
Asymptotic Analysis
& Stable Matchings



Admin

• Rubric/latex tips document posted 
• Will post a latex intro and some extra resources as 

soon as possible (hopefully tonight) 
• Intro form already due! 
• Slides, recordings will be posted this afternoon 
• TA hours sometime after 5PM 
• Full zoom setup is together!  Can ask questions in 

chat, by raising physical hand, or “zoom hand” 
• Anything else?



Measuring Complexity
• What constitutes an efficient algorithm? 

• Runs quickly on large, ‘real’ instances of problems 

• Qualitatively better than brute force 

• Scales well to large instances



• Efficient: Qualitatively better than brute force 

• Brute force: often exponentially large because 

• Might examine all subsets of a set:  
• Might examine all orderings of a list:  

• But  is still not efficient even  
though it’s qualitatively better than  

• Example of a  algorithm is “two towers” 

from CS 136
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n!
2n
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Brute Force: Often Inefficient



• Desirable scalability property. When the input size doubles the 
algorithm should slow down by at most some constant factor  

• Examples 

•  , then   for any fixed  

• , then  for  

• But not for these functions 

• , then  

• , then  

• An algorithm is polynomial time if the above scaling property holds, 
i.e., their running time is bounded above by a polynomial function

C

f(n) = nk f(2n) = 2knk = cnk k
g(n) = log n g(2n) = log 2 + log n ≤ c log n n ≥ 2

f(n) = 2n f(2n) = 22n = 2n ⋅ 2n

g(n) = n! g(2n) = (2n!) ≥ nn ⋅ n!

Measuring Complexity : Scalability



Growth of Functions



Worst Case Analysis
• But how do we measure running time?  

• Worst-case running time: the maximum number of steps 
needed to solve a problem instance of size  

• Overestimates the typical runtime but gives strong guaranties  

• “I promise you that my algorithm is ALWAYS this fast!” 

• Often there’s no easy to identify “worst” case 

• Don’t fall into the “the worst case is when…” trap!

n



Other Types Of Analysis
• Probabilistic.  Expected running time of a randomized algorithm 

• e.g., the expected running time of quicksort  
 
 

• Amortized.  Worst-case running time for any sequence of  
operations 

• Some operations can be expensive but may make future 
operations fast (doing well on average) 

• e.g., Union-find data structure (we’ll study in a few weeks) 

• Average-case analysis, smoothed analysis, competitive analysis, etc.

n



How to Measure Cost?

• “Word RAM” model of computation 
• Basic idea: every operation on a primitive type in C, 

Java, etc. costs 1 unit of time: 
• Adding/multiplying/dividing/etc two ints or floats 

costs 1 
• An if statement costs 1 
• A comparison costs 1 
• Dereferencing a pointer costs 1 
• Array access costs 1



Model of Computation Details
• Word RAM model

• Each memory location and input/output cell stores a -bit 
integer (assume ) 

• Primitive operations: arithmetic operations, read/write memory, 
array indexing, following a pointer etc. are constant time 

• Running time:  number of primitive operations  
• Space:  number of memory cells utilized 

w
w ≥ log2 n

…input

output …

.

.

.

memory

program

Space is measured in 
“words” (ints, floats, 
chars, etc) not bits



Asymptotic Growth
What matters: How functions behave “as n gets large”
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100 x2 - 100 x + 500

10 x3 + 10 x2 + x + 500



Asymptotic Upper Bounds
Definition:  is  if there exists constants  and  
such that  for all 

In other words, for sufficiently large ,  is asymptotically bounded 
above by  

Examples

•  

•  

•  

Typical usage. Insertion sort makes  
 compares to sort  elements

f(n) O(g(n)) c > 0 n0 ≥ 0
0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

n f(n)
g(n)

100n2 = O(n2)

n log n = O(n2)

5n3 + 2n + 1 = O(n3)

O(n2) n

c · g(n)

nn0

f(n)



 
 
Let . Which of the following are true? 

A.   is . 

B.   is . 

C.  Both A and B. 

D.  Neither A nor B.

f(n) = 3n2 + 17n log2 n + 1000

f(n) O(n2)

f(n) O(n3)

choose c = 1020, n0 = 1

choose c = 1020, n0 = 1

Class Quiz



Big Oh- Notational Abuses
•  is actually a set of functions, but the CS community writes 

 instead of  

• For example 

•  

•  

• But  

• Okay to abuse notation in this way

O(g(n))
f(n) = O(g(n)) f(n) ∈ O(g(n))

f1(n) = O(n log n) = O(n2)

f2(n) = O(3n2 + n) = O(n2)
f1(n) ≠ f2(n)

c · g(n)

nn0

f(n)



Playing with Logs: Properties
• In this class,  means ,  

• Constant base doesn’t matter:   

•  

•  

•

log n log2 n ln n = loge n

logb(n) =
log n
log b

= O(log n)

log(nm) = m log n
log(ab) = log a + log b
log(a/b) = log a − log b

Exponents

na ⋅ nb = na+b

(na)b = nabaloga n = n
We will use this a lot!



Comparing Running Times
• When comparing two functions, helpful to simplify first 

• Is  = ? 

• Simplify  :  True  

• Is  =   

• Simplify  :  True  

• Is  

• Simplify  : False

n1/log n O(1)

n1/log n = (2log n)1/log n = 2

log 4n O(n2)

log 22n = log 2n = n log 2 = O(n)

n = O(2log4 n)?

2log4 n = 2
log2 n
log24 = 2(log2 n)/2 = 2log2 n = n



Something Missing

• Big-O notation is like   
• So one can accurately say “merge sort requires 

 time,” but it’s not very meaningful 
• Can we get terminology like big-O that lower 

bounds?  Or that shows two functions are 
“equal” (up to constants and for large values of n)?

≤

O(2n)



Asymptotic Lower Bounds
Definition:  is  if there exists constants  and  
such that  for all 

In other words, for sufficiently large ,  is asymptotically bounded 
below by .  (Same abuse of notation as big Oh) 
 

Examples

•  =  

•  

•

f(n) Ω(g(n)) c > 0 n0 ≥ 0
f(n) ≥ c ⋅ g(n) ≥ 0 n ≥ n0

n f(n)
g(n)

100n2 = Ω(n2) Ω(n)
n log n = Ω(n)

8log n = Ω(n2)

f(n)

nn0

c · g(n)



Why Lower Bounds?
Show that an algorithm performs at least so many steps 

• Searching an unordered list of  items:  steps in some cases 

• Quicksort (and selection/insertion/bubble sorts) take  steps 
in some cases 

• Mergesort takes  steps in all cases

n Ω(n)

Ω(n2)

Ω(n log n)
f(n)

nn0

c · g(n)



Class Quiz
True or False:

 is  if and only if  is  

True!

 is  if there exists constants  and  such that 
 for all  

 is  if there exists constants  and  such that 
 for all 

f(n) Ω(g(n)) g(n) O( f(n))

f(n) Ω(g(n)) c1 > 0 n0 ≥ 0
f(n) ≥ c1 ⋅ g(n) ≥ 0 n ≥ n0

g(n) O( f(n)) c2 > 0 n0 ≥ 0
0 ≤ g(n) ≤ c2 ⋅ f(n) n ≥ n0

Set c1 = 1/c2



Asymptotically Tight Bounds
Definition.  if  and  

(From before, also enough if  and ) 

Equivalently, if there exist constants  and  such 
that  for all  

Examples 

•  

•

f(n) = Θ(g(n)) f(n) = O(g(n)) f(n) = Ω(g(n))

f(n) = O(g(n)) g(n) = O( f(n))

c1 > 0, c2 > 0, n0 ≥ 0
0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) n ≥ n0 .

5n3 + 2n + 1 = Θ(n3)

log100 n = Θ(log2 n)

f(n)

nn0

c1 · g(n)

c2 · g(n)



Tools for Comparing Asymptotics 
•  Logs grow slowly than any polynomial:  

•  for every  

• Exponentials grow faster than any polynomial:  

•  for every   

• Taking logs 

•  As  is a strictly increasing function for , 
 implies  

• E.g. Compare  vs    

• Taking log of both,  vs 

loga n = O(nb) a > 1, b > 0

nd = O(rn) d > 1, r > 0

log x x > 0
log( f(n)) < log(g(n)) f(n) < g(n)

3log n 2n

log n log 3 n



• Using limits 

•  

•  for some constant , then 

If  lim
n→∞

f(x)
g(x)

= 0, then f(x) = O(g(x))

If  lim
n→∞

f(x)
g(x)

= c 0 < c < ∞

f(x) ∈ Θ(g(x))

Tools for Comparing Asymptotics 



Stable Matchings



An Illustrative Example:

Applications 
• Assigning first year students to advisors 
• Pairing job candidates with employers 
• Matching doctors to hospitals 

Fundamental Problem 
• Given preferences of both sides, find a matching that is 

resilient against opportunistic swapping

The Stable Matching Problem



• Two groups: hospitals and students  
• Students have preferences over hospitals  
• Hospitals have preferences over students 
• Each hospital has only one open slot 

Goal. Match hospitals to students that is “stable”, that is, no 
pair has an incentive to break their match! 

State the Problem

National Resident 
Matching Program



Input. A set  of  hospitals, a set  of  students and their 
preferences (each hospital ranks each student, each 
students ranks each hospital) 

H n S n

Matching Med-Students to Hospitals

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



Definition. A matching  is a set of ordered pairs  where 
 and  such that 

• Each hospital  is in at most one pair in  

• Each student  is in at most one pair in  

A matching  is perfect if each hospital is matched to exactly one 
student and vice versa (i.e., )

M (h, s)
h ∈ H s ∈ S

h M
s M

M
|M | = |H | = |S |

Perfect Matchings

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris

Definition. A perfect matching  is unstable if there exists an 
unstable pair , that is, 

•  prefers  to its current match in  

•  prefers  to its current match in  

Can you point out an unstable pair in this matching? 

M
(h, s) ∈ H × S

h s M
s h M



Definition. A perfect matching  is unstable if there exists an 
unstable pair , that is, 

•  prefers  to its current match in  

•  prefers  to its current match in  

Can you point out an unstable pair in this matching?  

• E.g. (Beth, MA) better-off together: no incentive to follow 

M
(h, s) ∈ H × S

h s M
s h M

M

Unstable Pairs

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



Problem. Given the preference lists of  hospitals and  students, 
find a stable matching, that is a matching with no unstable pairs. 

Question. Does such a matching always exist? 
 
This does not seem obvious!

n n

Stable Matching Problem

1st 2nd 3rd

Aamir NH MA OH

Beth MA NH OH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Beth Chris

NH Beth Aamir Chris

OH Aamir Beth Chris



How Can We Show This?

• Want to prove: a stable 
matching always exists 

• One way: 
• Give an algorithm to 

find a stable matching 
• Prove that it is always 

successful



Proceed greedily in rounds until matched. In each round, 
• Each hospital makes offer to its top available candidate 
• Each student accepts its top offer (irrecoverable contract) 

and rejects others 

What goes wrong?

False Starts

1st 2nd 3rd

Aamir OH NH MA

Beth MA OH NH

Chris MA NH OH

1st 2nd 3rd

MA Aamir Chris Beth

NH Aamir Beth Chris

OH Chris Beth Aamir


