufficiently large n, f(n) is asymptotically bounded
above by g(n)

Examples

. 100n* = O(n?

c - gn)

. nlogn = 0n?) fn)
. S+ 2n+1=0®m>

Typical usage. Insertion sort makes

O(n?) compares to sort n elements

no n

Class Quiz

Let f(n) = 3n* + 17n log, n + 1000. Which of the following are true?

A, f(n)is O(n?).
B. f(n)is O(n?).
C. Both A and B.

D. Neither A nor B.

Big Oh- Notational Abuses

« O(g(n)) is actually a set of functions, but the CS community writes

J(n) = O(g(n)) instead of f(n) € O(g(n))

e [For example

. fin) = O(nlogn) = O(n?)

. f(n) = 03n*+n)=0n*» -
. Butfi(n) # fo(n)

e (Okay to abuse notation in this way f

Playing with Logs: Properties

« In this class, logn means log, n, Inn = log,n

logn

. Constant base doesn’t matter: log,(n) = - b = O(logn)
log
« log(n™) =mlogn
« log(ab) =loga + logb
« log(a/b) =loga —logb
Exponents
a b _ atb
loo 7 n“-n” =n
d ga — N (na)b — nab

We will use this a lot!

Comparing Running Times

 When comparing two functions, helpful to simplity first
. Isn'en = 0(1)?

. Simplify n'/togn = (logmyl/logn — 5 . ppye

. s log\ﬁ = O(n?)
. Simplify logV/2%" =1log2" = nlog?2 = O(n) : True

. Isn = 089

logh n
. Simplify 21987 = 2Tt = p(log W2 — Dlom,v/n \/n : False

Something Missing

e Big-O notation is like <

* SO One can accurately say “merge sort requires
O(2") time,” but it's not very meaningful

* Can we get terminology like big-O that lower
bounds? Or that shows two functions are
“equal” (up to constants and for large values of n)?

Asymptotic Lower Bounds

Definition: f(n) is €2(g(n)) if there exists constants ¢ > 0 and ny > 0
such that f(n) > ¢ - g(n) > Oforalln > n,

In other words, for sufficiently large n, f(n) is asymptotically bounded
below by g(n). (Same abuse of notation as big Oh)

f(n)
Examples

. 100n° = Q(n?) = Q(n)
« nlogn = Q(n)
. 810gn — Q(Iflz)

c-g(n)

no n

Why Lower Bounds?

Show that an algorithm performs at least so many steps

« Searching an unordered list of n items: £2(n) steps in some cases

. Quicksort (and selection/insertion/bubble sorts) take Q(n?) steps
IN some cases

« Mergesort takes 2(n log n) steps in all cases

f(n)

c-g(n)

no n

Class Quiz

True or False:
f(n)is Q(g(n)) if and only if g(n) is O(f(n))

Asymptotically Tight Bounds

Definition. f(n) = O(g(n)) if f(n) = O(g(n)) and f(n) = 2(g(n))
(From before, also enough if f(n) = O(g(n)) and g(n) = O(f(n)))

Equivalently, if there exist constants ¢; > 0, ¢, > 0, and ny > 0 such

that0 < ¢; - gn) < f(n) <c,-gn)foralln > ny.
c2- g(n)

f(n)

c1- g(n)
Examples

. S 4+2n+1 =00

- logigon = B(log, n)

Tools for Comparing Asymptotics

* Logs grow slowly than any polynomial:

. log, n = On®) foreverya > 1, b > 0
 EXxponentials grow faster than any polynomial:

. n4=0G"foreveryd> 1, r>0
* TJaking logs

« Aslogxis a strictly increasing function for x > 0,

log(f(n)) < log(g(n)) implies f(n) < g(n)
. E.g. Compare 31087 yg 2"

e Taking log of both, lognlog 3 vs n

Tools for Comparing Asymptotics

e Using limits

J(x)

. If IIm —— =0, then f(x) = O(g(x))
n—oo g(X)
o
, If llIm —— = ¢ for some constant 0 < ¢ < oo, then
n—oco g(X)

J(x) € B(g(x))

Stable Matchings

An lllustrative Example:

The Stable Matching Problem

Applications
* Assigning first year students to advisors
e Pairing job candidates with employers

 Matching doctors to hospitals

Fundamental Problem

* (iven preferences of both sides, find a matching that is
resilient against opportunistic swapping

State the Problem

* [wo groups: hospitals and students

e Students have preferences over hospitals

 Hospitals have preferences over students

e Each hospital has only one open slot

Goal. Match hospitals to students that is “stable’

pair has an incentive to break their match!

The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design

By ALVIN E. RoTH AND ELLIOTT PERANSON*

We report on the design of the new clearinghouse adopted by the National Resident
Matching Program, which annually fills approximately 20,000 jobs for new physi-
cians. Because the market has complementarities between applicants and between
positions, the theory of simple matching markets does not apply directly. However,
computational experiments show the theory provides good approximations. Fur-
thermore, the set of stable matchings, and the opportunities for strategic manipu-
lation, are surprisingly small. A new kind of “core convergence” result explains
this; that each applicant interviews only a small fraction of available positions is
important. We also describe engineering aspects of the design process. (JEL C78,

B41, J44)
w
:MATCH
!T‘ ON Al RESIDENT MATCHING PROGRAM

' that Is, no

National Resident
Matching Program

Matching Med-Students to Hospitals

Input. A set H of n hospitals, a set S of n students and their

poreferences (each hospital ranks each student, each
students ranks each hospital)

st 2nd 3rd 1st 2nd 3rd
MA Aamir Beth Chris Aamir NH ~ MA OH

NH Beth Aamir Chris Beth . MA NH OH

..

..

Perfect Matchings

Definition. A matching M is a set of ordered pairs (A, s) where
h € Hand s € § such that

« Each hospital £ is in at most one pair in M
« Each student s is in at most one pair in M

A matching M is perfect if each hospital is matched to exactly one
student and vice versa (i.e., |M| = |H| = |S|)

| 1st 2nd 3rd 1st 2nd 3rd
MA Aamwi Beth Equis Aamiri NH = MA OF
NH Beth Aam|r Chris Beth MA N H OH

..

..

Unstable Pairs

Definition. A perfect matching M is unstable if there exists an
unstable pair (h, s) € H X §, that is,

« h prefers s to its current match in M
« s prefers h to its current match in M

Can you point out an unstable pair in this matching?

st 2nd 3rd 1st 2nd 3rd

MA Aam|r Beth Chris Aamir% NH VA OhH
NH Beth Aamir Chris Beth MA NH OH
"""" OH Aamir Beth Chris Chis MA | NH OH

...

...
[l 1 1 [1

Unstable Pairs

Definition. A perfect matching M is unstable if there exists an
unstable pair (h, s) € H X §, that is,

« h prefers s to its current match in M
« s prefers h to its current match in M
Can you point out an unstable pair in this matching?

« E.g. (Beth, MA) better-off together: no incentive to follow M

st 2nd 3rd 1st 2nd 3rd

MA Aam|r Beth Chris Aamir% NH VA OhH
NH Beth Aamir Chris Beth MA NH OH
"""" OH Aamir Beth Chris Chis MA | NH OH

...

...
[l 1 1 [1

Stable Matching Problem

Problem. Given the preference lists of n hospitals and n students,
find a stable matching, that is a matching with no unstable pairs.

Question. Does such a matching always exist?

This does not seem obvious!

st 2nd 3rd 1st 2nd 3rd

MA Aam|r Beth Chris Aamir% NH VA OhH
NH Beth Aamir Chris Beth MA NH OH
"""" OH Aamir Beth Chris Chis MA | NH OH

...

...

How Can We Show This?

 \Want to prove: a stable
matching always exists

 One way:

e (Give an algorithm to
find a stable matching

 Prove that it is always
successtul

False Starts

Proceed greedily in rounds until matched. In each round,

* Each hospital makes offer to its top available candidate

* Each student accepts its top offer (irrecoverable contract)

and rejects others

What goes wrong?

1st 2nd 3rd

MA Aam|r Chns% Beth

...

NH -Aam|rE Beth Chrls

...

...

...

...

...

